
§3.7 Homomorphisms

Shaoyun Yi

MATH 546/701I

University of South Carolina

June 10-11, 2020

Yi Homomorphisms June 10-11, 2020 1 / 23



Review

A group isomorphism φ : (G1, ∗)
∼=−→ (G2, ·)

Find φ & Verify φ
φ(an) = (φ(a))n for all a ∈ G1 and all n ∈ Z: n = 0 vs. n = −1
o(a) = n⇒ o(φ(a)) = n; abelian; cyclic

Lagrange’s Theorem: If |G | = n <∞ and H ⊆ G , then |H|
∣∣n.

Let a ∈ G . Then 〈a〉 ⊆ G and |〈a〉| = o(a)
∣∣|G | in addition if G is finite.

Any group of prime order is cyclic (and so abelian).

Cayley’s Theorem: Every group is isomorphic to a permutation group.

Cyclic group Cn: Infinite: ∼= Z vs. Finite: ∼= Zn 99K multiplicative G
Subgroups of Z vs. Subgroups of Zn subgroup diagram

Dihedral group Dn: Subgroups of D3,D4

Alternating group An: Subgroups of A3,A4

Z×
n : not always cyclic. |Z×

n | = ϕ(n) = # of generators of Zn

Product of two subgroups: not always a subgroup.

Direct product of 2 groups  n groups: Zn
∼= Zp

α1
1
× · · ·Zpαm

m
 ϕ(n)
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Definition

Definition 1

Let (G1, ∗) and (G2, ·) be two groups. A function φ : G1 → G2 is a group
homomorphism if φ(a ∗ b) = φ(a) · φ(b) for all a, b ∈ G1.

Note 1

Every isomorphism is a homomorphism, but conversely not true. (Why?)

Example 2 (Determinant of an invertible matrix)

Let G1 = GLn(R) and G2 = R×. Define φ : G1 → G2 by φ(A) = det(A).
φ is a group homomorphism. (Check it!) [det(AB) = det(A) det(B) X]
φ is not an isomorphism. More precisely, it is not one to one. (Why?)
It is possible to have different matrices that have the same determinant.
Let n = 2. For example, A = I2 and B = −I2 both have determinant 1.

Is φ onto? (Yes!) Let n = 2. For example, C =

[
a 0
0 1

]
, for any a ∈ R×.
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More Examples, I

Example 3 (Parity of an integer)

Define φ : Z→ Z2 by φ(n) = [n]2. φ is a homomorphism. (Check it!)

φ(n + m) = [n + m]2 = [n]2 + [m]2 = φ(n) + φ(m) for all n,m ∈ Z.

φ is not an isomorphism. More precisely, it is not one to one. (Why?)
Parity of an integer: n is even ⇔ φ(n) = [0]2 & n is odd ⇔ φ(n) = [1]2
Is φ onto? (Yes!) (Why?)

Example 4 (Parity of a permutation σ ∈ Sn; Theorem 10 in §3.6)

Define φ : Sn → {±1} by φ(σ) = 1 if σ ∈ An, and φ(σ) = −1 if σ is odd.
φ is a homomorphism. (Check it!) Consider 4 cases:

• σ, τ ∈ An : φ(στ)
?
=1

?
=φ(σ) · φ(τ); • σ, τ ∈ On : φ(στ)

?
=1

?
=φ(σ) · φ(τ)

• σ ∈ An, τ ∈ On : φ(στ)
?
=− 1

?
=φ(σ) · φ(τ); • σ ∈ On, τ ∈ An : X(Why?)

φ is onto (Why?) and not one to one (Why?). (similarly as in Example 3)
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More Examples, II

Example 5 (Exponential functions for groups)

Let G be a group, and let a ∈ G . Define φ : Z→ G by φ(n) = an, for all n ∈ Z.

φ is a homomorphism. (Check it!) φ(n+m) = an+m = anam = φ(n) ·φ(m)
Is φ onto? A: φ is onto ⇔ G = 〈a〉 (every element of G is a power of a).
Is φ one-to-one? A: φ is one-to-one ⇔ o(a) =∞ (Why?) (this ensures
that no two powers with different exponents can be equal to each other).

