$\S3.7$ Homomorphisms

Shaoyun Yi

MATH 546/701I

University of South Carolina

June 10-11, 2020

Review

• A group isomorphism $\phi : (G_1, *) \stackrel{\cong}{\longrightarrow} (G_2, \cdot)$

- Find ϕ & Verify ϕ
- $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbf{Z}$: n = 0 vs. n = -1
- $o(a) = n \Rightarrow o(\phi(a)) = n$; abelian; cyclic
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.
 - Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = o(a) ||G|$ in addition if G is finite.
 - Any group of prime order is cyclic (and so abelian).
- Cayley's Theorem: Every group is isomorphic to a permutation group.
- Cyclic group C_n: Infinite: ≅ Z vs. Finite: ≅ Z_n --→ multiplicative G
 Subgroups of Z vs. Subgroups of Z_n → subgroup diagram
- Dihedral group D_n : Subgroups of D_3, D_4
- Alternating group A_n: Subgroups of A₃, A₄
- \mathbf{Z}_n^{\times} : *not* always cyclic. $|\mathbf{Z}_n^{\times}| = \varphi(n) = \#$ of generators of \mathbf{Z}_n
- Product of two subgroups: *not* always a subgroup.
- Direct product of 2 groups $\rightsquigarrow n$ groups: $\mathbf{Z}_n \cong \mathbf{Z}_{p_1^{\alpha_1}} \times \cdots \times \mathbf{Z}_{p_m^{\alpha_m}} \rightsquigarrow \varphi(n)$

Definition 1

Let $(G_1, *)$ and (G_2, \cdot) be two groups. A function $\phi : G_1 \to G_2$ is a **group** homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Note 1

Definition 1

Let $(G_1, *)$ and (G_2, \cdot) be two groups. A function $\phi : G_1 \to G_2$ is a **group** homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Note 1

Every isomorphism is a homomorphism, but conversely not true. (Why?)

Example 2 (Determinant of an invertible matrix)

Definition 1

Let $(G_1, *)$ and (G_2, \cdot) be two groups. A function $\phi : G_1 \to G_2$ is a **group** homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Note 1

Every isomorphism is a homomorphism, but conversely not true. (Why?)

Example 2 (Determinant of an invertible matrix)

Let $G_1 = \operatorname{GL}_n(\mathbf{R})$ and $G_2 = \mathbf{R}^{\times}$. Define $\phi : G_1 \to G_2$ by $\phi(A) = \det(A)$.

Definition 1

Let $(G_1, *)$ and (G_2, \cdot) be two groups. A function $\phi : G_1 \to G_2$ is a **group** homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Note 1

Every isomorphism is a homomorphism, but conversely not true. (Why?)

Example 2 (Determinant of an invertible matrix)

Let $G_1 = \operatorname{GL}_n(\mathbf{R})$ and $G_2 = \mathbf{R}^{\times}$. Define $\phi : G_1 \to G_2$ by $\phi(A) = \det(A)$. ϕ is a group homomorphism. (Check it!) [

Definition 1

Let $(G_1, *)$ and (G_2, \cdot) be two groups. A function $\phi : G_1 \to G_2$ is a **group** homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Note 1

Every isomorphism is a homomorphism, but conversely not true. (Why?)

Example 2 (Determinant of an invertible matrix)

Let $G_1 = \operatorname{GL}_n(\mathbb{R})$ and $G_2 = \mathbb{R}^{\times}$. Define $\phi : G_1 \to G_2$ by $\phi(A) = \det(A)$. ϕ is a group homomorphism. (Check it!) $[\det(AB) = \det(A)\det(B) \checkmark]$

Definition 1

Let $(G_1, *)$ and (G_2, \cdot) be two groups. A function $\phi : G_1 \to G_2$ is a **group** homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Note 1

Every isomorphism is a homomorphism, but conversely not true. (Why?)

Example 2 (Determinant of an invertible matrix)

Let $G_1 = \operatorname{GL}_n(\mathbb{R})$ and $G_2 = \mathbb{R}^{\times}$. Define $\phi : G_1 \to G_2$ by $\phi(A) = \det(A)$. ϕ is a group homomorphism. (Check it!) $[\det(AB) = \det(A) \det(B) \checkmark] \phi$ is *not* an isomorphism. More precisely,

Definition 1

Let $(G_1, *)$ and (G_2, \cdot) be two groups. A function $\phi : G_1 \to G_2$ is a **group** homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Note 1

Every isomorphism is a homomorphism, but conversely not true. (Why?)

Example 2 (Determinant of an invertible matrix)

Let $G_1 = \operatorname{GL}_n(\mathbb{R})$ and $G_2 = \mathbb{R}^{\times}$. Define $\phi : G_1 \to G_2$ by $\phi(A) = \det(A)$. ϕ is a group homomorphism. (Check it!) $[\det(AB) = \det(A) \det(B) \checkmark]$ ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?)

Let $(G_1, *)$ and (G_2, \cdot) be two groups. A function $\phi : G_1 \to G_2$ is a **group** homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Note 1

Every isomorphism is a homomorphism, but conversely not true. (Why?)

Example 2 (Determinant of an invertible matrix)

Let $G_1 = \operatorname{GL}_n(\mathbf{R})$ and $G_2 = \mathbf{R}^{\times}$. Define $\phi : G_1 \to G_2$ by $\phi(A) = \det(A)$. ϕ is a group homomorphism. (Check it!) $[\det(AB) = \det(A) \det(B) \checkmark]$ ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) It is possible to have different matrices that have the same determinant.

Let $(G_1, *)$ and (G_2, \cdot) be two groups. A function $\phi : G_1 \to G_2$ is a **group** homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Note 1

Every isomorphism is a homomorphism, but conversely not true. (Why?)

Example 2 (Determinant of an invertible matrix)

Let $G_1 = \operatorname{GL}_n(\mathbf{R})$ and $G_2 = \mathbf{R}^{\times}$. Define $\phi : G_1 \to G_2$ by $\phi(A) = \det(A)$. ϕ is a group homomorphism. (Check it!) $[\det(AB) = \det(A) \det(B) \checkmark]$ ϕ is not an isomorphism. More precisely, it is not one to one. (Why?) It is possible to have different matrices that have the same determinant. Let n = 2. For example, $A = I_2$ and $B = -I_2$ both have determinant 1.

Let $(G_1, *)$ and (G_2, \cdot) be two groups. A function $\phi : G_1 \to G_2$ is a **group** homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Note 1

Every isomorphism is a homomorphism, but conversely not true. (Why?)

Example 2 (Determinant of an invertible matrix)

Let $G_1 = \operatorname{GL}_n(\mathbb{R})$ and $G_2 = \mathbb{R}^{\times}$. Define $\phi : G_1 \to G_2$ by $\phi(A) = \det(A)$. ϕ is a group homomorphism. (Check it!) $[\det(AB) = \det(A)\det(B) \checkmark]$ ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) It is possible to have different matrices that have the same determinant. Let n = 2. For example, $A = I_2$ and $B = -I_2$ both have determinant 1. Is ϕ onto?

Let $(G_1, *)$ and (G_2, \cdot) be two groups. A function $\phi : G_1 \to G_2$ is a **group** homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Note 1

Every isomorphism is a homomorphism, but conversely not true. (Why?)

Example 2 (Determinant of an invertible matrix)

Let $G_1 = \operatorname{GL}_n(\mathbb{R})$ and $G_2 = \mathbb{R}^{\times}$. Define $\phi : G_1 \to G_2$ by $\phi(A) = \det(A)$. ϕ is a group homomorphism. (Check it!) $[\det(AB) = \det(A)\det(B) \checkmark]$ ϕ is not an isomorphism. More precisely, it is not one to one. (Why?) It is possible to have different matrices that have the same determinant. Let n = 2. For example, $A = I_2$ and $B = -I_2$ both have determinant 1.

Is ϕ onto? (Yes!) Let n = 2. For example,

Let $(G_1, *)$ and (G_2, \cdot) be two groups. A function $\phi : G_1 \to G_2$ is a **group** homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Note 1

Every isomorphism is a homomorphism, but conversely not true. (Why?)

Example 2 (Determinant of an invertible matrix)

Let $G_1 = \operatorname{GL}_n(\mathbb{R})$ and $G_2 = \mathbb{R}^{\times}$. Define $\phi : G_1 \to G_2$ by $\phi(A) = \det(A)$. ϕ is a group homomorphism. (Check it!) $[\det(AB) = \det(A)\det(B) \checkmark]$ ϕ is not an isomorphism. More precisely, it is not one to one. (Why?) It is possible to have different matrices that have the same determinant. Let n = 2. For example, $A = I_2$ and $B = -I_2$ both have determinant 1. Is ϕ onto? (Yes!) Let n = 2. For example, $C = \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$, for any $a \in \mathbb{R}^{\times}$.

Example 3 (Parity of an integer)

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$.

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is not an isomorphism. More precisely,

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is not an isomorphism. More precisely, it is not one to one. (Why?)

4 / 23

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) Parity of an integer:

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) Parity of an integer: *n* is even $\Leftrightarrow \phi(n) = [0]_2 \& n$ is odd $\Leftrightarrow \phi(n) = [1]_2$

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) Parity of an integer: *n* is even $\Leftrightarrow \phi(n) = [0]_2 \& n$ is odd $\Leftrightarrow \phi(n) = [1]_2$ Is ϕ onto?

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) Parity of an integer: *n* is even $\Leftrightarrow \phi(n) = [0]_2 \& n$ is odd $\Leftrightarrow \phi(n) = [1]_2$ Is ϕ onto? (Yes!) (Why?)

Example 4 (Parity of a permutation $\sigma \in S_n$; Theorem 10 in §3.6)

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) Parity of an integer: *n* is even $\Leftrightarrow \phi(n) = [0]_2 \& n$ is odd $\Leftrightarrow \phi(n) = [1]_2$ Is ϕ onto? (Yes!) (Why?)

Example 4 (Parity of a permutation $\sigma \in S_n$; Theorem 10 in §3.6)

Define $\phi: S_n \to \{\pm 1\}$ by $\phi(\sigma) = 1$ if $\sigma \in A_n$, and $\phi(\sigma) = -1$ if σ is odd.

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) Parity of an integer: *n* is even $\Leftrightarrow \phi(n) = [0]_2 \& n$ is odd $\Leftrightarrow \phi(n) = [1]_2$ Is ϕ onto? (Yes!) (Why?)

Example 4 (Parity of a permutation $\sigma \in S_n$; Theorem 10 in §3.6)

Define $\phi: S_n \to \{\pm 1\}$ by $\phi(\sigma) = 1$ if $\sigma \in A_n$, and $\phi(\sigma) = -1$ if σ is odd. ϕ is a homomorphism. (Check it!) Consider 4 cases:

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) Parity of an integer: *n* is even $\Leftrightarrow \phi(n) = [0]_2 \& n$ is odd $\Leftrightarrow \phi(n) = [1]_2$ Is ϕ onto? (Yes!) (Why?)

Example 4 (Parity of a permutation $\sigma \in S_n$; Theorem 10 in §3.6)

Define $\phi: S_n \to \{\pm 1\}$ by $\phi(\sigma) = 1$ if $\sigma \in A_n$, and $\phi(\sigma) = -1$ if σ is odd. ϕ is a homomorphism. (Check it!) Consider 4 cases:

•
$$\sigma, \tau \in A_n : \phi(\sigma\tau) \stackrel{?}{=} 1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau);$$
 •

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) Parity of an integer: *n* is even $\Leftrightarrow \phi(n) = [0]_2 \& n$ is odd $\Leftrightarrow \phi(n) = [1]_2$ Is ϕ onto? (Yes!) (Why?)

Example 4 (Parity of a permutation $\sigma \in S_n$; Theorem 10 in §3.6)

Define $\phi: S_n \to \{\pm 1\}$ by $\phi(\sigma) = 1$ if $\sigma \in A_n$, and $\phi(\sigma) = -1$ if σ is odd. ϕ is a homomorphism. (Check it!) Consider 4 cases:

• $\sigma, \tau \in A_n : \phi(\sigma\tau) \stackrel{?}{=} 1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau);$ • $\sigma, \tau \in O_n : \phi(\sigma\tau) \stackrel{?}{=} 1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau)$

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) Parity of an integer: *n* is even $\Leftrightarrow \phi(n) = [0]_2 \& n$ is odd $\Leftrightarrow \phi(n) = [1]_2$ Is ϕ onto? (Yes!) (Why?)

Example 4 (Parity of a permutation $\sigma \in S_n$; Theorem 10 in §3.6)

Define $\phi: S_n \to \{\pm 1\}$ by $\phi(\sigma) = 1$ if $\sigma \in A_n$, and $\phi(\sigma) = -1$ if σ is odd. ϕ is a homomorphism. (Check it!) Consider 4 cases:

• $\sigma, \tau \in A_n : \phi(\sigma\tau) \stackrel{?}{=} 1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau);$ • $\sigma, \tau \in O_n : \phi(\sigma\tau) \stackrel{?}{=} 1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau)$

•
$$\sigma \in A_n, \tau \in O_n : \phi(\sigma\tau) \stackrel{?}{=} -1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau);$$
 •

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) Parity of an integer: *n* is even $\Leftrightarrow \phi(n) = [0]_2 \& n$ is odd $\Leftrightarrow \phi(n) = [1]_2$ Is ϕ onto? (Yes!) (Why?)

Example 4 (Parity of a permutation $\sigma \in S_n$; Theorem 10 in §3.6)

Define $\phi: S_n \to \{\pm 1\}$ by $\phi(\sigma) = 1$ if $\sigma \in A_n$, and $\phi(\sigma) = -1$ if σ is odd. ϕ is a homomorphism. (Check it!) Consider 4 cases:

• $\sigma, \tau \in A_n : \phi(\sigma\tau) \stackrel{?}{=} 1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau);$ • $\sigma, \tau \in O_n : \phi(\sigma\tau) \stackrel{?}{=} 1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau)$

• $\sigma \in A_n, \tau \in O_n : \phi(\sigma\tau) \stackrel{?}{=} -1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau); \bullet \sigma \in O_n, \tau \in A_n : \checkmark (Why?)$

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) Parity of an integer: *n* is even $\Leftrightarrow \phi(n) = [0]_2 \& n$ is odd $\Leftrightarrow \phi(n) = [1]_2$ Is ϕ onto? (Yes!) (Why?)

Example 4 (Parity of a permutation $\sigma \in S_n$; Theorem 10 in §3.6)

Define $\phi: S_n \to \{\pm 1\}$ by $\phi(\sigma) = 1$ if $\sigma \in A_n$, and $\phi(\sigma) = -1$ if σ is odd. ϕ is a homomorphism. (Check it!) Consider 4 cases:

•
$$\sigma, \tau \in A_n : \phi(\sigma\tau) \stackrel{?}{=} 1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau);$$
 • $\sigma, \tau \in O_n : \phi(\sigma\tau) \stackrel{?}{=} 1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau)$

•
$$\sigma \in A_n, \tau \in O_n : \phi(\sigma\tau) \stackrel{?}{=} -1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau); \bullet \sigma \in O_n, \tau \in A_n : \checkmark (\mathsf{Why?})$$

 ϕ is onto (Why?) and

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) Parity of an integer: *n* is even $\Leftrightarrow \phi(n) = [0]_2 \& n$ is odd $\Leftrightarrow \phi(n) = [1]_2$ Is ϕ onto? (Yes!) (Why?)