Example 6 (Linear functions on Zn)

For a fixed m ∈ Z, define φ : Zn → Zn by φ([x ]) = [mx ], for all [x ] ∈ Zn.
φ is well-defined: If x ≡ y (mod n), then mx ≡ my (mod n).
φ is a homomorphism: (Check it!)

φ([x ] + [y ]) = φ([x + y ]) = [m(x + y)] = [mx ] + [my ] = φ(x) + φ(y)

Is φ one-to-one or onto? A: φ is one-to-one and onto ⇔ d = (m, n) = 1.
Thm 10 in Chapter. 1: mx ≡ y (mod n) has a solution ⇔ d = (m, n)|y .
Moreover, if d |y , there are d distinct solutions modulo n.
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Properties of homomorphisms

Proposition 1

If φ : G1 → G2 is a group homomorphism, then

(a) φ(e1) = e2;

(b) φ(a−1) = (φ(a))−1 for all a ∈ G1;

(c) φ(an) = (φ(a))n for all a ∈ G1 and all n ∈ Z;

(d) if o(a) = n in G1, then o(φ(a)) in G2 is a divisor of n.

Proof.

Proofs of Parts (a), (b), (c) are the same as in the case of an isomorphism.

(a) φ(e1)φ(e1) = φ(e1e1) = φ(e1)⇒ φ(e1) = e2. (Why?)

(b) φ(a)φ(a−1) = φ(aa−1) = φ(e1) = e2 ⇒ φ(a−1) = (φ(a))−1. (Why?)

(c) This can be proved using a simple induction argument. (Check it!)

(d) (φ(a))n = φ(an) = φ(e1) = e2. Thus, o(φ(a))|n. (Why?)
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Examples

Example 7 (Homomorphisms defined on cyclic groups)

Let C = 〈a〉 be a cyclic group. Define a homomorphism φ : C → G by
φ(a) = g . Then φ(am) = gm. (Why?)
Since every element of C is of the form am for some m ∈ Z, (Why?)
this implies that φ is completely determined by its value on a. (Why?)
Note: If o(a) = n <∞, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms φ : Zn → Zk)

Any such homomorphism φ is completely determined by φ([1]n). (Why?)
Say, φ([1]n) = [m]k with o([m]k)|n. (Why?) So n · [m]k = [0]k . (Why?)
It follows that k |nm. (Why?) [n · [m]k = [nm]k = [0]k ]
Thus, φ([x ]n) = [mx ]k , for all [x ]n ∈ Zn, defines a homomorphism if and
only if k |mn.
Furthermore, every homomorphism φ : Zn → Zk must be of this form.
Note that φ(Zn) is the cyclic subgroup generated by [m]k (Why?), and so
φ : Zn → Zk is onto ⇔ [m]k is a generator of Zk , i.e., (m, k) = 1. (Why?)
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Kernel and Image of a Homomorphism

Definition 9

Let φ : G1 → G2 be a group homomorphism. The kernel of φ is the set

ker(φ) = {x ∈ G1 | φ(x) = e2}.

The image of φ is the set

im(φ) = {φ(x) | x ∈ G1}.

Note 2

ker(φ) is a subset of G1.

im(φ) is a subset of G2.
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Revisit Example 5: Exponential functions for groups

Let G be a group, and let a ∈ G . Define φ : Z→ G by φ(n) = an, for all n ∈ Z.

φ is a homomorphism. (See Example 5)

Question 1

What is ker(φ) =?

By definition, ker(φ) = {n | an = e}. Let o(a) be the order of a in G . So,

If o(a) = m <∞, then ker(φ) = 〈m〉 = mZ. (Why?)

If o(a) =∞, then ker(φ) = {0}. (Why?)

Note: In either case, ker(φ) is a subgroup of Z.

Question 2

What is im(φ) =?

By definition, im(φ) = {an | n ∈ Z} = 〈a〉.
Note: im(φ) = 〈a〉 is a subgroup of G.
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ker(φ) is a subgroup of G1 & im(φ) is a subgroup of G2

Theorem 10

Let φ : G1 → G2 be a group homomorphism. Then

(a) ker(φ) is a subgroup of G1.

(b) im(φ) is a subgroup of G2.

(a) ker(φ) is nonempty: e1 ∈ ker(φ). (Why?) [φ(e1) = e2]
For a, b ∈ ker(φ), to show ab−1 ∈ ker(φ). So φ(a) = e2 & φ(b) = e2.

φ(ab−1) = φ(a)φ(b−1) = φ(a)φ(b)−1 = e2e
−1
2 = e2.

(b) im(φ) is nonempty: e2 ∈ im(φ). (Why?) [φ(e1) = e2]
For x , y ∈ im(φ), to show xy−1 ∈ im(φ). So φ(a) = x and φ(b) = y
for some a, b ∈ G1. Therefore,

xy−1 = φ(a)(φ(b))−1 = φ(a)φ(b−1) = φ(ab−1).

Theorem 11 (Let φ : G1 → G2 be a group homomorphism.)

(a) φ is one-to-one if and only if ker(φ) = {e1}.
(b) φ is onto if and only if im(φ) = G2.
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Proof of Theorem 11

(a) φ is one-to-one if and only if ker(φ) = {e1}.
Let φ : G1 → G2 be a group homomorphism.

By Proposition 5 in §3.4:
φ is one-to-one ⇔ φ(x) = e2 ⇒ x = e1, i.e., ker(φ) = {e1}.

(b) φ is onto if and only if im(φ) = G2. Trivial. (Why?)

Proposition 1 (d): If o(a) = n in G1, then o(φ(a)) in G2 is a divisor of n.

Proposition 2 (More properties that are preserved by homomorphisms)

Let φ : G1 → G2 be a group homomorphism. And assume that φ is onto.

(a) If G1 is abelian, then G2 is also abelian.

(b) If G1 is cyclic, then G2 is also cyclic.

Note 3

Proposition 2 (a) & (b) are not necessarily true if φ is not onto.
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Proof of Proposition 2

Let φ : G1 → G2 be a group homomorphism. And assume that φ is onto.

(a) If G1 is abelian, then G2 is also abelian.

(b) If G1 is cyclic, then G2 is also cyclic.

(a) For any x , y ∈ G2, there exist a, b ∈ G1 such that φ(a) = x , φ(b) = y .

xy = φ(a)φ(b) = φ(ab)
!

=φ(ba) = φ(b)φ(a) = yx .

(b) Let G1 = 〈a〉 for a generator a ∈ G1. Claim: G2 = 〈φ(a)〉.
〈φ(a)〉 ⊆ G2 : Trivial. (Why?) [φ(a) ∈ G2]
G2 ⊆ 〈φ(a)〉 : To show every element y of G2 is a power of φ(a).
We can write y = φ(b) for some b ∈ G1. (Why?) We can also write
b = am for some m ∈ Z. (Why?) This implies that

y = φ(b) = φ(am) = (φ(a))m.

Thus, G2 = 〈φ(a)〉. That is, G2 is also cyclic.
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism φ : Zn → Zk by φ([x ]n) = [mx ]k ,
for all [x ]n ∈ Zn. And φ([x ]n) = [mx ]k is well-defined if and only if k |mn.
Furthermore,

every homomorphism φ : Zn → Zk must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Zn, and from Zn to Z.

Proposition 3

Let m be a fixed integer. Define a function φ : Z→ Z by φ(x) = mx.
Then φ is a homomorphism. Every homomorphism must be of this form.

Proof.

φ is a homomorphism: φ(x + y) = m(x + y) = mx + my = φ(x) + φ(y).
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Example cont.: Homorphisms between Z and Zn

Proposition 4

Let [m]n ∈ Zn. Define a function φ : Z→ Zn by φ(x) = [mx ]n. Then φ is
a homomorphism. Every homomorphism must be of this form.

Proof.

The proof is the same as for homomorphisms Z→ Z.

Proposition 5

The only homomorphism Zn → Z is the function defined by φ([x ]n) = 0
for all [x ]n ∈ Zn.

Proof.

In Zn, o([x ]n) = m|n. And so o(φ([x ]n))|m in Z. (Why?) [Prop. 1 (d)]
However, in Z, only 0 has a finite order (o(0) = 1). Thus, φ([x ]n) = 0.
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Normal subgroup

Proposition 6 (Let φ : G1 → G2 be a homomorphism.)

Let g be any element in G1. Then gkg−1 ∈ ker(φ) for all k ∈ ker(φ).