Example 4 (Parity of a permutation $\sigma \in S_n$; Theorem 10 in §3.6)

Define $\phi: S_n \to \{\pm 1\}$ by $\phi(\sigma) = 1$ if $\sigma \in A_n$, and $\phi(\sigma) = -1$ if σ is odd. ϕ is a homomorphism. (Check it!) Consider 4 cases:

•
$$\sigma, \tau \in A_n : \phi(\sigma\tau) \stackrel{?}{=} 1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau);$$
 • $\sigma, \tau \in O_n : \phi(\sigma\tau) \stackrel{?}{=} 1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau)$

•
$$\sigma \in A_n, \tau \in O_n : \phi(\sigma\tau) \stackrel{?}{=} -1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau); \bullet \sigma \in O_n, \tau \in A_n : \checkmark (\mathsf{Why?})$$

 ϕ is onto (Why?) and not one to one (Why?). (

Example 3 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. (Check it!)

 $\phi(n+m) = [n+m]_2 = [n]_2 + [m]_2 = \phi(n) + \phi(m)$ for all $n, m \in \mathbb{Z}$.

 ϕ is *not* an isomorphism. More precisely, it is *not* one to one. (Why?) Parity of an integer: *n* is even $\Leftrightarrow \phi(n) = [0]_2 \& n$ is odd $\Leftrightarrow \phi(n) = [1]_2$ Is ϕ onto? (Yes!) (Why?)

Example 4 (Parity of a permutation $\sigma \in S_n$; Theorem 10 in §3.6)

Define $\phi: S_n \to \{\pm 1\}$ by $\phi(\sigma) = 1$ if $\sigma \in A_n$, and $\phi(\sigma) = -1$ if σ is odd. ϕ is a homomorphism. (Check it!) Consider 4 cases:

• $\sigma, \tau \in A_n : \phi(\sigma\tau) \stackrel{?}{=} 1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau);$ • $\sigma, \tau \in O_n : \phi(\sigma\tau) \stackrel{?}{=} 1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau)$

• $\sigma \in A_n, \tau \in O_n : \phi(\sigma\tau) \stackrel{?}{=} -1 \stackrel{?}{=} \phi(\sigma) \cdot \phi(\tau); \bullet \sigma \in O_n, \tau \in A_n : \checkmark (Why?)$

 ϕ is onto (Why?) and *not* one to one (Why?). (*similarly as in Example 3*)

Example 5 (Exponential functions for groups)

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbf{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbf{Z}$.

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!)
Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$ Is ϕ onto? A:

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$ Is ϕ onto? A: ϕ is onto $\Leftrightarrow G = \langle a \rangle$ (every element of G is a power of a).

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$ Is ϕ onto? A: ϕ is onto $\Leftrightarrow G = \langle a \rangle$ (every element of G is a power of a). Is ϕ one-to-one? A:

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$ Is ϕ onto? A: ϕ is onto $\Leftrightarrow G = \langle a \rangle$ (every element of G is a power of a). Is ϕ one-to-one? A: ϕ is one-to-one $\Leftrightarrow o(a) = \infty$ (Why?) (

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$ Is ϕ onto? A: ϕ is onto $\Leftrightarrow G = \langle a \rangle$ (every element of G is a power of a). Is ϕ one-to-one? A: ϕ is one-to-one $\Leftrightarrow o(a) = \infty$ (Why?) (this ensures that no two powers with different exponents can be equal to each other).

Example 6 (Linear functions on Z_n)

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$ Is ϕ onto? A: ϕ is onto $\Leftrightarrow G = \langle a \rangle$ (every element of G is a power of a). Is ϕ one-to-one? A: ϕ is one-to-one $\Leftrightarrow o(a) = \infty$ (Why?) (this ensures that no two powers with different exponents can be equal to each other).

Example 6 (Linear functions on Z_n)

For a fixed $m \in Z$, define $\phi : Z_n \to Z_n$ by $\phi([x]) = [mx]$, for all $[x] \in Z_n$.

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$ Is ϕ onto? A: ϕ is onto $\Leftrightarrow G = \langle a \rangle$ (every element of G is a power of a). Is ϕ one-to-one? A: ϕ is one-to-one $\Leftrightarrow o(a) = \infty$ (Why?) (this ensures that no two powers with different exponents can be equal to each other).

Example 6 (Linear functions on Z_n)

For a fixed $m \in \mathbb{Z}$, define $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ by $\phi([x]) = [mx]$, for all $[x] \in \mathbb{Z}_n$. ϕ is well-defined:

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$ Is ϕ onto? A: ϕ is onto $\Leftrightarrow G = \langle a \rangle$ (every element of G is a power of a). Is ϕ one-to-one? A: ϕ is one-to-one $\Leftrightarrow o(a) = \infty$ (Why?) (this ensures that no two powers with different exponents can be equal to each other).

Example 6 (Linear functions on Z_n)

For a fixed $m \in \mathbb{Z}$, define $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ by $\phi([x]) = [mx]$, for all $[x] \in \mathbb{Z}_n$. ϕ is well-defined: If $x \equiv y \pmod{n}$, then $mx \equiv my \pmod{n}$.

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$ Is ϕ onto? A: ϕ is onto $\Leftrightarrow G = \langle a \rangle$ (every element of G is a power of a). Is ϕ one-to-one? A: ϕ is one-to-one $\Leftrightarrow o(a) = \infty$ (Why?) (this ensures that no two powers with different exponents can be equal to each other).

Example 6 (Linear functions on Z_n)

For a fixed $m \in \mathbb{Z}$, define $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ by $\phi([x]) = [mx]$, for all $[x] \in \mathbb{Z}_n$. ϕ is well-defined: If $x \equiv y \pmod{n}$, then $mx \equiv my \pmod{n}$. ϕ is a homomorphism: (Check it!)

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$ Is ϕ onto? A: ϕ is onto $\Leftrightarrow G = \langle a \rangle$ (every element of G is a power of a). Is ϕ one-to-one? A: ϕ is one-to-one $\Leftrightarrow o(a) = \infty$ (Why?) (this ensures that no two powers with different exponents can be equal to each other).

Example 6 (Linear functions on Z_n)

For a fixed $m \in \mathbb{Z}$, define $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ by $\phi([x]) = [mx]$, for all $[x] \in \mathbb{Z}_n$. ϕ is well-defined: If $x \equiv y \pmod{n}$, then $mx \equiv my \pmod{n}$. ϕ is a homomorphism: (Check it!)

 $\phi([x] + [y]) = \phi([x + y]) = [m(x + y)] = [mx] + [my] = \phi(x) + \phi(y)$

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$ Is ϕ onto? A: ϕ is onto $\Leftrightarrow G = \langle a \rangle$ (every element of G is a power of a). Is ϕ one-to-one? A: ϕ is one-to-one $\Leftrightarrow o(a) = \infty$ (Why?) (this ensures that no two powers with different exponents can be equal to each other).

Example 6 (Linear functions on Z_n)

For a fixed $m \in \mathbb{Z}$, define $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ by $\phi([x]) = [mx]$, for all $[x] \in \mathbb{Z}_n$. ϕ is well-defined: If $x \equiv y \pmod{n}$, then $mx \equiv my \pmod{n}$. ϕ is a homomorphism: (Check it!)

 $\phi([x] + [y]) = \phi([x + y]) = [m(x + y)] = [mx] + [my] = \phi(x) + \phi(y)$

Is ϕ one-to-one or onto? A:

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$ Is ϕ onto? A: ϕ is onto $\Leftrightarrow G = \langle a \rangle$ (every element of G is a power of a). Is ϕ one-to-one? A: ϕ is one-to-one $\Leftrightarrow o(a) = \infty$ (Why?) (this ensures that no two powers with different exponents can be equal to each other).

Example 6 (Linear functions on Z_n)

For a fixed $m \in \mathbb{Z}$, define $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ by $\phi([x]) = [mx]$, for all $[x] \in \mathbb{Z}_n$. ϕ is well-defined: If $x \equiv y \pmod{n}$, then $mx \equiv my \pmod{n}$. ϕ is a homomorphism: (Check it!)

 $\phi([x] + [y]) = \phi([x + y]) = [m(x + y)] = [mx] + [my] = \phi(x) + \phi(y)$

Is ϕ one-to-one or onto? A: ϕ is one-to-one and onto $\Leftrightarrow d = (m, n) = 1$. Thm 10 in Chapter. 1:

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$ Is ϕ onto? A: ϕ is onto $\Leftrightarrow G = \langle a \rangle$ (every element of G is a power of a). Is ϕ one-to-one? A: ϕ is one-to-one $\Leftrightarrow o(a) = \infty$ (Why?) (this ensures that no two powers with different exponents can be equal to each other).

Example 6 (Linear functions on Z_n)

For a fixed $m \in \mathbb{Z}$, define $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ by $\phi([x]) = [mx]$, for all $[x] \in \mathbb{Z}_n$. ϕ is well-defined: If $x \equiv y \pmod{n}$, then $mx \equiv my \pmod{n}$. ϕ is a homomorphism: (Check it!)

$$\phi([x] + [y]) = \phi([x + y]) = [m(x + y)] = [mx] + [my] = \phi(x) + \phi(y)$$

Is ϕ one-to-one or onto? **A**: ϕ is one-to-one and onto $\Leftrightarrow d = (m, n) = 1$. Thm 10 in Chapter. 1: $mx \equiv y \pmod{n}$ has a solution $\Leftrightarrow d = (m, n)|y$. Moreover,

Example 5 (Exponential functions for groups)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (Check it!) $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$ Is ϕ onto? A: ϕ is onto $\Leftrightarrow G = \langle a \rangle$ (every element of G is a power of a). Is ϕ one-to-one? A: ϕ is one-to-one $\Leftrightarrow o(a) = \infty$ (Why?) (this ensures that no two powers with different exponents can be equal to each other).

Example 6 (Linear functions on Z_n)

For a fixed $m \in \mathbb{Z}$, define $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ by $\phi([x]) = [mx]$, for all $[x] \in \mathbb{Z}_n$. ϕ is well-defined: If $x \equiv y \pmod{n}$, then $mx \equiv my \pmod{n}$. ϕ is a homomorphism: (Check it!)

$$\phi([x] + [y]) = \phi([x + y]) = [m(x + y)] = [mx] + [my] = \phi(x) + \phi(y)$$

Is ϕ one-to-one or onto? **A**: ϕ is one-to-one and onto $\Leftrightarrow d = (m, n) = 1$. Thm 10 in Chapter. 1: $mx \equiv y \pmod{n}$ has a solution $\Leftrightarrow d = (m, n)|y$. Moreover, if d|y, there are d distinct solutions modulo n.

Proposition 1

If
$$\phi : G_1 \to G_2$$
 is a group homomorphism, then
(a) $\phi(e_1) = e_2$;
(b) $\phi(a^{-1}) = (\phi(a))^{-1}$ for all $a \in G_1$;
(c) $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbb{Z}$;
(d) if $o(a) = n$ in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n .

Proof.

Proposition 1

If
$$\phi : G_1 \to G_2$$
 is a group homomorphism, then
(a) $\phi(e_1) = e_2$;
(b) $\phi(a^{-1}) = (\phi(a))^{-1}$ for all $a \in G_1$;
(c) $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbb{Z}$;
(d) if $o(a) = n$ in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n .

Proof.

Proposition 1

If
$$\phi : G_1 \to G_2$$
 is a group homomorphism, then
(a) $\phi(e_1) = e_2$;
(b) $\phi(a^{-1}) = (\phi(a))^{-1}$ for all $a \in G_1$;
(c) $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbb{Z}$;
(d) if $o(a) = n$ in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n .

Proof.

(a)
$$\phi(e_1)\phi(e_1) = \phi(e_1e_1) = \phi(e_1) \Rightarrow \phi(e_1) = e_2$$
. (Why?)

Proposition 1

If
$$\phi : G_1 \to G_2$$
 is a group homomorphism, then
(a) $\phi(e_1) = e_2$;
(b) $\phi(a^{-1}) = (\phi(a))^{-1}$ for all $a \in G_1$;
(c) $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbb{Z}$;
(d) if $o(a) = n$ in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n .

Proof.

(a)
$$\phi(e_1)\phi(e_1) = \phi(e_1e_1) = \phi(e_1) \Rightarrow \phi(e_1) = e_2$$
. (Why?)
(b) $\phi(a)\phi(a^{-1}) = \phi(aa^{-1}) = \phi(e_1) = e_2 \Rightarrow \phi(a^{-1}) = (\phi(a))^{-1}$. (Why?)

Proposition 1

If
$$\phi : G_1 \to G_2$$
 is a group homomorphism, then
(a) $\phi(e_1) = e_2$;
(b) $\phi(a^{-1}) = (\phi(a))^{-1}$ for all $a \in G_1$;
(c) $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbb{Z}$;
(d) if $o(a) = n$ in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n .

Proof.

Proofs of Parts (a), (b), (c) are the same as in the case of an isomorphism.

Yi

Proposition 1

If
$$\phi : G_1 \to G_2$$
 is a group homomorphism, then
(a) $\phi(e_1) = e_2$;
(b) $\phi(a^{-1}) = (\phi(a))^{-1}$ for all $a \in G_1$;
(c) $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbb{Z}$;
(d) if $o(a) = n$ in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n .

Proof.

Example 7 (Homomorphisms defined on cyclic groups)

Example 7 (Homomorphisms defined on cyclic groups)

Let $C = \langle a \rangle$ be a cyclic group. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. Then $\phi(a^m) = g^m$. (Why?)

Example 7 (Homomorphisms defined on cyclic groups)

Let $C = \langle a \rangle$ be a cyclic group. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. Then $\phi(a^m) = g^m$. (Why?) Since every element of C is of the form a^m for some $m \in \mathbb{Z}$, (Why?)

Example 7 (Homomorphisms defined on cyclic groups)

Let $C = \langle a \rangle$ be a cyclic group. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. Then $\phi(a^m) = g^m$. (Why?) Since every element of C is of the form a^m for some $m \in \mathbb{Z}$, (Why?) this implies that ϕ is completely determined by its value on a. (Why?) **Note:**

Example 7 (Homomorphisms defined on cyclic groups)

Let $C = \langle a \rangle$ be a cyclic group. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. Then $\phi(a^m) = g^m$. (Why?) Since every element of *C* is of the form a^m for some $m \in \mathbb{Z}$, (Why?) this implies that ϕ is completely determined by its value on *a*. (Why?) **Note:** If $o(a) = n < \infty$, then o(g)|n. (Why?) [

Example 7 (Homomorphisms defined on cyclic groups)

Let $C = \langle a \rangle$ be a cyclic group. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. Then $\phi(a^m) = g^m$. (Why?) Since every element of *C* is of the form a^m for some $m \in \mathbb{Z}$, (Why?) this implies that ϕ is completely determined by its value on *a*. (Why?) **Note:** If $o(a) = n < \infty$, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$)

Example 7 (Homomorphisms defined on cyclic groups)

Let $C = \langle a \rangle$ be a cyclic group. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. Then $\phi(a^m) = g^m$. (Why?) Since every element of C is of the form a^m for some $m \in \mathbb{Z}$, (Why?) this implies that ϕ is completely determined by its value on a. (Why?) **Note:** If $o(a) = n < \infty$, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$)

Any such homomorphism ϕ is completely determined by $\phi([1]_n)$. (Why?)

Example 7 (Homomorphisms defined on cyclic groups)

Let $C = \langle a \rangle$ be a cyclic group. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. Then $\phi(a^m) = g^m$. (Why?) Since every element of *C* is of the form a^m for some $m \in \mathbb{Z}$, (Why?) this implies that ϕ is completely determined by its value on *a*. (Why?) **Note:** If $o(a) = n < \infty$, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$)

Any such homomorphism ϕ is completely determined by $\phi([1]_n)$. (Why?) Say, $\phi([1]_n) = [m]_k$ with $o([m]_k)|n$. (Why?)