Note: We have shown that ker(φ) is a subgroup of G1 in Theorem 10 (a).

Proof.

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g)e2φ(g)−1 = φ(g)φ(g)−1 = e2

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg−1 ∈ H
for all h ∈ H and g ∈ G .

Example 13 (Let φ : G1 → G2 be a homomorphism.)

(1) ker(φ) is a normal subgroup of G1; see Proposition 6.

(2) If H = G or H = {e}, then H is normal.

(3) Any subgroup of an abelian group is normal.

Yi Homomorphisms June 10-11, 2020 15 / 23



Normal subgroup

Proposition 6 (Let φ : G1 → G2 be a homomorphism.)

Let g be any element in G1. Then gkg−1 ∈ ker(φ) for all k ∈ ker(φ).

Note:

We have shown that ker(φ) is a subgroup of G1 in Theorem 10 (a).

Proof.

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g)e2φ(g)−1 = φ(g)φ(g)−1 = e2

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg−1 ∈ H
for all h ∈ H and g ∈ G .

Example 13 (Let φ : G1 → G2 be a homomorphism.)

(1) ker(φ) is a normal subgroup of G1; see Proposition 6.

(2) If H = G or H = {e}, then H is normal.

(3) Any subgroup of an abelian group is normal.

Yi Homomorphisms June 10-11, 2020 15 / 23



Normal subgroup

Proposition 6 (Let φ : G1 → G2 be a homomorphism.)

Let g be any element in G1. Then gkg−1 ∈ ker(φ) for all k ∈ ker(φ).

Note: We have shown that ker(φ) is a subgroup of G1 in Theorem 10 (a).

Proof.

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g)e2φ(g)−1 = φ(g)φ(g)−1 = e2

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg−1 ∈ H
for all h ∈ H and g ∈ G .

Example 13 (Let φ : G1 → G2 be a homomorphism.)

(1) ker(φ) is a normal subgroup of G1; see Proposition 6.

(2) If H = G or H = {e}, then H is normal.

(3) Any subgroup of an abelian group is normal.

Yi Homomorphisms June 10-11, 2020 15 / 23



Normal subgroup

Proposition 6 (Let φ : G1 → G2 be a homomorphism.)

Let g be any element in G1. Then gkg−1 ∈ ker(φ) for all k ∈ ker(φ).

Note: We have shown that ker(φ) is a subgroup of G1 in Theorem 10 (a).

Proof.

φ(gkg−1) =

φ(g)φ(k)φ(g−1) = φ(g)e2φ(g)−1 = φ(g)φ(g)−1 = e2

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg−1 ∈ H
for all h ∈ H and g ∈ G .

Example 13 (Let φ : G1 → G2 be a homomorphism.)

(1) ker(φ) is a normal subgroup of G1; see Proposition 6.

(2) If H = G or H = {e}, then H is normal.

(3) Any subgroup of an abelian group is normal.

Yi Homomorphisms June 10-11, 2020 15 / 23



Normal subgroup

Proposition 6 (Let φ : G1 → G2 be a homomorphism.)

Let g be any element in G1. Then gkg−1 ∈ ker(φ) for all k ∈ ker(φ).

Note: We have shown that ker(φ) is a subgroup of G1 in Theorem 10 (a).

Proof.

φ(gkg−1) = φ(g)φ(k)φ(g−1) =

φ(g)e2φ(g)−1 = φ(g)φ(g)−1 = e2

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg−1 ∈ H
for all h ∈ H and g ∈ G .

Example 13 (Let φ : G1 → G2 be a homomorphism.)

(1) ker(φ) is a normal subgroup of G1; see Proposition 6.

(2) If H = G or H = {e}, then H is normal.

(3) Any subgroup of an abelian group is normal.

Yi Homomorphisms June 10-11, 2020 15 / 23



Normal subgroup

Proposition 6 (Let φ : G1 → G2 be a homomorphism.)

Let g be any element in G1. Then gkg−1 ∈ ker(φ) for all k ∈ ker(φ).

Note: We have shown that ker(φ) is a subgroup of G1 in Theorem 10 (a).

Proof.

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g)e2φ(g)−1 =

φ(g)φ(g)−1 = e2

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg−1 ∈ H
for all h ∈ H and g ∈ G .

Example 13 (Let φ : G1 → G2 be a homomorphism.)

(1) ker(φ) is a normal subgroup of G1; see Proposition 6.

(2) If H = G or H = {e}, then H is normal.

(3) Any subgroup of an abelian group is normal.

Yi Homomorphisms June 10-11, 2020 15 / 23



Normal subgroup

Proposition 6 (Let φ : G1 → G2 be a homomorphism.)

Let g be any element in G1. Then gkg−1 ∈ ker(φ) for all k ∈ ker(φ).

Note: We have shown that ker(φ) is a subgroup of G1 in Theorem 10 (a).

Proof.

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g)e2φ(g)−1 = φ(g)φ(g)−1 =

e2

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg−1 ∈ H
for all h ∈ H and g ∈ G .

Example 13 (Let φ : G1 → G2 be a homomorphism.)

(1) ker(φ) is a normal subgroup of G1; see Proposition 6.

(2) If H = G or H = {e}, then H is normal.

(3) Any subgroup of an abelian group is normal.

Yi Homomorphisms June 10-11, 2020 15 / 23



Normal subgroup

Proposition 6 (Let φ : G1 → G2 be a homomorphism.)

Let g be any element in G1. Then gkg−1 ∈ ker(φ) for all k ∈ ker(φ).

Note: We have shown that ker(φ) is a subgroup of G1 in Theorem 10 (a).

Proof.

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g)e2φ(g)−1 = φ(g)φ(g)−1 = e2

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg−1 ∈ H
for all h ∈ H and g ∈ G .

Example 13 (Let φ : G1 → G2 be a homomorphism.)

(1) ker(φ) is a normal subgroup of G1; see Proposition 6.

(2) If H = G or H = {e}, then H is normal.

(3) Any subgroup of an abelian group is normal.

Yi Homomorphisms June 10-11, 2020 15 / 23



Normal subgroup

Proposition 6 (Let φ : G1 → G2 be a homomorphism.)

Let g be any element in G1. Then gkg−1 ∈ ker(φ) for all k ∈ ker(φ).

Note: We have shown that ker(φ) is a subgroup of G1 in Theorem 10 (a).

Proof.

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g)e2φ(g)−1 = φ(g)φ(g)−1 = e2

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg−1 ∈ H
for all h ∈ H and g ∈ G .

Example 13 (Let φ : G1 → G2 be a homomorphism.)

(1) ker(φ) is a normal subgroup of G1; see Proposition 6.

(2) If H = G or H = {e}, then H is normal.

(3) Any subgroup of an abelian group is normal.

Yi Homomorphisms June 10-11, 2020 15 / 23



Normal subgroup

Proposition 6 (Let φ : G1 → G2 be a homomorphism.)

Let g be any element in G1. Then gkg−1 ∈ ker(φ) for all k ∈ ker(φ).

Note: We have shown that ker(φ) is a subgroup of G1 in Theorem 10 (a).

Proof.

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g)e2φ(g)−1 = φ(g)φ(g)−1 = e2

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg−1 ∈ H
for all h ∈ H and g ∈ G .

Example 13 (Let φ : G1 → G2 be a homomorphism.)

(1) ker(φ) is a normal subgroup of G1; see Proposition 6.

(2) If H = G or H = {e}, then H is normal.

(3) Any subgroup of an abelian group is normal.

Yi Homomorphisms June 10-11, 2020 15 / 23



Normal subgroup

Proposition 6 (Let φ : G1 → G2 be a homomorphism.)

Let g be any element in G1. Then gkg−1 ∈ ker(φ) for all k ∈ ker(φ).

Note: We have shown that ker(φ) is a subgroup of G1 in Theorem 10 (a).

Proof.

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g)e2φ(g)−1 = φ(g)φ(g)−1 = e2

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg−1 ∈ H
for all h ∈ H and g ∈ G .

Example 13 (Let φ : G1 → G2 be a homomorphism.)

(1) ker(φ) is a normal subgroup of G1; see Proposition 6.

(2) If H = G or H = {e}, then H is normal.

(3) Any subgroup of an abelian group is normal.

Yi Homomorphisms June 10-11, 2020 15 / 23



Normal subgroup

Proposition 6 (Let φ : G1 → G2 be a homomorphism.)