Example 7 (Homomorphisms defined on cyclic groups)

Let $C = \langle a \rangle$ be a cyclic group. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. Then $\phi(a^m) = g^m$. (Why?) Since every element of *C* is of the form a^m for some $m \in \mathbb{Z}$, (Why?) this implies that ϕ is completely determined by its value on *a*. (Why?) **Note:** If $o(a) = n < \infty$, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$)

Any such homomorphism ϕ is completely determined by $\phi([1]_n)$. (Why?) Say, $\phi([1]_n) = [m]_k$ with $o([m]_k)|n$. (Why?) So $n \cdot [m]_k = [0]_k$. (Why?)

Example 7 (Homomorphisms defined on cyclic groups)

Let $C = \langle a \rangle$ be a cyclic group. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. Then $\phi(a^m) = g^m$. (Why?) Since every element of *C* is of the form a^m for some $m \in \mathbb{Z}$, (Why?) this implies that ϕ is completely determined by its value on *a*. (Why?) **Note:** If $o(a) = n < \infty$, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$)

Any such homomorphism ϕ is completely determined by $\phi([1]_n)$. (Why?) Say, $\phi([1]_n) = [m]_k$ with $o([m]_k)|n$. (Why?) So $n \cdot [m]_k = [0]_k$. (Why?) It follows that k|nm. (Why?) [

Example 7 (Homomorphisms defined on cyclic groups)

Let $C = \langle a \rangle$ be a cyclic group. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. Then $\phi(a^m) = g^m$. (Why?) Since every element of *C* is of the form a^m for some $m \in \mathbb{Z}$, (Why?) this implies that ϕ is completely determined by its value on *a*. (Why?) **Note:** If $o(a) = n < \infty$, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$)

Any such homomorphism ϕ is completely determined by $\phi([1]_n)$. (Why?) Say, $\phi([1]_n) = [m]_k$ with $o([m]_k)|n$. (Why?) So $n \cdot [m]_k = [0]_k$. (Why?) It follows that k|nm. (Why?) $[n \cdot [m]_k = [nm]_k = [0]_k]$

Example 7 (Homomorphisms defined on cyclic groups)

Let $C = \langle a \rangle$ be a cyclic group. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. Then $\phi(a^m) = g^m$. (Why?) Since every element of *C* is of the form a^m for some $m \in \mathbb{Z}$, (Why?) this implies that ϕ is completely determined by its value on *a*. (Why?) **Note:** If $o(a) = n < \infty$, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$)

Any such homomorphism ϕ is completely determined by $\phi([1]_n)$. (Why?) Say, $\phi([1]_n) = [m]_k$ with $o([m]_k)|n$. (Why?) So $n \cdot [m]_k = [0]_k$. (Why?) It follows that k|nm. (Why?) $[n \cdot [m]_k = [nm]_k = [0]_k]$ Thus, $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$, defines a homomorphism if and only if k|mn. Furthermore,

Example 7 (Homomorphisms defined on cyclic groups)

Let $C = \langle a \rangle$ be a cyclic group. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. Then $\phi(a^m) = g^m$. (Why?) Since every element of *C* is of the form a^m for some $m \in \mathbb{Z}$, (Why?) this implies that ϕ is completely determined by its value on *a*. (Why?) **Note:** If $o(a) = n < \infty$, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$)

Any such homomorphism ϕ is completely determined by $\phi([1]_n)$. (Why?) Say, $\phi([1]_n) = [m]_k$ with $o([m]_k)|n$. (Why?) So $n \cdot [m]_k = [0]_k$. (Why?) It follows that k|nm. (Why?) $[n \cdot [m]_k = [nm]_k = [0]_k$] Thus, $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$, defines a homomorphism if and only if k|mn.

Furthermore, every homomorphism $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$ must be of this form. Note that

Example 7 (Homomorphisms defined on cyclic groups)

Let $C = \langle a \rangle$ be a cyclic group. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. Then $\phi(a^m) = g^m$. (Why?) Since every element of *C* is of the form a^m for some $m \in \mathbb{Z}$, (Why?) this implies that ϕ is completely determined by its value on *a*. (Why?) **Note:** If $o(a) = n < \infty$, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$)

Any such homomorphism ϕ is completely determined by $\phi([1]_n)$. (Why?) Say, $\phi([1]_n) = [m]_k$ with $o([m]_k)|n$. (Why?) So $n \cdot [m]_k = [0]_k$. (Why?) It follows that k|nm. (Why?) $[n \cdot [m]_k = [nm]_k = [0]_k]$ Thus, $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$, defines a homomorphism if and only if k|mn.

Furthermore, every homomorphism $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$ must be of this form. Note that $\phi(\mathbf{Z}_n)$ is the cyclic subgroup generated by $[m]_k$ (Why?), and so

Example 7 (Homomorphisms defined on cyclic groups)

Let $C = \langle a \rangle$ be a cyclic group. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. Then $\phi(a^m) = g^m$. (Why?) Since every element of *C* is of the form a^m for some $m \in \mathbb{Z}$, (Why?) this implies that ϕ is completely determined by its value on *a*. (Why?) **Note:** If $o(a) = n < \infty$, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$)

Any such homomorphism ϕ is completely determined by $\phi([1]_n)$. (Why?) Say, $\phi([1]_n) = [m]_k$ with $o([m]_k)|n$. (Why?) So $n \cdot [m]_k = [0]_k$. (Why?) It follows that k|nm. (Why?) $[n \cdot [m]_k = [nm]_k = [0]_k]$ Thus, $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$, defines a homomorphism if and only if k|mn.

Furthermore, every homomorphism $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$ must be of this form. **Note that** $\phi(\mathbf{Z}_n)$ is the cyclic subgroup generated by $[m]_k$ (Why?), and so $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$ is onto $\Leftrightarrow [m]_k$ is a generator of \mathbf{Z}_k , i.e., (m, k) = 1. (Why?)
Definition 9

Let $\phi: G_1 \to G_2$ be a group homomorphism. The **kernel** of ϕ is the set

$$\ker(\phi) = \{x \in G_1 \mid \phi(x) = e_2\}.$$

The **image** of ϕ is the set

$$\operatorname{im}(\phi) = \{\phi(x) \mid x \in G_1\}.$$

Note 2

Definition 9

Let $\phi: G_1 \to G_2$ be a group homomorphism. The **kernel** of ϕ is the set

$$\ker(\phi) = \{x \in G_1 \mid \phi(x) = e_2\}.$$

The **image** of ϕ is the set

$$\operatorname{im}(\phi) = \{\phi(x) \mid x \in G_1\}.$$

Note 2

• ker(ϕ) is a subset of G_1 .

Definition 9

Let $\phi: G_1 \to G_2$ be a group homomorphism. The **kernel** of ϕ is the set

$$\ker(\phi) = \{x \in G_1 \mid \phi(x) = e_2\}.$$

The **image** of ϕ is the set

$$\operatorname{im}(\phi) = \{\phi(x) \mid x \in G_1\}.$$

Note 2

- ker(ϕ) is a subset of G_1 .
- $\operatorname{im}(\phi)$ is a subset of G_2 .

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (See Example 5)

Question 1

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (See Example 5)

Question 1What is ker(ϕ) =?

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (See Example 5)

Question 1What is ker(ϕ) =?

By definition, $ker(\phi) = \{n \mid a^n = e\}$. Let o(a) be the order of a in G. So,

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (See Example 5)

Question 1

What is $ker(\phi) = ?$

By definition, $\ker(\phi) = \{n \mid a^n = e\}$. Let o(a) be the order of a in G. So,

• If $o(a) = m < \infty$, then ker $(\phi) = \langle m \rangle = m Z$. (Why?)

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (See Example 5)

Question 1

What is $ker(\phi) = ?$

By definition, $ker(\phi) = \{n \mid a^n = e\}$. Let o(a) be the order of a in G. So,

- If $o(a) = m < \infty$, then ker $(\phi) = \langle m \rangle = m Z$. (Why?)
- If $o(a) = \infty$, then ker $(\phi) = \{0\}$. (Why?)

Note:

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (See Example 5)

Question 1

What is $ker(\phi) = ?$

By definition, $ker(\phi) = \{n \mid a^n = e\}$. Let o(a) be the order of a in G. So,

- If $o(a) = m < \infty$, then ker $(\phi) = \langle m \rangle = m Z$. (Why?)
- If $o(a) = \infty$, then ker $(\phi) = \{0\}$. (Why?)

Note: In either case, $ker(\phi)$ is a subgroup of **Z**.

Question 2

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (See Example 5)

Question 1

What is $ker(\phi) = ?$

By definition, $ker(\phi) = \{n \mid a^n = e\}$. Let o(a) be the order of a in G. So,

- If $o(a) = m < \infty$, then ker $(\phi) = \langle m \rangle = m Z$. (Why?)
- If $o(a) = \infty$, then ker $(\phi) = \{0\}$. (Why?)

Note: In either case, $ker(\phi)$ is a subgroup of **Z**.

Question 2

What is $im(\phi) = ?$

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (See Example 5)

Question 1

What is $ker(\phi) = ?$

By definition, $ker(\phi) = \{n \mid a^n = e\}$. Let o(a) be the order of a in G. So,

- If $o(a) = m < \infty$, then ker $(\phi) = \langle m \rangle = m Z$. (Why?)
- If $o(a) = \infty$, then ker $(\phi) = \{0\}$. (Why?)

Note: In either case, $ker(\phi)$ is a subgroup of **Z**.

Question 2

What is $im(\phi) = ?$

By definition,
$$im(\phi) = \{a^n \mid n \in \mathbb{Z}\} = \langle a \rangle$$
.
Note:

Let G be a group, and let $a \in G$. Define $\phi : \mathbb{Z} \to G$ by $\phi(n) = a^n$, for all $n \in \mathbb{Z}$. ϕ is a homomorphism. (See Example 5)

Question 1

What is $ker(\phi) = ?$

By definition, $ker(\phi) = \{n \mid a^n = e\}$. Let o(a) be the order of a in G. So,

- If $o(a) = m < \infty$, then ker $(\phi) = \langle m \rangle = m Z$. (Why?)
- If $o(a) = \infty$, then ker $(\phi) = \{0\}$. (Why?)

Note: In either case, $ker(\phi)$ is a subgroup of **Z**.

Question 2

What is $im(\phi) = ?$

By definition,
$$im(\phi) = \{a^n \mid n \in \mathbb{Z}\} = \langle a \rangle$$
.
Note: $im(\phi) = \langle a \rangle$ is a subgroup of *G*.

Theorem 10

Let $\phi: G_1 \rightarrow G_2$ be a group homomorphism. Then

(a) ker(ϕ) is a subgroup of G_1 .

(b) $im(\phi)$ is a subgroup of G_2 .

Theorem 10

Let $\phi: G_1 \rightarrow G_2$ be a group homomorphism. Then

(a) ker(ϕ) is a subgroup of G_1 .

(b) $im(\phi)$ is a subgroup of G_2 .

(a) ker(ϕ) is nonempty:

Theorem 10

Let $\phi: G_1 \rightarrow G_2$ be a group homomorphism. Then

(a) ker(ϕ) is a subgroup of G_1 .

(b) $im(\phi)$ is a subgroup of G_2 .

(a) ker(ϕ) is nonempty: $e_1 \in \text{ker}(\phi)$. (Why?) [

Theorem 10

Let $\phi: G_1 \rightarrow G_2$ be a group homomorphism. Then

(a) ker(ϕ) is a subgroup of G_1 .

(b) $im(\phi)$ is a subgroup of G_2 .

(a) ker(ϕ) is nonempty: $e_1 \in \text{ker}(\phi)$. (Why?) $[\phi(e_1) = e_2]$ For $a, b \in \text{ker}(\phi)$, to show $ab^{-1} \in \text{ker}(\phi)$.

Theorem 10

Let $\phi: G_1 \rightarrow G_2$ be a group homomorphism. Then

(a) ker(ϕ) is a subgroup of G_1 .

(b) $im(\phi)$ is a subgroup of G_2 .

(a) ker(ϕ) is nonempty: $e_1 \in \text{ker}(\phi)$. (Why?) $[\phi(e_1) = e_2]$ For $a, b \in \text{ker}(\phi)$, to show $ab^{-1} \in \text{ker}(\phi)$. So $\phi(a) = e_2 \& \phi(b) = e_2$.

Theorem 10

Let $\phi: G_1 \rightarrow G_2$ be a group homomorphism. Then

(a) ker(ϕ) is a subgroup of G_1 .

(b) $im(\phi)$ is a subgroup of G_2 .

(a) ker(ϕ) is nonempty: $e_1 \in \text{ker}(\phi)$. (Why?) $[\phi(e_1) = e_2]$ For $a, b \in \text{ker}(\phi)$, to show $ab^{-1} \in \text{ker}(\phi)$. So $\phi(a) = e_2 \& \phi(b) = e_2$. $\phi(ab^{-1}) = \phi(a)\phi(b^{-1}) = \phi(a)\phi(b)^{-1} = e_2e_2^{-1} = e_2$.

Theorem 10

Let $\phi: G_1 \rightarrow G_2$ be a group homomorphism. Then

(a) ker(ϕ) is a subgroup of G_1 .

(b) $im(\phi)$ is a subgroup of G_2 .

(a) ker(ϕ) is nonempty: $e_1 \in \text{ker}(\phi)$. (Why?) $[\phi(e_1) = e_2]$ For $a, b \in \text{ker}(\phi)$, to show $ab^{-1} \in \text{ker}(\phi)$. So $\phi(a) = e_2 \& \phi(b) = e_2$. $\phi(ab^{-1}) = \phi(a)\phi(b^{-1}) = \phi(a)\phi(b)^{-1} = e_2e_2^{-1} = e_2$.

(b) $im(\phi)$ is nonempty:

Theorem 10

Let $\phi: G_1 \rightarrow G_2$ be a group homomorphism. Then

(a) ker(ϕ) is a subgroup of G_1 .

(b) $im(\phi)$ is a subgroup of G_2 .

(a) ker(ϕ) is nonempty: $e_1 \in \text{ker}(\phi)$. (Why?) $[\phi(e_1) = e_2]$ For $a, b \in \text{ker}(\phi)$, to show $ab^{-1} \in \text{ker}(\phi)$. So $\phi(a) = e_2 \& \phi(b) = e_2$. $\phi(ab^{-1}) = \phi(a)\phi(b^{-1}) = \phi(a)\phi(b)^{-1} = e_2e_2^{-1} = e_2$.

(b) $\operatorname{im}(\phi)$ is nonempty: $e_2 \in \operatorname{im}(\phi)$. (Why?) [

Theorem 10

Let $\phi: G_1 \rightarrow G_2$ be a group homomorphism. Then

(a) ker(ϕ) is a subgroup of G_1 .

(b) $im(\phi)$ is a subgroup of G_2 .

(a) ker(φ) is nonempty: e₁ ∈ ker(φ). (Why?) [φ(e₁) = e₂] For a, b ∈ ker(φ), to show ab⁻¹ ∈ ker(φ). So φ(a) = e₂ & φ(b) = e₂. φ(ab⁻¹) = φ(a)φ(b⁻¹) = φ(a)φ(b)⁻¹ = e₂e₂⁻¹ = e₂.
(b) im(φ) is nonempty: e₂ ∈ im(φ). (Why?) [φ(e₁) = e₂] For x, y ∈ im(φ), to show xy⁻¹ ∈ im(φ).

Theorem 10

Let $\phi: G_1 \rightarrow G_2$ be a group homomorphism. Then

(a) ker(ϕ) is a subgroup of G_1 .

(b) $im(\phi)$ is a subgroup of G_2 .