Let g be any element in G1. Then gkg−1 ∈ ker(φ) for all k ∈ ker(φ).

Note: We have shown that ker(φ) is a subgroup of G1 in Theorem 10 (a).

Proof.

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g)e2φ(g)−1 = φ(g)φ(g)−1 = e2

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg−1 ∈ H
for all h ∈ H and g ∈ G .

Example 13 (Let φ : G1 → G2 be a homomorphism.)

(1) ker(φ) is a normal subgroup of G1; see Proposition 6.

(2) If H = G or H = {e}, then H is normal.

(3) Any subgroup of an abelian group is normal.

Yi Homomorphisms June 10-11, 2020 15 / 23



How subgroups are related via a homomorphism

Proposition 7 (Let φ : G1 → G2 be a homomorphism.)

(a) If H1 is a subgroup of G1, then φ(H1) is a subgroup of G2.
If φ is onto and H1 is normal in G1, then φ(H1) is normal in G2.

(b) If H2 is a subgroup of G2, then φ−1(H2) is a subgroup of G1.
If H2 is a normal in G2, then φ−1(H2) is normal in G1.

(a) Nonempty: e2 ∈ φ(H1). (Why?) For any x , y ∈ φ(H1), there exist
a, b ∈ H1 with φ(a) = x and φ(b) = y , and

xy−1 = φ(a)(φ(b))−1 = φ(a)φ(b−1) = φ(ab−1)∈φ(H1). X
Let x ∈ G2 and y ∈ φ(H1). To show xyx−1 ∈ φ(H1). (Why?)
There exist g ∈ G1 and a ∈ H1 with φ(g) = x (Why?) and y = φ(a).

xyx−1 = φ(g)φ(a)φ(g−1) = φ(gag−1)
?
∈φ(H1) (Why?) X

(b) φ−1(H2) = {a ∈ G1 | φ(a) ∈ H2}. Nonempty: e1 ∈ φ−1(H2). (Why?)
For any a, b ∈ φ−1(H2), ab−1 ∈ φ−1(H2) since φ(ab−1)∈H2. (Why?)
Let g ∈ G1 and a ∈ φ−1(H2). To show gag−1 ∈ φ−1(H2). (Why?)
This is true since φ(gag−1) = φ(g)φ(a)(φ(g))−1∈H2. (Why?)
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Equivalence relation on G1 associated with φ

Definition 14 (Let φ : G1 → G2 be a homomorphism.)

Natural equivalent relation on G1 : a ∼φ b if φ(a) = φ(b), where a, b ∈ G1.

Notation: The set of equivalence classes of this relation: G1/φ = {[a]φ},
where [a]φ is the equivalence class of a ∈ G1. (Think about [r ]n in Zn)

Proposition 8 (Let φ : G1 → G2 be a homomorphism.)

The multiplication of equivalence classes in the set G1/φ is well-defined,
and G1/φ is a group under this multiplication. The natural projection

π : G1 → G1/φ

defined by π(a) = [a]φ is a group homomorphism.

(Recall the multiplication of congruence classes in Zn: [a]n[b]n = [ab]n)
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Equivalence relation on G1 associated with φ

Definition 14 (Let φ : G1 → G2 be a homomorphism.)

Natural equivalent relation on G1 : a ∼φ b if φ(a) = φ(b), where a, b ∈ G1.

Notation:

The set of equivalence classes of this relation: G1/φ = {[a]φ},
where [a]φ is the equivalence class of a ∈ G1. (Think about [r ]n in Zn)

Proposition 8 (Let φ : G1 → G2 be a homomorphism.)

The multiplication of equivalence classes in the set G1/φ is well-defined,
and G1/φ is a group under this multiplication. The natural projection

π : G1 → G1/φ

defined by π(a) = [a]φ is a group homomorphism.

(Recall the multiplication of congruence classes in Zn: [a]n[b]n = [ab]n)

Yi Homomorphisms June 10-11, 2020 17 / 23



Equivalence relation on G1 associated with φ

Definition 14 (Let φ : G1 → G2 be a homomorphism.)

Natural equivalent relation on G1 : a ∼φ b if φ(a) = φ(b), where a, b ∈ G1.

Notation: The set of equivalence classes of this relation: G1/φ = {[a]φ},
where [a]φ is the equivalence class of a ∈ G1. (Think about [r ]n in Zn)

Proposition 8 (Let φ : G1 → G2 be a homomorphism.)

The multiplication of equivalence classes in the set G1/φ is well-defined,
and G1/φ is a group under this multiplication. The natural projection

π : G1 → G1/φ

defined by π(a) = [a]φ is a group homomorphism.

(Recall the multiplication of congruence classes in Zn: [a]n[b]n = [ab]n)

Yi Homomorphisms June 10-11, 2020 17 / 23



Equivalence relation on G1 associated with φ

Definition 14 (Let φ : G1 → G2 be a homomorphism.)

Natural equivalent relation on G1 : a ∼φ b if φ(a) = φ(b), where a, b ∈ G1.

Notation: The set of equivalence classes of this relation: G1/φ = {[a]φ},
where [a]φ is the equivalence class of a ∈ G1. (Think about [r ]n in Zn)

Proposition 8 (Let φ : G1 → G2 be a homomorphism.)

The multiplication of equivalence classes in the set G1/φ is well-defined,
and G1/φ is a group under this multiplication.

The natural projection

π : G1 → G1/φ

defined by π(a) = [a]φ is a group homomorphism.

(Recall the multiplication of congruence classes in Zn: [a]n[b]n = [ab]n)

Yi Homomorphisms June 10-11, 2020 17 / 23



Equivalence relation on G1 associated with φ

Definition 14 (Let φ : G1 → G2 be a homomorphism.)

Natural equivalent relation on G1 : a ∼φ b if φ(a) = φ(b), where a, b ∈ G1.

Notation: The set of equivalence classes of this relation: G1/φ = {[a]φ},
where [a]φ is the equivalence class of a ∈ G1. (Think about [r ]n in Zn)

Proposition 8 (Let φ : G1 → G2 be a homomorphism.)

The multiplication of equivalence classes in the set G1/φ is well-defined,
and G1/φ is a group under this multiplication. The natural projection

π : G1 → G1/φ

defined by π(a) = [a]φ is a group homomorphism.

(Recall the multiplication of congruence classes in Zn: [a]n[b]n = [ab]n)

Yi Homomorphisms June 10-11, 2020 17 / 23



Proof of Proposition 8

(i) Multiplication is well-defined:

show ac ∼φ bd if a ∼φ b and c ∼φ d .
If φ(a) = φ(b) and φ(c) = φ(d), then

φ(ac) = φ(a)φ(c) = φ(b)φ(d) = φ(bd).

(ii) Associativity: (Check it!) For all a, b, c ∈ G1,

[a]φ([b]φ[c]φ) = [a]φ[bc]φ = [a(bc)]φ
!

=[(ab)c]φ
X
= ([a]φ[b]φ)[c]φ

(iii) Identity: The class [e]φ is an identity element since for all a ∈ G1:

[e]φ[a]φ = [ea]φ = [a]φ and [a]φ[e]φ = [ae]φ = [a]φ
(iv) Inverses: For any equivalence class [a]φ, its inverse is [a−1]φ since

[a−1]φ[a]φ = [a−1a]φ = [e]φ and [a]φ[a−1]φ = [aa−1]φ = [e]φ

Thus, G1/φ is a group under the multiplication of equivalence classes.

Define the natural projection π : G1 → G1/φ by π(a) = [a]φ.
π is a group homomorphism: (Check it!) For all a, b ∈ G1,

π(ab) = [ab]φ = [a]φ[b]φ = π(a)π(b).
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An extremely important theorem

Theorem 15 (Let φ : G1 → G2 be a homomorphism.)

There exists a group isomorphism φ : G1/φ→ φ(G1), where φ is defined by

φ([a]φ) = φ(a), for all [a]φ ∈ G1/φ.

Note G1
π−→ G1/φ

φ−→ φ(G1)
ι−→ G2 : φ = ιφπ, ι is the inclusion mapping

Proof.

(i) well-defined: If [a]φ = [b]φ, then φ(a) = φ(b). So φ([a]φ) = φ([b]φ).

(ii) one-to-one: If φ([a]φ) = φ([b]φ), then φ(a) = φ(b). So [a]φ = [b]φ.