(a) ker(φ) is nonempty: e₁ ∈ ker(φ). (Why?) [φ(e₁) = e₂] For a, b ∈ ker(φ), to show ab⁻¹ ∈ ker(φ). So φ(a) = e₂ & φ(b) = e₂. φ(ab⁻¹) = φ(a)φ(b⁻¹) = φ(a)φ(b)⁻¹ = e₂e₂⁻¹ = e₂.
(b) im(φ) is nonempty: e₂ ∈ im(φ). (Why?) [φ(e₁) = e₂] For x, y ∈ im(φ), to show xy⁻¹ ∈ im(φ). So φ(a) = x and φ(b) = y for some a, b ∈ G₁. Therefore,

Theorem 10

Let $\phi: G_1 \rightarrow G_2$ be a group homomorphism. Then

(a) ker(ϕ) is a subgroup of G_1 .

(b) $im(\phi)$ is a subgroup of G_2 .

(a) ker(φ) is nonempty: e₁ ∈ ker(φ). (Why?) [φ(e₁) = e₂] For a, b ∈ ker(φ), to show ab⁻¹ ∈ ker(φ). So φ(a) = e₂ & φ(b) = e₂. φ(ab⁻¹) = φ(a)φ(b⁻¹) = φ(a)φ(b)⁻¹ = e₂e₂⁻¹ = e₂.
(b) im(φ) is nonempty: e₂ ∈ im(φ). (Why?) [φ(e₁) = e₂] For x, y ∈ im(φ), to show xy⁻¹ ∈ im(φ). So φ(a) = x and φ(b) = y for some a, b ∈ G₁. Therefore, xy⁻¹ = φ(a)(φ(b))⁻¹ = φ(a)φ(b⁻¹) = φ(ab⁻¹).

Theorem 11 (Let $\phi : G_1 \to G_2$ be a group homomorphism.)

Theorem 10

Let $\phi : G_1 \rightarrow G_2$ be a group homomorphism. Then

(a) ker(ϕ) is a subgroup of G_1 .

(b) $im(\phi)$ is a subgroup of G_2 .

(a) ker(φ) is nonempty: e₁ ∈ ker(φ). (Why?) [φ(e₁) = e₂] For a, b ∈ ker(φ), to show ab⁻¹ ∈ ker(φ). So φ(a) = e₂ & φ(b) = e₂. φ(ab⁻¹) = φ(a)φ(b⁻¹) = φ(a)φ(b)⁻¹ = e₂e₂⁻¹ = e₂.
(b) im(φ) is nonempty: e₂ ∈ im(φ). (Why?) [φ(e₁) = e₂] For x, y ∈ im(φ), to show xy⁻¹ ∈ im(φ). So φ(a) = x and φ(b) = y for some a, b ∈ G₁. Therefore, xy⁻¹ = φ(a)(φ(b))⁻¹ = φ(a)φ(b⁻¹) = φ(ab⁻¹).

Theorem 11 (Let $\phi: G_1 \rightarrow G_2$ be a group homomorphism.)

(a) ϕ is one-to-one if and only if ker $(\phi) = \{e_1\}$.

(b) ϕ is onto if and only if $im(\phi) = G_2$.

(a) ϕ is one-to-one if and only if ker $(\phi) = \{e_1\}$. Let $\phi : G_1 \to G_2$ be a group homomorphism.

Yi

(a) φ is one-to-one if and only if ker(φ) = {e₁}.
Let φ : G₁ → G₂ be a group homomorphism. By **Proposition 5 in** §3.4:
φ is one-to-one ⇔ φ(x) = e₂ ⇒ x = e₁, i.e., ker(φ) = {e₁}.
(b)

Homomorphisms

June 10-11, 2020

11 / 23

(a) ϕ is one-to-one if and only if ker $(\phi) = \{e_1\}$. Let $\phi : G_1 \to G_2$ be a group homomorphism. By **Proposition 5 in** §**3.4**: ϕ is one-to-one $\Leftrightarrow \phi(x) = e_2 \Rightarrow x = e_1$, i.e., ker $(\phi) = \{e_1\}$.

(b) ϕ is onto if and only if $im(\phi) = G_2$.

(a) ϕ is one-to-one if and only if ker $(\phi) = \{e_1\}$. Let $\phi : G_1 \to G_2$ be a group homomorphism. By **Proposition 5 in** §**3.4**: ϕ is one-to-one $\Leftrightarrow \phi(x) = e_2 \Rightarrow x = e_1$, i.e., ker $(\phi) = \{e_1\}$.

(b) ϕ is onto if and only if $im(\phi) = G_2$. Trivial. (Why?)

Proposition 1 (d):

(a) ϕ is one-to-one if and only if ker $(\phi) = \{e_1\}$. Let $\phi : G_1 \to G_2$ be a group homomorphism. By **Proposition 5 in** §**3.4**: ϕ is one-to-one $\Leftrightarrow \phi(x) = e_2 \Rightarrow x = e_1$, i.e., ker $(\phi) = \{e_1\}$.

(b) ϕ is onto if and only if $im(\phi) = G_2$. Trivial. (Why?)

Proposition 1 (d): If o(a) = n in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n.

Proposition 2 (More properties that are preserved by homomorphisms)

(a) ϕ is one-to-one if and only if ker $(\phi) = \{e_1\}$. Let $\phi : G_1 \to G_2$ be a group homomorphism. By **Proposition 5 in** §**3.4**: ϕ is one-to-one $\Leftrightarrow \phi(x) = e_2 \Rightarrow x = e_1$, i.e., ker $(\phi) = \{e_1\}$.

(b) ϕ is onto if and only if $im(\phi) = G_2$. Trivial. (Why?)

Proposition 1 (d): If o(a) = n in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n.

Proposition 2 (More properties that are preserved by homomorphisms)

Let ϕ : $G_1 \rightarrow G_2$ be a group homomorphism. And assume that ϕ is onto. (a) If G_1 is abelian, then G_2 is also abelian.

(b) If G_1 is cyclic, then G_2 is also cyclic.

Note 3

(a) ϕ is one-to-one if and only if ker $(\phi) = \{e_1\}$. Let $\phi : G_1 \to G_2$ be a group homomorphism. By **Proposition 5 in** §**3.4**: ϕ is one-to-one $\Leftrightarrow \phi(x) = e_2 \Rightarrow x = e_1$, i.e., ker $(\phi) = \{e_1\}$.

(b) ϕ is onto if and only if $im(\phi) = G_2$. Trivial. (Why?)

Proposition 1 (d): If o(a) = n in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n.

Proposition 2 (More properties that are preserved by homomorphisms)

Let $\phi : G_1 \to G_2$ be a group homomorphism. And assume that ϕ is onto. (a) If G_1 is abelian, then G_2 is also abelian.

(b) If G_1 is cyclic, then G_2 is also cyclic.

Note 3

Proposition 2 (a) & (b) are not necessarily true if ϕ is not onto.

Let $\phi : G_1 \to G_2$ be a group homomorphism. And assume that ϕ is onto. (a) If G_1 is abelian, then G_2 is also abelian. (b) If G_1 is cyclic, then G_2 is also cyclic. Let $\phi : G_1 \to G_2$ be a group homomorphism. And assume that ϕ is onto. (a) If G_1 is abelian, then G_2 is also abelian. (b) If G_1 is cyclic, then G_2 is also cyclic.

(a) For any $x, y \in G_2$, there exist $a, b \in G_1$ such that $\phi(a) = x, \phi(b) = y$.

Proof of Proposition 2

Let φ : G₁ → G₂ be a group homomorphism. And assume that φ is onto.
(a) If G₁ is abelian, then G₂ is also abelian.
(b) If G₁ is cyclic, then G₂ is also cyclic.

(a) For any $x, y \in G_2$, there exist $a, b \in G_1$ such that $\phi(a) = x, \phi(b) = y$. $xy = \phi(a)\phi(b) = \phi(ab) \stackrel{!}{=} \phi(ba) = \phi(b)\phi(a) = yx.$

Proof of Proposition 2

Let φ : G₁ → G₂ be a group homomorphism. And assume that φ is onto.
(a) If G₁ is abelian, then G₂ is also abelian.
(b) If G₁ is cyclic, then G₂ is also cyclic.

(a) For any x, y ∈ G₂, there exist a, b ∈ G₁ such that φ(a) = x, φ(b) = y. xy = φ(a)φ(b) = φ(ab) = φ(ba) = φ(b)φ(a) = yx.
(b) Let G₁ = ⟨a⟩ for a generator a ∈ G₁. Claim: G₂ = ⟨φ(a)⟩.

Proof of Proposition 2

Let φ : G₁ → G₂ be a group homomorphism. And assume that φ is onto.
(a) If G₁ is abelian, then G₂ is also abelian.
(b) If G₁ is cyclic, then G₂ is also cyclic.

(a) For any x, y ∈ G₂, there exist a, b ∈ G₁ such that φ(a) = x, φ(b) = y. xy = φ(a)φ(b) = φ(ab) = φ(ba) = φ(b)φ(a) = yx.
(b) Let G₁ = ⟨a⟩ for a generator a ∈ G₁. Claim: G₂ = ⟨φ(a)⟩.
◊φ(a)⟩ ⊆ G₂:
Proof of Proposition 2

Let φ : G₁ → G₂ be a group homomorphism. And assume that φ is onto.
(a) If G₁ is abelian, then G₂ is also abelian.
(b) If G₁ is cyclic, then G₂ is also cyclic.

(a) For any x, y ∈ G₂, there exist a, b ∈ G₁ such that φ(a) = x, φ(b) = y. xy = φ(a)φ(b) = φ(ab) = φ(ba) = φ(b)φ(a) = yx.
(b) Let G₁ = ⟨a⟩ for a generator a ∈ G₁. Claim: G₂ = ⟨φ(a)⟩.
◊(φ(a)⟩ ⊆ G₂ : Trivial. (Why?) [

Proof of Proposition 2

Let φ : G₁ → G₂ be a group homomorphism. And assume that φ is onto.
(a) If G₁ is abelian, then G₂ is also abelian.
(b) If G₁ is cyclic, then G₂ is also cyclic.

(a) For any x, y ∈ G₂, there exist a, b ∈ G₁ such that φ(a) = x, φ(b) = y. xy = φ(a)φ(b) = φ(ab) = φ(ba) = φ(b)φ(a) = yx.
(b) Let G₁ = ⟨a⟩ for a generator a ∈ G₁. Claim: G₂ = ⟨φ(a)⟩.
(φ(a)⟩ ⊆ G₂ : Trivial. (Why?) [φ(a) ∈ G₂]

(a) For any x, y ∈ G₂, there exist a, b ∈ G₁ such that φ(a) = x, φ(b) = y. xy = φ(a)φ(b) = φ(ab) = φ(ba) = φ(b)φ(a) = yx.
(b) Let G₁ = ⟨a⟩ for a generator a ∈ G₁. Claim: G₂ = ⟨φ(a)⟩.
(φ(a)⟩ ⊆ G₂ : Trivial. (Why?) [φ(a) ∈ G₂]
G₂ ⊆ ⟨φ(a)⟩ : To show every element y of G₂ is a power of φ(a).

(a) For any x, y ∈ G₂, there exist a, b ∈ G₁ such that φ(a) = x, φ(b) = y. xy = φ(a)φ(b) = φ(ab) = φ(ba) = φ(b)φ(a) = yx.
(b) Let G₁ = ⟨a⟩ for a generator a ∈ G₁. Claim: G₂ = ⟨φ(a)⟩.
(φ(a)⟩ ⊆ G₂ : Trivial. (Why?) [φ(a) ∈ G₂]
G₂ ⊆ ⟨φ(a)⟩ : To show every element y of G₂ is a power of φ(a). We can write y = φ(b) for some b ∈ G₁. (Why?)

(a) For any x, y ∈ G₂, there exist a, b ∈ G₁ such that φ(a) = x, φ(b) = y. xy = φ(a)φ(b) = φ(ab) = φ(ba) = φ(b)φ(a) = yx.
(b) Let G₁ = ⟨a⟩ for a generator a ∈ G₁. Claim: G₂ = ⟨φ(a)⟩.
(φ(a)⟩ ⊆ G₂ : Trivial. (Why?) [φ(a) ∈ G₂]
G₂ ⊆ ⟨φ(a)⟩ : To show every element y of G₂ is a power of φ(a). We can write y = φ(b) for some b ∈ G₁. (Why?) We can also write b = a^m for some m ∈ Z. (Why?)

(a) For any x, y ∈ G₂, there exist a, b ∈ G₁ such that φ(a) = x, φ(b) = y. xy = φ(a)φ(b) = φ(ab) = φ(ba) = φ(b)φ(a) = yx.
(b) Let G₁ = ⟨a⟩ for a generator a ∈ G₁. Claim: G₂ = ⟨φ(a)⟩.
⟨φ(a)⟩ ⊆ G₂ : Trivial. (Why?) [φ(a) ∈ G₂]
G₂ ⊆ ⟨φ(a)⟩ : To show every element y of G₂ is a power of φ(a). We can write y = φ(b) for some b ∈ G₁. (Why?) We can also write b = a^m for some m ∈ Z. (Why?) This implies that y = φ(b) = φ(a^m) = (φ(a))^m.

(a) For any x, y ∈ G₂, there exist a, b ∈ G₁ such that φ(a) = x, φ(b) = y. xy = φ(a)φ(b) = φ(ab) = φ(ba) = φ(b)φ(a) = yx.
(b) Let G₁ = ⟨a⟩ for a generator a ∈ G₁. Claim: G₂ = ⟨φ(a)⟩.
(φ(a)⟩ ⊆ G₂: Trivial. (Why?) [φ(a) ∈ G₂]
G₂ ⊆ ⟨φ(a)⟩ : To show every element y of G₂ is a power of φ(a). We can write y = φ(b) for some b ∈ G₁. (Why?) We can also write b = a^m for some m ∈ Z. (Why?) This implies that y = φ(b) = φ(a^m) = (φ(a))^m.

Thus, $G_2 = \langle \phi(a) \rangle$.

(a) For any x, y ∈ G₂, there exist a, b ∈ G₁ such that φ(a) = x, φ(b) = y. xy = φ(a)φ(b) = φ(ab) = φ(ba) = φ(b)φ(a) = yx.
(b) Let G₁ = ⟨a⟩ for a generator a ∈ G₁. Claim: G₂ = ⟨φ(a)⟩.
(φ(a)⟩ ⊆ G₂ : Trivial. (Why?) [φ(a) ∈ G₂]
G₂ ⊆ ⟨φ(a)⟩ : To show every element y of G₂ is a power of φ(a). We can write y = φ(b) for some b ∈ G₁. (Why?) We can also write b = a^m for some m ∈ Z. (Why?) This implies that y = φ(b) = φ(a^m) = (φ(a))^m. Thus, G₂ = ⟨φ(a)⟩. That is, G₂ is also cyclic.

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore,

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore, every homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.

Question 3 (How about the other cases?)

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore, every homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Proposition 3

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore, every homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Proposition 3

Let *m* be a fixed integer. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

 ϕ is a homomorphism:

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore, every homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Proposition 3

Let *m* be a fixed integer. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

 ϕ is a homomorphism: $\phi(x + y) = m(x + y) = mx + my = \phi(x) + \phi(y)$.

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore, every homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Proposition 3

Let *m* be a fixed integer. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

 ϕ is a homomorphism: $\phi(x + y) = m(x + y) = mx + my = \phi(x) + \phi(y)$. This is a special case of **Example 7** since **Z** is an infinity cyclic group.

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore, every homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Proposition 3

Let *m* be a fixed integer. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

 ϕ is a homomorphism: $\phi(x + y) = m(x + y) = mx + my = \phi(x) + \phi(y)$. This is a special case of **Example 7** since **Z** is an infinity cyclic group. In particular, let $\phi(1) = m$ for some integer m since

Homomorphisms

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore, every homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Proposition 3

Let *m* be a fixed integer. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

 ϕ is a homomorphism: $\phi(x + y) = m(x + y) = mx + my = \phi(x) + \phi(y)$. This is a special case of **Example 7** since **Z** is an infinity cyclic group. In particular, let $\phi(1) = m$ for some integer m since 1 is a generator of **Z**.

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore, every homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Proposition 3

Let *m* be a fixed integer. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

 ϕ is a homomorphism: $\phi(x + y) = m(x + y) = mx + my = \phi(x) + \phi(y)$. This is a special case of **Example 7** since **Z** is an infinity cyclic group. In particular, let $\phi(1) = m$ for some integer m since 1 is a generator of **Z**. For $x \in \mathbf{Z}^+, \phi(x) =$

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore, every homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Proposition 3

Let *m* be a fixed integer. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

 ϕ is a homomorphism: $\phi(x + y) = m(x + y) = mx + my = \phi(x) + \phi(y)$. This is a special case of **Example 7** since **Z** is an infinity cyclic group. In particular, let $\phi(1) = m$ for some integer m since 1 is a generator of **Z**. For $x \in \mathbf{Z}^+, \phi(x) = \phi(1 + \dots + 1) =$

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore, every homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Proposition 3

Let *m* be a fixed integer. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

 ϕ is a homomorphism: $\phi(x + y) = m(x + y) = mx + my = \phi(x) + \phi(y)$. This is a special case of **Example 7** since **Z** is an infinity cyclic group. In particular, let $\phi(1) = m$ for some integer m since **1** is a generator of **Z**. For $x \in \mathbf{Z}^+$, $\phi(x) = \phi(1 + \dots + 1) = \phi(1) + \dots + \phi(1) =$

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore, every homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Proposition 3

Let *m* be a fixed integer. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

 ϕ is a homomorphism: $\phi(x + y) = m(x + y) = mx + my = \phi(x) + \phi(y)$. This is a special case of **Example 7** since **Z** is an infinity cyclic group. In particular, let $\phi(1) = m$ for some integer m since **1** is a generator of **Z**. For $x \in \mathbf{Z}^+$, $\phi(x) = \phi(1 + \dots + 1) = \phi(1) + \dots + \phi(1) = x\phi(1) =$

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore, every homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Proposition 3

Let *m* be a fixed integer. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

 ϕ is a homomorphism: $\phi(x + y) = m(x + y) = mx + my = \phi(x) + \phi(y)$. This is a special case of **Example 7** since **Z** is an infinity cyclic group. In particular, let $\phi(1) = m$ for some integer m since **1** is a generator of **Z**. For $x \in \mathbf{Z}^+$, $\phi(x) = \phi(1 + \dots + 1) = \phi(1) + \dots + \phi(1) = x\phi(1) = mx$.

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore, every homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Proposition 3

Let *m* be a fixed integer. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

 ϕ is a homomorphism: $\phi(x + y) = m(x + y) = mx + my = \phi(x) + \phi(y)$. This is a special case of **Example 7** since **Z** is an infinity cyclic group. In particular, let $\phi(1) = m$ for some integer m since 1 is a generator of **Z**. For $x \in \mathbf{Z}^+$, $\phi(x) = \phi(1 + \dots + 1) = \phi(1) + \dots + \phi(1) = x\phi(1) = mx$. For $x \in \mathbf{Z}^-$, so x = -|x|:

Example 8: We define a homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ by $\phi([x]_n) = [mx]_k$, for all $[x]_n \in \mathbb{Z}_n$. And $\phi([x]_n) = [mx]_k$ is well-defined if and only if k|mn. Furthermore, every homomorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Proposition 3

Let *m* be a fixed integer. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

 ϕ is a homomorphism: $\phi(x + y) = m(x + y) = mx + my = \phi(x) + \phi(y)$. This is a special case of **Example 7** since **Z** is an infinity cyclic group. In particular, let $\phi(1) = m$ for some integer m since **1** is a generator of **Z**. For $x \in \mathbf{Z}^+$, $\phi(x) = \phi(1 + \dots + 1) = \phi(1) + \dots + \phi(1) = x\phi(1) = mx$. For $x \in \mathbf{Z}^-$, so $x = -|x| : \phi(x) = \phi(-|x|) = -\phi(|x|) = -m|x| = mx$.

Proposition 4

Proposition 4

Let $[m]_n \in \mathbb{Z}_n$. Define a function $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [mx]_n$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

Proposition 4

Let $[m]_n \in \mathbb{Z}_n$. Define a function $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [mx]_n$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

The proof is the same as for homomorphisms $\mathbf{Z} \rightarrow \mathbf{Z}$.

Proposition 5

Proposition 4

Let $[m]_n \in \mathbb{Z}_n$. Define a function $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [mx]_n$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

The proof is the same as for homomorphisms $\mathbf{Z} \rightarrow \mathbf{Z}$.

Proposition 5

The only homomorphism $Z_n \to Z$ is the function defined by $\phi([x]_n) = 0$ for all $[x]_n \in Z_n$.

Proof.

Proposition 4

Let $[m]_n \in \mathbb{Z}_n$. Define a function $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [mx]_n$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

The proof is the same as for homomorphisms $\mathbf{Z} \rightarrow \mathbf{Z}$.

Proposition 5

The only homomorphism $Z_n \to Z$ is the function defined by $\phi([x]_n) = 0$ for all $[x]_n \in Z_n$.

Proof.

In
$$\mathbf{Z}_n$$
, $o([x]_n) = m | n$. And so

Proposition 4

Let $[m]_n \in \mathbb{Z}_n$. Define a function $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [mx]_n$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

The proof is the same as for homomorphisms $\mathbf{Z} \rightarrow \mathbf{Z}$.

Proposition 5

The only homomorphism $Z_n \to Z$ is the function defined by $\phi([x]_n) = 0$ for all $[x]_n \in Z_n$.

Proof.

In Z_n , $o([x]_n) = m|n$. And so $o(\phi([x]_n))|m$ in Z. (Why?) [

Proposition 4

Let $[m]_n \in \mathbb{Z}_n$. Define a function $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [mx]_n$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

The proof is the same as for homomorphisms $\mathbf{Z} \rightarrow \mathbf{Z}$.

Proposition 5

The only homomorphism $\mathbf{Z}_n \to \mathbf{Z}$ is the function defined by $\phi([x]_n) = 0$ for all $[x]_n \in \mathbf{Z}_n$.

Proof.

In Z_n , $o([x]_n) = m|n$. And so $o(\phi([x]_n))|m$ in Z. (Why?) [Prop. 1 (d)]

Proposition 4

Let $[m]_n \in \mathbb{Z}_n$. Define a function $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [mx]_n$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

The proof is the same as for homomorphisms $\mathbf{Z} \rightarrow \mathbf{Z}$.

Proposition 5

The only homomorphism $\mathbf{Z}_n \to \mathbf{Z}$ is the function defined by $\phi([x]_n) = 0$ for all $[x]_n \in \mathbf{Z}_n$.

Proof.

In Z_n , $o([x]_n) = m|n$. And so $o(\phi([x]_n))|m$ in Z. (Why?) [Prop. 1 (d)] However, in Z, only 0 has a finite order (o(0) = 1).

Proposition 4

Let $[m]_n \in \mathbb{Z}_n$. Define a function $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [mx]_n$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof.

The proof is the same as for homomorphisms $\mathbf{Z} \rightarrow \mathbf{Z}$.

Proposition 5

The only homomorphism $\mathbf{Z}_n \to \mathbf{Z}$ is the function defined by $\phi([x]_n) = 0$ for all $[x]_n \in \mathbf{Z}_n$.

Proof.

In Z_n , $o([x]_n) = m|n$. And so $o(\phi([x]_n))|m$ in Z. (Why?) [Prop. 1 (d)] However, in Z, only 0 has a finite order (o(0) = 1). Thus, $\phi([x]_n) = 0$.

Proposition 6 (Let ϕ : $G_1 \rightarrow G_2$ be a homomorphism.)

Proposition 6 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism.)

Let g be any element in G_1 . Then $gkg^{-1} \in ker(\phi)$ for all $k \in ker(\phi)$.

Note:

Proposition 6 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism.)

Let g be any element in G_1 . Then $gkg^{-1} \in ker(\phi)$ for all $k \in ker(\phi)$.

Note: We have shown that $ker(\phi)$ is a subgroup of G_1 in Theorem 10 (a).

Proof.

Proposition 6 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism.)

Let g be any element in G_1 . Then $gkg^{-1} \in ker(\phi)$ for all $k \in ker(\phi)$.

Note: We have shown that $ker(\phi)$ is a subgroup of G_1 in Theorem 10 (a).

Proof.

 $\phi({\rm gkg}^{-1}) =$
Proposition 6 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism.)

Let g be any element in G_1 . Then $gkg^{-1} \in ker(\phi)$ for all $k \in ker(\phi)$.

Note: We have shown that $ker(\phi)$ is a subgroup of G_1 in Theorem 10 (a).

Proof.

$$\phi(gkg^{-1}) = \phi(g)\phi(k)\phi(g^{-1}) =$$

Proposition 6 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism.)

Let g be any element in G_1 . Then $gkg^{-1} \in ker(\phi)$ for all $k \in ker(\phi)$.

Note: We have shown that $ker(\phi)$ is a subgroup of G_1 in Theorem 10 (a).

Proof.

$$\phi(gkg^{-1}) = \phi(g)\phi(k)\phi(g^{-1}) = \phi(g)e_2\phi(g)^{-1} =$$

Proposition 6 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism.)

Let g be any element in G_1 . Then $gkg^{-1} \in ker(\phi)$ for all $k \in ker(\phi)$.

Note: We have shown that $ker(\phi)$ is a subgroup of G_1 in Theorem 10 (a).

Proof.

$$\phi(gkg^{-1}) = \phi(g)\phi(k)\phi(g^{-1}) = \phi(g)e_2\phi(g)^{-1} = \phi(g)\phi(g)^{-1} =$$

Proposition 6 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism.)

Let g be any element in G_1 . Then $gkg^{-1} \in ker(\phi)$ for all $k \in ker(\phi)$.

Note: We have shown that $ker(\phi)$ is a subgroup of G_1 in Theorem 10 (a).

Proof.

$$\phi(gkg^{-1}) = \phi(g)\phi(k)\phi(g^{-1}) = \phi(g)e_2\phi(g)^{-1} = \phi(g)\phi(g)^{-1} = e_2$$

Definition 12

Proposition 6 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

Let g be any element in G_1 . Then $gkg^{-1} \in ker(\phi)$ for all $k \in ker(\phi)$.

Note: We have shown that $ker(\phi)$ is a subgroup of G_1 in Theorem 10 (a).

Proof.

$$\phi(gkg^{-1}) = \phi(g)\phi(k)\phi(g^{-1}) = \phi(g)e_2\phi(g)^{-1} = \phi(g)\phi(g)^{-1} = e_2$$

Definition 12

A subgroup *H* of the group *G* is called a **normal** subgroup if $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$.

Example 13 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism.)

Proposition 6 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

Let g be any element in G_1 . Then $gkg^{-1} \in ker(\phi)$ for all $k \in ker(\phi)$.

Note: We have shown that $ker(\phi)$ is a subgroup of G_1 in Theorem 10 (a).

Proof.

$$\phi(gkg^{-1}) = \phi(g)\phi(k)\phi(g^{-1}) = \phi(g)e_2\phi(g)^{-1} = \phi(g)\phi(g)^{-1} = e_2$$

Definition 12

A subgroup *H* of the group *G* is called a **normal** subgroup if $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$.

Example 13 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism.)

(1) ker(ϕ) is a normal subgroup of G_1 ; see Proposition 6.

Proposition 6 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

Let g be any element in G_1 . Then $gkg^{-1} \in ker(\phi)$ for all $k \in ker(\phi)$.

Note: We have shown that $ker(\phi)$ is a subgroup of G_1 in Theorem 10 (a).

Proof.

$$\phi(gkg^{-1}) = \phi(g)\phi(k)\phi(g^{-1}) = \phi(g)e_2\phi(g)^{-1} = \phi(g)\phi(g)^{-1} = e_2$$

Definition 12

A subgroup *H* of the group *G* is called a **normal** subgroup if $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$.

Example 13 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism.)

(1) ker(ϕ) is a normal subgroup of G_1 ; see Proposition 6.

(2) If H = G or $H = \{e\}$, then H is normal.

Proposition 6 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

Let g be any element in G_1 . Then $gkg^{-1} \in ker(\phi)$ for all $k \in ker(\phi)$.

Note: We have shown that $ker(\phi)$ is a subgroup of G_1 in Theorem 10 (a).

Proof.

$$\phi(gkg^{-1}) = \phi(g)\phi(k)\phi(g^{-1}) = \phi(g)e_2\phi(g)^{-1} = \phi(g)\phi(g)^{-1} = e_2$$

Definition 12

A subgroup H of the group G is called a **normal** subgroup if $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$.

Example 13 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism.)

- (1) ker(ϕ) is a normal subgroup of G_1 ; see Proposition 6.
- (2) If H = G or $H = \{e\}$, then H is normal.
- (3) Any subgroup of an abelian group is normal.

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

(a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

(a) Nonempty:

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

(a) Nonempty: $e_2 \in \phi(H_1)$. (Why?)

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .
- (a) Nonempty: $e_2 \in \phi(H_1)$. (Why?) For any $x, y \in \phi(H_1)$, there exist $a, b \in H_1$ with $\phi(a) = x$ and $\phi(b) = y$, and

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

(a) Nonempty: $e_2 \in \phi(H_1)$. (Why?) For any $x, y \in \phi(H_1)$, there exist $a, b \in H_1$ with $\phi(a) = x$ and $\phi(b) = y$, and $xy^{-1} = \phi(a)(\phi(b))^{-1} = \phi(a)\phi(b^{-1}) = \phi(ab^{-1})\in\phi(H_1)$.

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

(a) Nonempty: $e_2 \in \phi(H_1)$. (Why?) For any $x, y \in \phi(H_1)$, there exist $a, b \in H_1$ with $\phi(a) = x$ and $\phi(b) = y$, and $xy^{-1} = \phi(a)(\phi(b))^{-1} = \phi(a)\phi(b^{-1}) = \phi(ab^{-1})\in\phi(H_1)$. \checkmark Let $x \in G_2$ and $y \in \phi(H_1)$. To show $xyx^{-1} \in \phi(H_1)$. (Why?)

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

(a) Nonempty: $e_2 \in \phi(H_1)$. (Why?) For any $x, y \in \phi(H_1)$, there exist $a, b \in H_1$ with $\phi(a) = x$ and $\phi(b) = y$, and $xy^{-1} = \phi(a)(\phi(b))^{-1} = \phi(a)\phi(b^{-1}) = \phi(ab^{-1})\in\phi(H_1)$. \checkmark Let $x \in G_2$ and $y \in \phi(H_1)$. To show $xyx^{-1} \in \phi(H_1)$. (Why?) There exist $g \in G_1$ and $a \in H_1$ with $\phi(g) = x$ (Why?)

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .
- (a) Nonempty: $e_2 \in \phi(H_1)$. (Why?) For any $x, y \in \phi(H_1)$, there exist $a, b \in H_1$ with $\phi(a) = x$ and $\phi(b) = y$, and $xy^{-1} = \phi(a)(\phi(b))^{-1} = \phi(a)\phi(b^{-1}) = \phi(ab^{-1})\in\phi(H_1)$. \checkmark Let $x \in G_2$ and $y \in \phi(H_1)$. To show $xyx^{-1} \in \phi(H_1)$. (Why?) There exist $g \in G_1$ and $a \in H_1$ with $\phi(g) = x$ (Why?) and $y = \phi(a)$.