(iii) onto: im(φ) = {φ([a]φ) | a ∈ G1} = {φ(a) | a ∈ G1} = im(φ) = φ(G1)

(iv) φ is a group homomorphism: For any [a]φ, [b]φ ∈ G1/φ,

φ([a]φ[b]φ) = φ([ab]φ) = φ(ab) = φ(a)φ(b) = φ([a]φ)φ([b]φ).
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Example: Characterization of cyclic groups

Theorem 16 (Theorem 2 in §3.5)

Every cyclic group G is isomorphic to either Z or Zn, for some n ∈ Z+.

Another proof: (Using Theorem 15).

Given G = 〈a〉, define φ : Z→ G by φ(m) = am. (Example 5: φ is onto)

If o(a) =∞, then φ is one-to-one. (Why?) So Z ∼= φ(Z)= G (Why?)
Since φ is one-to-one, the equivalence classes of the factor set Z/φ are
just the subsets of Z consisting of single elements, and thus Z itself.

If o(a) = n, then am = ak ⇔ m ≡ k (mod n). Thus, φ(m) = φ(k) if
and only if m ≡ k (mod n). This shows that Z/φ is the additive
group of congruence classes modulo n. Therefore, G ∼= Zn. (Why?)

By Theorem 15, Z/φ ∼= φ(Z)= G & Z/φ = Zn.
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Example: Another proof of Cayley’s theorem (use Thm 15)

Cayley’s theorem: Every group is isomorphic to a permutation group.

Given any group G , define φ : G → Sym(G ) by φ(a) = λa, for any a ∈ G ,
where λa (∈ Sym(G )) is the function defined by λa(x) = ax for all x ∈ G .

φ is a homomorphism: For all a, b ∈ G , φ(ab) = λab = λaλb = φ(a)φ(b).

one-to-one: λa is the identity permutation only if a = e. So ker(φ) = {e}.

Since φ is one-to-one, the equivalence classes of the factor set G/φ are just
the subsets of G consisting of single elements, and thus G itself. Thus,

G ∼= φ(G ). (Why?) [Theorem 15!]

And φ(G ) is a permutation group.(Why?) [φ(G ) is a subgroup of Sym(G )]
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G/ ker(φ): The more standard notation for G/φ

Proposition 9 (Let φ : G1 → G2 be a homomorphism, and a, b ∈ G1.)

The following conditions are equivalent:

(1) φ(a) = φ(b);

(2) ab−1 ∈ ker(φ);

(3) a = kb for some k ∈ ker(φ);

(4) b−1a ∈ ker(φ);

(5) a = bk for some k ∈ ker(φ);

(1)⇒ (2) φ(a) = φ(b)⇒ φ(a)(φ(b))−1 = φ(ab−1) = e2 ⇒ ab−1 ∈ ker(φ)
(2)⇒ (3) If ab−1 = k ∈ ker(φ), then a = kb.
(3)⇒ (1) If a = kb, then φ(a) = φ(kb) = φ(k)φ(b) = e2φ(b) = φ(b).
Similarly it can be shown that (1) implies (4) implies (5) implies (1).

Lemma 17 (Lemma 19 in §3.2: Let H be a subgroup of the group G .)

For a, b ∈ G define a ∼ b if ab−1 ∈ H. Then ∼ is an equivalence relation.

By Proposition 9, we let H = ker(φ). Then, we write G/ ker(φ) for G/φ.
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Some remarks

Remark 1 (Restate Theorem 15)

Let φ : G1 → G2 be a homomorphism. Then G1/ ker(φ) ∼= φ(G1) = im(φ).

Remark 2 (Let φ : G1 → G2 be a homomorphism of abelian groups.)

With operations denoted additively, then Prop. 9 has the following form:
For a, b ∈ G1, the following conditions are equivalent:

(1) φ(a) = φ(b);

(2) a− b ∈ ker(φ);

(3) a = b + k for some k ∈ ker(φ).

Example 18 (A special case of Proposition 4: m = 1)

Define φ : Z→ Zn by φ(x) = [x ]n. Then φ is a homomorphism.
What is the ker(φ) =? A: ker(φ) = nZ = 〈n〉. So Z/nZ ∼= Zn.

φ(x) = φ(y)⇔ [x ]n = [y ]n ⇔ x ≡ y (mod n)⇔ x − y = mn for m ∈ Z
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