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

(a) Nonempty: $e_2 \in \phi(H_1)$. (Why?) For any $x, y \in \phi(H_1)$, there exist $a, b \in H_1$ with $\phi(a) = x$ and $\phi(b) = y$, and $xy^{-1} = \phi(a)(\phi(b))^{-1} = \phi(a)\phi(b^{-1}) = \phi(ab^{-1})\in\phi(H_1)$. \checkmark Let $x \in G_2$ and $y \in \phi(H_1)$. To show $xyx^{-1} \in \phi(H_1)$. (Why?) There exist $g \in G_1$ and $a \in H_1$ with $\phi(g) = x$ (Why?) and $y = \phi(a)$. $xyx^{-1} = \phi(g)\phi(a)\phi(g^{-1}) = \phi(gag^{-1}) \stackrel{?}{\in} \phi(H_1)$ (Why?) \checkmark

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .
- (a) Nonempty: e₂ ∈ φ(H₁). (Why?) For any x, y ∈ φ(H₁), there exist a, b ∈ H₁ with φ(a) = x and φ(b) = y, and xy⁻¹ = φ(a)(φ(b))⁻¹ = φ(a)φ(b⁻¹) = φ(ab⁻¹)∈φ(H₁). ✓ Let x ∈ G₂ and y ∈ φ(H₁). To show xyx⁻¹ ∈ φ(H₁). (Why?) There exist g ∈ G₁ and a ∈ H₁ with φ(g) = x (Why?) and y = φ(a). xyx⁻¹ = φ(g)φ(a)φ(g⁻¹) = φ(gag⁻¹) ∈ φ(H₁) (Why?) ✓
 (b) φ⁻¹(H₂) = {a ∈ G₁ | φ(a) ∈ H₂}.

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

(a) Nonempty: e₂ ∈ φ(H₁). (Why?) For any x, y ∈ φ(H₁), there exist a, b ∈ H₁ with φ(a) = x and φ(b) = y, and xy⁻¹ = φ(a)(φ(b))⁻¹ = φ(a)φ(b⁻¹) = φ(ab⁻¹)∈φ(H₁). ✓ Let x ∈ G₂ and y ∈ φ(H₁). To show xyx⁻¹ ∈ φ(H₁). (Why?) There exist g ∈ G₁ and a ∈ H₁ with φ(g) = x (Why?) and y = φ(a). xyx⁻¹ = φ(g)φ(a)φ(g⁻¹) = φ(gag⁻¹) ∈ φ(H₁) (Why?) ✓
(b) φ⁻¹(H₂) = {a ∈ G₁ | φ(a) ∈ H₂}. Nonempty:

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

(a) Nonempty: e₂ ∈ φ(H₁). (Why?) For any x, y ∈ φ(H₁), there exist a, b ∈ H₁ with φ(a) = x and φ(b) = y, and xy⁻¹ = φ(a)(φ(b))⁻¹ = φ(a)φ(b⁻¹) = φ(ab⁻¹)∈φ(H₁). ✓ Let x ∈ G₂ and y ∈ φ(H₁). To show xyx⁻¹ ∈ φ(H₁). (Why?) There exist g ∈ G₁ and a ∈ H₁ with φ(g) = x (Why?) and y = φ(a). xyx⁻¹ = φ(g)φ(a)φ(g⁻¹) = φ(gag⁻¹) ∈ φ(H₁) (Why?) ✓
(b) φ⁻¹(H₂) = {a ∈ G₁ | φ(a) ∈ H₂}. Nonempty: e₁ ∈ φ⁻¹(H₂). (Why?)

Proposition 7 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

(a) Nonempty: e₂ ∈ φ(H₁). (Why?) For any x, y ∈ φ(H₁), there exist a, b ∈ H₁ with φ(a) = x and φ(b) = y, and xy⁻¹ = φ(a)(φ(b))⁻¹ = φ(a)φ(b⁻¹) = φ(ab⁻¹)∈φ(H₁). ✓ Let x ∈ G₂ and y ∈ φ(H₁). To show xyx⁻¹ ∈ φ(H₁). (Why?) There exist g ∈ G₁ and a ∈ H₁ with φ(g) = x (Why?) and y = φ(a). xyx⁻¹ = φ(g)φ(a)φ(g⁻¹) = φ(gag⁻¹) ∈ φ(H₁) (Why?) ✓
(b) φ⁻¹(H₂) = {a ∈ G₁ | φ(a) ∈ H₂}. Nonempty: e₁ ∈ φ⁻¹(H₂). (Why?) For any a, b ∈ φ⁻¹(H₂), ab⁻¹ ∈ φ⁻¹(H₂) since

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

(a) Nonempty: e₂ ∈ φ(H₁). (Why?) For any x, y ∈ φ(H₁), there exist a, b ∈ H₁ with φ(a) = x and φ(b) = y, and xy⁻¹ = φ(a)(φ(b))⁻¹ = φ(a)φ(b⁻¹) = φ(ab⁻¹)∈φ(H₁). ✓ Let x ∈ G₂ and y ∈ φ(H₁). To show xyx⁻¹ ∈ φ(H₁). (Why?) There exist g ∈ G₁ and a ∈ H₁ with φ(g) = x (Why?) and y = φ(a). xyx⁻¹ = φ(g)φ(a)φ(g⁻¹) = φ(gag⁻¹) ∈ φ(H₁) (Why?) ✓
(b) φ⁻¹(H₂) = {a ∈ G₁ | φ(a) ∈ H₂}. Nonempty: e₁ ∈ φ⁻¹(H₂). (Why?) For any a, b ∈ φ⁻¹(H₂), ab⁻¹ ∈ φ⁻¹(H₂) since φ(ab⁻¹)∈H₂. (Why?)

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

(a) Nonempty: e₂ ∈ φ(H₁). (Why?) For any x, y ∈ φ(H₁), there exist a, b ∈ H₁ with φ(a) = x and φ(b) = y, and xy⁻¹ = φ(a)(φ(b))⁻¹ = φ(a)φ(b⁻¹) = φ(ab⁻¹)∈φ(H₁). ✓ Let x ∈ G₂ and y ∈ φ(H₁). To show xyx⁻¹ ∈ φ(H₁). (Why?) There exist g ∈ G₁ and a ∈ H₁ with φ(g) = x (Why?) and y = φ(a). xyx⁻¹ = φ(g)φ(a)φ(g⁻¹) = φ(gag⁻¹) ∈ φ(H₁) (Why?) ✓
(b) φ⁻¹(H₂) = {a ∈ G₁ | φ(a) ∈ H₂}. Nonempty: e₁ ∈ φ⁻¹(H₂). (Why?) For any a, b ∈ φ⁻¹(H₂), ab⁻¹ ∈ φ⁻¹(H₂) since φ(ab⁻¹)∈H₂. (Why?) Let g ∈ G₁ and a ∈ φ⁻¹(H₂). To show gag⁻¹ ∈ φ⁻¹(H₂). (Why?)

Proposition 7 (Let $\phi: G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

(a) Nonempty: $e_2 \in \phi(H_1)$. (Why?) For any $x, y \in \phi(H_1)$, there exist $a, b \in H_1$ with $\phi(a) = x$ and $\phi(b) = y$, and $xy^{-1} = \phi(a)(\phi(b))^{-1} = \phi(a)\phi(b^{-1}) = \phi(ab^{-1})\in\phi(H_1).$ Let $x \in G_2$ and $y \in \phi(H_1)$. To show $xyx^{-1} \in \phi(H_1)$. (Why?) There exist $g \in G_1$ and $a \in H_1$ with $\phi(g) = x$ (Why?) and $y = \phi(a)$. $xyx^{-1} = \phi(g)\phi(a)\phi(g^{-1}) = \phi(gag^{-1}) \stackrel{?}{\in} \phi(H_1) \text{ (Why?) } \checkmark$ (b) $\phi^{-1}(H_2) = \{a \in G_1 \mid \phi(a) \in H_2\}$. Nonempty: $e_1 \in \phi^{-1}(H_2)$. (Why?) For any $a, b \in \phi^{-1}(H_2), ab^{-1} \in \phi^{-1}(H_2)$ since $\phi(ab^{-1}) \in H_2$. (Why?) Let $g \in G_1$ and $a \in \phi^{-1}(H_2)$. To show $gag^{-1} \in \phi^{-1}(H_2)$. (Why?) This is true since Yi Homomorphisms

Proposition 7 (Let $\phi : G_1 \to G_2$ be a homomorphism.)

- (a) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 . If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
- (b) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 . If H_2 is a normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

(a) Nonempty: $e_2 \in \phi(H_1)$. (Why?) For any $x, y \in \phi(H_1)$, there exist $a, b \in H_1$ with $\phi(a) = x$ and $\phi(b) = y$, and $xy^{-1} = \phi(a)(\phi(b))^{-1} = \phi(a)\phi(b^{-1}) = \phi(ab^{-1})\in\phi(H_1).$ Let $x \in G_2$ and $y \in \phi(H_1)$. To show $xyx^{-1} \in \phi(H_1)$. (Why?) There exist $g \in G_1$ and $a \in H_1$ with $\phi(g) = x$ (Why?) and $y = \phi(a)$. $xyx^{-1} = \phi(g)\phi(a)\phi(g^{-1}) = \phi(gag^{-1}) \stackrel{?}{\in} \phi(H_1) \text{ (Why?) } \checkmark$ (b) $\phi^{-1}(H_2) = \{a \in G_1 \mid \phi(a) \in H_2\}$. Nonempty: $e_1 \in \phi^{-1}(H_2)$. (Why?) For any $a, b \in \phi^{-1}(H_2), ab^{-1} \in \phi^{-1}(H_2)$ since $\phi(ab^{-1}) \in H_2$. (Why?) Let $g \in G_1$ and $a \in \phi^{-1}(H_2)$. To show $gag^{-1} \in \phi^{-1}(H_2)$. (Why?) This is true since $\phi(gag^{-1}) = \phi(g)\phi(a)(\phi(g))^{-1} \in H_2$. (Why?) Homomorphisms June 10-11, 2020 16 / 23

Equivalence relation on G_1 associated with ϕ

Definition 14 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

Equivalence relation on G_1 associated with ϕ

Definition 14 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

Natural equivalent relation on G_1 : $a \sim_{\phi} b$ if $\phi(a) = \phi(b)$, where $a, b \in G_1$.

Notation:

Definition 14 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

Natural equivalent relation on G_1 : $a \sim_{\phi} b$ if $\phi(a) = \phi(b)$, where $a, b \in G_1$.

Notation: The set of equivalence classes of this relation: $G_1/\phi = \{[a]_{\phi}\}$, where $[a]_{\phi}$ is the equivalence class of $a \in G_1$. (Think about $[r]_n$ in Z_n)

Proposition 8 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

Definition 14 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

Natural equivalent relation on G_1 : $a \sim_{\phi} b$ if $\phi(a) = \phi(b)$, where $a, b \in G_1$.

Notation: The set of equivalence classes of this relation: $G_1/\phi = \{[a]_{\phi}\}$, where $[a]_{\phi}$ is the equivalence class of $a \in G_1$. (Think about $[r]_n$ in Z_n)

Proposition 8 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

The multiplication of equivalence classes in the set G_1/ϕ is well-defined, and G_1/ϕ is a group under this multiplication.

Definition 14 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

Natural equivalent relation on G_1 : $a \sim_{\phi} b$ if $\phi(a) = \phi(b)$, where $a, b \in G_1$.

Notation: The set of equivalence classes of this relation: $G_1/\phi = \{[a]_{\phi}\}$, where $[a]_{\phi}$ is the equivalence class of $a \in G_1$. (Think about $[r]_n$ in Z_n)

Proposition 8 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

The multiplication of equivalence classes in the set G_1/ϕ is well-defined, and G_1/ϕ is a group under this multiplication. The natural projection

$$\pi: G_1 \to G_1/\phi$$

defined by $\pi(a) = [a]_{\phi}$ is a group homomorphism.

(Recall the multiplication of congruence classes in Z_n : $[a]_n[b]_n = [ab]_n$)

(i) Multiplication is well-defined:

(i) Multiplication is well-defined: show $ac \sim_{\phi} bd$ if $a \sim_{\phi} b$ and $c \sim_{\phi} d$.

(i) Multiplication is well-defined: show $ac \sim_{\phi} bd$ if $a \sim_{\phi} b$ and $c \sim_{\phi} d$. If $\phi(a) = \phi(b)$ and $\phi(c) = \phi(d)$, then

(i) Multiplication is well-defined: show ac ~_φ bd if a ~_φ b and c ~_φ d. If φ(a) = φ(b) and φ(c) = φ(d), then φ(ac) = φ(a)φ(c) = φ(b)φ(d) = φ(bd).
(ii) Associativity: (Check it!)
(i) Multiplication is well-defined: show ac ~_φ bd if a ~_φ b and c ~_φ d. If φ(a) = φ(b) and φ(c) = φ(d), then φ(ac) = φ(a)φ(c) = φ(b)φ(d) = φ(bd).
(ii) Associativity: (Check it!) For all a, b, c ∈ G₁,

(i) Multiplication is well-defined: show $ac \sim_{\phi} bd$ if $a \sim_{\phi} b$ and $c \sim_{\phi} d$. If $\phi(a) = \phi(b)$ and $\phi(c) = \phi(d)$, then $\phi(ac) = \phi(a)\phi(c) = \phi(b)\phi(d) = \phi(bd)$.

(ii) Associativity: (Check it!) For all $a, b, c \in G_1$,

 $[a]_{\phi}([b]_{\phi}[c]_{\phi}) = [a]_{\phi}[bc]_{\phi} = [a(bc)]_{\phi} \stackrel{!}{=} [(ab)c]_{\phi} \stackrel{\checkmark}{=} ([a]_{\phi}[b]_{\phi})[c]_{\phi}$ (iii) Identity:

(i) Multiplication is well-defined: show ac ∼_φ bd if a ∼_φ b and c ∼_φ d. If φ(a) = φ(b) and φ(c) = φ(d), then φ(ac) = φ(a)φ(c) = φ(b)φ(d) = φ(bd).

(ii) Associativity: (Check it!) For all $a, b, c \in G_1$,

 $[a]_{\phi}([b]_{\phi}[c]_{\phi}) = [a]_{\phi}[bc]_{\phi} = [a(bc)]_{\phi} \stackrel{!}{=} [(ab)c]_{\phi} \stackrel{\checkmark}{=} ([a]_{\phi}[b]_{\phi})[c]_{\phi}$ (iii) Identity: The class $[e]_{\phi}$ is an identity element since for all $a \in G_1$:

(i) Multiplication is well-defined: show ac ~_φ bd if a ~_φ b and c ~_φ d. If φ(a) = φ(b) and φ(c) = φ(d), then φ(ac) = φ(a)φ(c) = φ(b)φ(d) = φ(bd).
(ii) Associativity: (Check it!) For all a, b, c ∈ G₁,

 $[a]_{\phi}([b]_{\phi}[c]_{\phi}) = [a]_{\phi}[bc]_{\phi} = [a(bc)]_{\phi} \stackrel{!}{=} [(ab)c]_{\phi} \stackrel{\checkmark}{=} ([a]_{\phi}[b]_{\phi})[c]_{\phi}$ (iii) Identity: The class $[e]_{\phi}$ is an identity element since for all $a \in G_1$: $[e]_{\phi}[a]_{\phi} = [ea]_{\phi} = [a]_{\phi}$ and $[a]_{\phi}[e]_{\phi} = [ae]_{\phi} = [a]_{\phi}$ (iv) Inverses:

(i) Multiplication is well-defined: show ac ∼_φ bd if a ∼_φ b and c ∼_φ d. If φ(a) = φ(b) and φ(c) = φ(d), then φ(ac) = φ(a)φ(c) = φ(b)φ(d) = φ(bd).

(ii) Associativity: (Check it!) For all $a, b, c \in G_1$,

 $[a]_{\phi}([b]_{\phi}[c]_{\phi}) = [a]_{\phi}[bc]_{\phi} = [a(bc)]_{\phi} \stackrel{!}{=} [(ab)c]_{\phi} \stackrel{\checkmark}{=} ([a]_{\phi}[b]_{\phi})[c]_{\phi}$ (iii) Identity: The class $[e]_{\phi}$ is an identity element since for all $a \in G_1$: $[e]_{\phi}[a]_{\phi} = [ea]_{\phi} = [a]_{\phi} \text{ and } [a]_{\phi}[e]_{\phi} = [ae]_{\phi} = [a]_{\phi}$

(iv) Inverses: For any equivalence class $[a]_{\phi}$, its inverse is $[a^{-1}]_{\phi}$ since

(i) Multiplication is well-defined: show $ac \sim_{\phi} bd$ if $a \sim_{\phi} b$ and $c \sim_{\phi} d$. If $\phi(a) = \phi(b)$ and $\phi(c) = \phi(d)$, then $\phi(ac) = \phi(a)\phi(c) = \phi(b)\phi(d) = \phi(bd).$ (ii) Associativity: (Check it!) For all $a, b, c \in G_1$, $[a]_{\phi}([b]_{\phi}[c]_{\phi}) = [a]_{\phi}[bc]_{\phi} = [a(bc)]_{\phi} \stackrel{!}{=} [(ab)c]_{\phi} \stackrel{\checkmark}{=} ([a]_{\phi}[b]_{\phi})[c]_{\phi}$ (iii) Identity: The class $[e]_{\phi}$ is an identity element since for all $a \in G_1$: $[e]_{\phi}[a]_{\phi} = [ea]_{\phi} = [a]_{\phi}$ and $[a]_{\phi}[e]_{\phi} = [ae]_{\phi} = [a]_{\phi}$ (iv) Inverses: For any equivalence class $[a]_{\phi}$, its inverse is $[a^{-1}]_{\phi}$ since $[a^{-1}]_{\phi}[a]_{\phi} = [a^{-1}a]_{\phi} = [e]_{\phi}$ and $[a]_{\phi}[a^{-1}]_{\phi} = [aa^{-1}]_{\phi} = [e]_{\phi}$

(i) Multiplication is well-defined: show $ac \sim_{\phi} bd$ if $a \sim_{\phi} b$ and $c \sim_{\phi} d$. If $\phi(a) = \phi(b)$ and $\phi(c) = \phi(d)$, then $\phi(ac) = \phi(a)\phi(c) = \phi(b)\phi(d) = \phi(bd).$ (ii) Associativity: (Check it!) For all $a, b, c \in G_1$, $[a]_{\phi}([b]_{\phi}[c]_{\phi}) = [a]_{\phi}[bc]_{\phi} = [a(bc)]_{\phi} \stackrel{!}{=} [(ab)c]_{\phi} \stackrel{\checkmark}{=} ([a]_{\phi}[b]_{\phi})[c]_{\phi}$ (iii) Identity: The class $[e]_{\phi}$ is an identity element since for all $a \in G_1$: $[e]_{\phi}[a]_{\phi} = [ea]_{\phi} = [a]_{\phi}$ and $[a]_{\phi}[e]_{\phi} = [ae]_{\phi} = [a]_{\phi}$ (iv) Inverses: For any equivalence class $[a]_{\phi}$, its inverse is $[a^{-1}]_{\phi}$ since $[a^{-1}]_{\phi}[a]_{\phi} = [a^{-1}a]_{\phi} = [e]_{\phi}$ and $[a]_{\phi}[a^{-1}]_{\phi} = [aa^{-1}]_{\phi} = [e]_{\phi}$

Thus, G_1/ϕ is a group under the multiplication of equivalence classes.

(i) Multiplication is well-defined: show $ac \sim_{\phi} bd$ if $a \sim_{\phi} b$ and $c \sim_{\phi} d$. If $\phi(a) = \phi(b)$ and $\phi(c) = \phi(d)$, then $\phi(ac) = \phi(a)\phi(c) = \phi(b)\phi(d) = \phi(bd).$ (ii) Associativity: (Check it!) For all $a, b, c \in G_1$, $[a]_{\phi}([b]_{\phi}[c]_{\phi}) = [a]_{\phi}[bc]_{\phi} = [a(bc)]_{\phi} \stackrel{!}{=} [(ab)c]_{\phi} \stackrel{\checkmark}{=} ([a]_{\phi}[b]_{\phi})[c]_{\phi}$ (iii) Identity: The class $[e]_{\phi}$ is an identity element since for all $a \in G_1$: $[e]_{\phi}[a]_{\phi} = [ea]_{\phi} = [a]_{\phi}$ and $[a]_{\phi}[e]_{\phi} = [ae]_{\phi} = [a]_{\phi}$ (iv) Inverses: For any equivalence class $[a]_{\phi}$, its inverse is $[a^{-1}]_{\phi}$ since $[a^{-1}]_{\phi}[a]_{\phi} = [a^{-1}a]_{\phi} = [e]_{\phi}$ and $[a]_{\phi}[a^{-1}]_{\phi} = [aa^{-1}]_{\phi} = [e]_{\phi}$

Thus, G_1/ϕ is a group under the multiplication of equivalence classes.

Homomorphisms

Define the natural projection $\pi : G_1 \to G_1/\phi$ by $\pi(a) = [a]_{\phi}$.

(i) Multiplication is well-defined: show $ac \sim_{\phi} bd$ if $a \sim_{\phi} b$ and $c \sim_{\phi} d$. If $\phi(a) = \phi(b)$ and $\phi(c) = \phi(d)$, then $\phi(ac) = \phi(a)\phi(c) = \phi(b)\phi(d) = \phi(bd).$ (ii) Associativity: (Check it!) For all $a, b, c \in G_1$, $[a]_{\phi}([b]_{\phi}[c]_{\phi}) = [a]_{\phi}[bc]_{\phi} = [a(bc)]_{\phi} \stackrel{!}{=} [(ab)c]_{\phi} \stackrel{\checkmark}{=} ([a]_{\phi}[b]_{\phi})[c]_{\phi}$ (iii) Identity: The class $[e]_{\phi}$ is an identity element since for all $a \in G_1$: $[e]_{\phi}[a]_{\phi} = [ea]_{\phi} = [a]_{\phi}$ and $[a]_{\phi}[e]_{\phi} = [ae]_{\phi} = [a]_{\phi}$ (iv) Inverses: For any equivalence class $[a]_{\phi}$, its inverse is $[a^{-1}]_{\phi}$ since $[a^{-1}]_{\phi}[a]_{\phi} = [a^{-1}a]_{\phi} = [e]_{\phi}$ and $[a]_{\phi}[a^{-1}]_{\phi} = [aa^{-1}]_{\phi} = [e]_{\phi}$

Thus, G_1/ϕ is a group under the multiplication of equivalence classes.

Define the natural projection $\pi : G_1 \to G_1/\phi$ by $\pi(a) = [a]_{\phi}$. π is a group homomorphism: (Check it!) For all $a, b \in G_1$,

(i) Multiplication is well-defined: show $ac \sim_{\phi} bd$ if $a \sim_{\phi} b$ and $c \sim_{\phi} d$. If $\phi(a) = \phi(b)$ and $\phi(c) = \phi(d)$, then $\phi(ac) = \phi(a)\phi(c) = \phi(b)\phi(d) = \phi(bd).$ (ii) Associativity: (Check it!) For all $a, b, c \in G_1$, $[a]_{\phi}([b]_{\phi}[c]_{\phi}) = [a]_{\phi}[bc]_{\phi} = [a(bc)]_{\phi} \stackrel{!}{=} [(ab)c]_{\phi} \stackrel{\checkmark}{=} ([a]_{\phi}[b]_{\phi})[c]_{\phi}$ (iii) Identity: The class $[e]_{\phi}$ is an identity element since for all $a \in G_1$: $[e]_{\phi}[a]_{\phi} = [ea]_{\phi} = [a]_{\phi}$ and $[a]_{\phi}[e]_{\phi} = [ae]_{\phi} = [a]_{\phi}$ (iv) Inverses: For any equivalence class $[a]_{\phi}$, its inverse is $[a^{-1}]_{\phi}$ since $[a^{-1}]_{\phi}[a]_{\phi} = [a^{-1}a]_{\phi} = [e]_{\phi}$ and $[a]_{\phi}[a^{-1}]_{\phi} = [aa^{-1}]_{\phi} = [e]_{\phi}$

Thus, G_1/ϕ is a group under the multiplication of equivalence classes.

Define the natural projection $\pi : G_1 \to G_1/\phi$ by $\pi(a) = [a]_{\phi}$. π is a group homomorphism: (Check it!) For all $a, b \in G_1$,

$$\pi(\mathsf{a}\mathsf{b})=[\mathsf{a}\mathsf{b}]_\phi=[\mathsf{a}]_\phi[\mathsf{b}]_\phi=\pi(\mathsf{a})\pi(\mathsf{b}).$$

Theorem 15 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

Theorem 15 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

There exists a group isomorphism $\overline{\phi}$: $G_1/\phi \rightarrow \phi(G_1)$, where $\overline{\phi}$ is defined by

$$\overline{\phi}([a]_{\phi})=\phi(a), ext{ for all } [a]_{\phi}\in \mathcal{G}_1/\phi.$$

Note

Theorem 15 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

There exists a group isomorphism $\overline{\phi}$: $G_1/\phi \rightarrow \phi(G_1)$, where $\overline{\phi}$ is defined by

$$\overline{\phi}([a]_{\phi})=\phi(a)$$
, for all $[a]_{\phi}\in {\sf G}_1/\phi.$

Note $G_1 \xrightarrow{\pi} G_1/\phi \xrightarrow{\overline{\phi}} \phi(G_1) \xrightarrow{\iota} G_2 : \phi = \iota \overline{\phi} \pi$, ι is the inclusion mapping

Proof.

Theorem 15 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

There exists a group isomorphism $\overline{\phi}$: $G_1/\phi \rightarrow \phi(G_1)$, where $\overline{\phi}$ is defined by

$$\overline{\phi}([a]_{\phi})=\phi(a)$$
, for all $[a]_{\phi}\in {\mathcal G}_1/\phi.$

Note $G_1 \xrightarrow{\pi} G_1/\phi \xrightarrow{\overline{\phi}} \phi(G_1) \xrightarrow{\iota} G_2 : \phi = \iota \overline{\phi} \pi$, ι is the inclusion mapping

Proof.

(i) well-defined:

Theorem 15 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

There exists a group isomorphism $\overline{\phi}$: $G_1/\phi \rightarrow \phi(G_1)$, where $\overline{\phi}$ is defined by

$$\overline{\phi}([a]_{\phi})=\phi(a)$$
, for all $[a]_{\phi}\in G_1/\phi$.

Note $G_1 \xrightarrow{\pi} G_1/\phi \xrightarrow{\overline{\phi}} \phi(G_1) \xrightarrow{\iota} G_2 : \phi = \iota \overline{\phi} \pi$, ι is the inclusion mapping

Proof.

(i) well-defined: If [a]_φ = [b]_φ, then φ(a) = φ(b). So φ([a]_φ) = φ([b]_φ).
(ii) one-to-one:

Yi

Theorem 15 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

There exists a group isomorphism $\overline{\phi}$: $G_1/\phi \rightarrow \phi(G_1)$, where $\overline{\phi}$ is defined by

$$\overline{\phi}([a]_{\phi}) = \phi(a)$$
, for all $[a]_{\phi} \in G_1/\phi$.

Note $G_1 \xrightarrow{\pi} G_1/\phi \xrightarrow{\overline{\phi}} \phi(G_1) \xrightarrow{\iota} G_2 : \phi = \iota \overline{\phi} \pi$, ι is the inclusion mapping

Proof.

(i) well-defined: If [a]_φ = [b]_φ, then φ(a) = φ(b). So φ([a]_φ) = φ([b]_φ).
(ii) one-to-one: If φ([a]_φ) = φ([b]_φ), then φ(a) = φ(b). So [a]_φ = [b]_φ.
(iii) onto:

Theorem 15 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

There exists a group isomorphism $\overline{\phi}$: $G_1/\phi \rightarrow \phi(G_1)$, where $\overline{\phi}$ is defined by

$$\overline{\phi}([a]_{\phi}) = \phi(a)$$
, for all $[a]_{\phi} \in G_1/\phi$.

Note $G_1 \xrightarrow{\pi} G_1/\phi \xrightarrow{\overline{\phi}} \phi(G_1) \xrightarrow{\iota} G_2 : \phi = \iota \overline{\phi} \pi$, ι is the inclusion mapping

Proof.

(i) well-defined: If [a]_φ = [b]_φ, then φ(a) = φ(b). So φ([a]_φ) = φ([b]_φ).
(ii) one-to-one: If φ([a]_φ) = φ([b]_φ), then φ(a) = φ(b). So [a]_φ = [b]_φ.
(iii) onto: im(φ) =

Theorem 15 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

There exists a group isomorphism $\overline{\phi}$: $G_1/\phi \rightarrow \phi(G_1)$, where $\overline{\phi}$ is defined by

$$\overline{\phi}([a]_{\phi}) = \phi(a)$$
, for all $[a]_{\phi} \in G_1/\phi$.

Note $G_1 \xrightarrow{\pi} G_1/\phi \xrightarrow{\overline{\phi}} \phi(G_1) \xrightarrow{\iota} G_2 : \phi = \iota \overline{\phi} \pi$, ι is the inclusion mapping

Proof.

(i) well-defined: If [a]_φ = [b]_φ, then φ(a) = φ(b). So φ([a]_φ) = φ([b]_φ).
(ii) one-to-one: If φ([a]_φ) = φ([b]_φ), then φ(a) = φ(b). So [a]_φ = [b]_φ.
(iii) onto: im(φ) = {φ([a]_φ) | a ∈ G₁} =

Theorem 15 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

There exists a group isomorphism $\overline{\phi}$: $G_1/\phi \rightarrow \phi(G_1)$, where $\overline{\phi}$ is defined by

$$\overline{\phi}([a]_{\phi}) = \phi(a)$$
, for all $[a]_{\phi} \in G_1/\phi$.

Note $G_1 \xrightarrow{\pi} G_1/\phi \xrightarrow{\overline{\phi}} \phi(G_1) \xrightarrow{\iota} G_2 : \phi = \iota \overline{\phi} \pi$, ι is the inclusion mapping

Proof.

(i) well-defined: If [a]_φ = [b]_φ, then φ(a) = φ(b). So φ([a]_φ) = φ([b]_φ).
(ii) one-to-one: If φ([a]_φ) = φ([b]_φ), then φ(a) = φ(b). So [a]_φ = [b]_φ.
(iii) onto: im(φ) = {φ([a]_φ) | a ∈ G₁} = {φ(a) | a ∈ G₁} =

Theorem 15 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

There exists a group isomorphism $\overline{\phi}$: $G_1/\phi \rightarrow \phi(G_1)$, where $\overline{\phi}$ is defined by

$$\overline{\phi}([a]_{\phi}) = \phi(a)$$
, for all $[a]_{\phi} \in G_1/\phi$.

Note $G_1 \xrightarrow{\pi} G_1/\phi \xrightarrow{\overline{\phi}} \phi(G_1) \xrightarrow{\iota} G_2 : \phi = \iota \overline{\phi} \pi$, ι is the inclusion mapping

Proof.

(i) well-defined: If [a]_φ = [b]_φ, then φ(a) = φ(b). So φ([a]_φ) = φ([b]_φ).
(ii) one-to-one: If φ([a]_φ) = φ([b]_φ), then φ(a) = φ(b). So [a]_φ = [b]_φ.
(iii) onto: im(φ) = {φ([a]_φ) | a ∈ G₁} = {φ(a) | a ∈ G₁} = im(φ) =

Theorem 15 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

There exists a group isomorphism $\overline{\phi}$: $G_1/\phi \rightarrow \phi(G_1)$, where $\overline{\phi}$ is defined by

$$\overline{\phi}([a]_{\phi}) = \phi(a)$$
, for all $[a]_{\phi} \in G_1/\phi$.

Note $G_1 \xrightarrow{\pi} G_1/\phi \xrightarrow{\overline{\phi}} \phi(G_1) \xrightarrow{\iota} G_2 : \phi = \iota \overline{\phi} \pi$, ι is the inclusion mapping

Proof.

(i) well-defined: If [a]_φ = [b]_φ, then φ(a) = φ(b). So φ([a]_φ) = φ([b]_φ).
(ii) one-to-one: If φ([a]_φ) = φ([b]_φ), then φ(a) = φ(b). So [a]_φ = [b]_φ.
(iii) onto: im(φ) = {φ([a]_φ) | a ∈ G₁} = {φ(a) | a ∈ G₁} = im(φ) = φ(G₁)
(iv) φ is a group homomorphism:

Theorem 15 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

There exists a group isomorphism $\overline{\phi}$: $G_1/\phi \rightarrow \phi(G_1)$, where $\overline{\phi}$ is defined by

$$\overline{\phi}([a]_{\phi}) = \phi(a)$$
, for all $[a]_{\phi} \in G_1/\phi$.

Note $G_1 \xrightarrow{\pi} G_1/\phi \xrightarrow{\overline{\phi}} \phi(G_1) \xrightarrow{\iota} G_2 : \phi = \iota \overline{\phi} \pi$, ι is the inclusion mapping

Proof.

(i) well-defined: If [a]_φ = [b]_φ, then φ(a) = φ(b). So φ([a]_φ) = φ([b]_φ).
(ii) one-to-one: If φ([a]_φ) = φ([b]_φ), then φ(a) = φ(b). So [a]_φ = [b]_φ.
(iii) onto: im(φ) = {φ([a]_φ) | a ∈ G₁} = {φ(a) | a ∈ G₁} = im(φ) = φ(G₁)
(iv) φ is a group homomorphism: For any [a]_φ, [b]_φ ∈ G₁/φ,

Theorem 15 (Let $\phi : G_1 \rightarrow G_2$ be a homomorphism.)

There exists a group isomorphism $\overline{\phi}$: $G_1/\phi \rightarrow \phi(G_1)$, where $\overline{\phi}$ is defined by

$$\overline{\phi}([a]_{\phi})=\phi(a)$$
, for all $[a]_{\phi}\in G_1/\phi$.

Note $G_1 \xrightarrow{\pi} G_1/\phi \xrightarrow{\overline{\phi}} \phi(G_1) \xrightarrow{\iota} G_2 : \phi = \iota \overline{\phi} \pi$, ι is the inclusion mapping

Proof.

(i) well-defined: If $[a]_{\phi} = [b]_{\phi}$, then $\phi(a) = \phi(b)$. So $\overline{\phi}([a]_{\phi}) = \overline{\phi}([b]_{\phi})$. (ii) one-to-one: If $\overline{\phi}([a]_{\phi}) = \overline{\phi}([b]_{\phi})$, then $\phi(a) = \phi(b)$. So $[a]_{\phi} = [b]_{\phi}$. (iii) onto: $\operatorname{im}(\overline{\phi}) = \{\overline{\phi}([a]_{\phi}) \mid a \in G_1\} = \{\phi(a) \mid a \in G_1\} = \operatorname{im}(\phi) = \phi(G_1)$ (iv) $\overline{\phi}$ is a group homomorphism: For any $[a]_{\phi}, [b]_{\phi} \in G_1/\phi$,

 $\overline{\phi}([a]_{\phi}[b]_{\phi}) = \overline{\phi}([ab]_{\phi}) = \phi(ab) = \phi(a)\phi(b) = \overline{\phi}([a]_{\phi})\overline{\phi}([b]_{\phi}).$

Theorem 16 (Theorem 2 in $\S3.5$)

Every cyclic group G is isomorphic to either Z or Z_n , for some $n \in Z^+$.

Another proof: (Using Theorem 15).

Theorem 16 (Theorem 2 in $\S3.5$)

Every cyclic group G is isomorphic to either Z or Z_n , for some $n \in Z^+$.

Another proof: (Using Theorem 15).

Given $G = \langle a \rangle$, define $\phi : \mathbf{Z} \to G$ by $\phi(m) = a^m$. (

Theorem 16 (Theorem 2 in $\S3.5$)

Every cyclic group G is isomorphic to either Z or Z_n , for some $n \in Z^+$.

Another proof: (Using Theorem 15).

Theorem 16 (Theorem 2 in $\S3.5$)

Every cyclic group G is isomorphic to either Z or Z_n , for some $n \in Z^+$.

Another proof: (Using Theorem 15).

Given $G = \langle a \rangle$, define $\phi : \mathbb{Z} \to G$ by $\phi(m) = a^m$. (Example 5: ϕ is onto) • If $o(a) = \infty$, then ϕ is one-to-one. (Why?)

Theorem 16 (Theorem 2 in $\S3.5$)

Every cyclic group G is isomorphic to either Z or Z_n , for some $n \in Z^+$.

Another proof: (Using Theorem 15).

Given $G = \langle a \rangle$, define $\phi : \mathbb{Z} \to G$ by $\phi(m) = a^m$. (Example 5: ϕ is onto) • If $o(a) = \infty$, then ϕ is one-to-one. (Why?) So $\mathbb{Z} \cong \phi(\mathbb{Z}) = G(Why?)$

Theorem 16 (Theorem 2 in $\S3.5$)

Every cyclic group G is isomorphic to either Z or Z_n , for some $n \in Z^+$.

Another proof: (Using Theorem 15).

Given $G = \langle a \rangle$, define $\phi : \mathbb{Z} \to G$ by $\phi(m) = a^m$. (Example 5: ϕ is onto)

If o(a) = ∞, then φ is one-to-one. (Why?) So Z ≅ φ(Z)= G(Why?) Since φ is one-to-one, the equivalence classes of the factor set Z/φ are just the subsets of Z consisting of single elements, and thus Z itself.

Theorem 16 (Theorem 2 in $\S3.5$)

Every cyclic group G is isomorphic to either Z or Z_n , for some $n \in Z^+$.

Another proof: (Using Theorem 15).

Given $G = \langle a \rangle$, define $\phi : \mathbb{Z} \to G$ by $\phi(m) = a^m$. (Example 5: ϕ is onto)

 If o(a) = ∞, then φ is one-to-one. (Why?) So Z ≅ φ(Z)= G(Why?) Since φ is one-to-one, the equivalence classes of the factor set Z/φ are just the subsets of Z consisting of single elements, and thus Z itself.

• If
$$o(a) = n$$
, then $a^m = a^k \Leftrightarrow m \equiv k \pmod{n}$.

Every cyclic group G is isomorphic to either Z or Z_n , for some $n \in Z^+$.

Another proof: (Using Theorem 15).

- If o(a) = ∞, then φ is one-to-one. (Why?) So Z ≅ φ(Z)= G(Why?) Since φ is one-to-one, the equivalence classes of the factor set Z/φ are just the subsets of Z consisting of single elements, and thus Z itself.
- If o(a) = n, then $a^m = a^k \Leftrightarrow m \equiv k \pmod{n}$. Thus, $\phi(m) = \phi(k)$ if and only if $m \equiv k \pmod{n}$.

Every cyclic group G is isomorphic to either Z or Z_n , for some $n \in Z^+$.

Another proof: (Using Theorem 15).

- If o(a) = ∞, then φ is one-to-one. (Why?) So Z ≅ φ(Z)= G(Why?) Since φ is one-to-one, the equivalence classes of the factor set Z/φ are just the subsets of Z consisting of single elements, and thus Z itself.
- If o(a) = n, then a^m = a^k ⇔ m ≡ k (mod n). Thus, φ(m) = φ(k) if and only if m ≡ k (mod n). This shows that Z/φ is the additive group of congruence classes modulo n.

Every cyclic group G is isomorphic to either Z or Z_n , for some $n \in Z^+$.

Another proof: (Using Theorem 15).

- If o(a) = ∞, then φ is one-to-one. (Why?) So Z ≅ φ(Z)= G(Why?) Since φ is one-to-one, the equivalence classes of the factor set Z/φ are just the subsets of Z consisting of single elements, and thus Z itself.
- If o(a) = n, then a^m = a^k ⇔ m ≡ k (mod n). Thus, φ(m) = φ(k) if and only if m ≡ k (mod n). This shows that Z/φ is the additive group of congruence classes modulo n. Therefore, G ≅ Z_n. (Why?)

Every cyclic group G is isomorphic to either Z or Z_n , for some $n \in Z^+$.

Another proof: (Using Theorem 15).

- If o(a) = ∞, then φ is one-to-one. (Why?) So Z ≅ φ(Z)= G(Why?) Since φ is one-to-one, the equivalence classes of the factor set Z/φ are just the subsets of Z consisting of single elements, and thus Z itself.
- If o(a) = n, then a^m = a^k ⇔ m ≡ k (mod n). Thus, φ(m) = φ(k) if and only if m ≡ k (mod n). This shows that Z/φ is the additive group of congruence classes modulo n. Therefore, G ≅ Z_n. (Why?)
 By Theorem 15, Z/φ ≅ φ(Z) = G & Z/φ = Z

Cayley's theorem: *Every group is isomorphic to a permutation group.*

Cayley's theorem: *Every group is isomorphic to a permutation group.*

Given any group G, define $\phi : G \to \text{Sym}(G)$ by $\phi(a) = \lambda_a$, for any $a \in G$, where $\lambda_a (\in \text{Sym}(G))$ is the function defined by $\lambda_a(x) = ax$ for all $x \in G$.
Cayley's theorem: Every group is isomorphic to a permutation group.

Given any group G, define $\phi : G \to \text{Sym}(G)$ by $\phi(a) = \lambda_a$, for any $a \in G$, where $\lambda_a (\in \text{Sym}(G))$ is the function defined by $\lambda_a(x) = ax$ for all $x \in G$. ϕ is a homomorphism:

Cayley's theorem: Every group is isomorphic to a permutation group.

Given any group G, define $\phi : G \to \text{Sym}(G)$ by $\phi(a) = \lambda_a$, for any $a \in G$, where $\lambda_a (\in \text{Sym}(G))$ is the function defined by $\lambda_a(x) = ax$ for all $x \in G$. ϕ is a homomorphism: For all $a, b \in G$, $\phi(ab) = \lambda_{ab} = \lambda_a \lambda_b = \phi(a)\phi(b)$. one-to-one: **Cayley's theorem:** *Every group is isomorphic to a permutation group.*

Given any group G, define $\phi : G \to \text{Sym}(G)$ by $\phi(a) = \lambda_a$, for any $a \in G$, where $\lambda_a (\in \text{Sym}(G))$ is the function defined by $\lambda_a(x) = ax$ for all $x \in G$. ϕ is a homomorphism: For all $a, b \in G$, $\phi(ab) = \lambda_{ab} = \lambda_a \lambda_b = \phi(a)\phi(b)$. one-to-one: λ_a is the identity permutation only if a = e. **Cayley's theorem:** Every group is isomorphic to a permutation group. Given any group G, define $\phi : G \to \text{Sym}(G)$ by $\phi(a) = \lambda_a$, for any $a \in G$,

where $\lambda_a (\in \text{Sym}(G))$ is the function defined by $\lambda_a(x) = ax$ for all $x \in G$.

 ϕ is a homomorphism: For all $a, b \in G$, $\phi(ab) = \lambda_{ab} = \lambda_a \lambda_b = \phi(a)\phi(b)$.

one-to-one: λ_a is the identity permutation only if a = e. So ker $(\phi) = \{e\}$.

Since ϕ is one-to-one, the equivalence classes of the factor set G/ϕ are

Cayley's theorem: Every group is isomorphic to a permutation group. Given any group G, define $\phi : G \to \text{Sym}(G)$ by $\phi(a) = \lambda_a$, for any $a \in G$, where $\lambda_a (\in \text{Sym}(G))$ is the function defined by $\lambda_a(x) = ax$ for all $x \in G$. ϕ is a homomorphism: For all $a, b \in G$, $\phi(ab) = \lambda_{ab} = \lambda_a \lambda_b = \phi(a)\phi(b)$. one-to-one: λ_a is the identity permutation only if a = e. So ker $(\phi) = \{e\}$. Since ϕ is one-to-one, the equivalence classes of the factor set G/ϕ are just the subsets of G consisting of single elements, and thus **Cayley's theorem:** Every group is isomorphic to a permutation group. Given any group G, define $\phi : G \to \text{Sym}(G)$ by $\phi(a) = \lambda_a$, for any $a \in G$, where $\lambda_a (\in \text{Sym}(G))$ is the function defined by $\lambda_a(x) = ax$ for all $x \in G$. ϕ is a homomorphism: For all $a, b \in G$, $\phi(ab) = \lambda_{ab} = \lambda_a \lambda_b = \phi(a)\phi(b)$. one-to-one: λ_a is the identity permutation only if a = e. So ker $(\phi) = \{e\}$. Since ϕ is one-to-one, the equivalence classes of the factor set G/ϕ are just the subsets of G consisting of single elements, and thus G itself. Thus, **Cayley's theorem:** Every group is isomorphic to a permutation group. Given any group G, define $\phi : G \to \text{Sym}(G)$ by $\phi(a) = \lambda_a$, for any $a \in G$, where $\lambda_a \ (\in \text{Sym}(G))$ is the function defined by $\lambda_a(x) = ax$ for all $x \in G$. ϕ is a homomorphism: For all $a, b \in G$, $\phi(ab) = \lambda_{ab} = \lambda_a \lambda_b = \phi(a)\phi(b)$. one-to-one: λ_a is the identity permutation only if a = e. So ker $(\phi) = \{e\}$. Since ϕ is one-to-one, the equivalence classes of the factor set G/ϕ are just the subsets of G consisting of single elements, and thus G itself. Thus,

$$G \cong \phi(G)$$
. (Why?) [

Cayley's theorem: Every group is isomorphic to a permutation group. Given any group G, define $\phi : G \to \text{Sym}(G)$ by $\phi(a) = \lambda_a$, for any $a \in G$, where $\lambda_a \ (\in \text{Sym}(G))$ is the function defined by $\lambda_a(x) = ax$ for all $x \in G$. ϕ is a homomorphism: For all $a, b \in G$, $\phi(ab) = \lambda_{ab} = \lambda_a \lambda_b = \phi(a)\phi(b)$. one-to-one: λ_a is the identity permutation only if a = e. So ker $(\phi) = \{e\}$. Since ϕ is one-to-one, the equivalence classes of the factor set G/ϕ are just the subsets of G consisting of single elements, and thus G itself. Thus,

 $G \cong \phi(G)$. (Why?) [Theorem 15!]

And

Cayley's theorem: Every group is isomorphic to a permutation group. Given any group G, define $\phi : G \to \text{Sym}(G)$ by $\phi(a) = \lambda_a$, for any $a \in G$, where $\lambda_a \ (\in \text{Sym}(G))$ is the function defined by $\lambda_a(x) = ax$ for all $x \in G$. ϕ is a homomorphism: For all $a, b \in G$, $\phi(ab) = \lambda_{ab} = \lambda_a \lambda_b = \phi(a)\phi(b)$. one-to-one: λ_a is the identity permutation only if a = e. So ker $(\phi) = \{e\}$. Since ϕ is one-to-one, the equivalence classes of the factor set G/ϕ are just the subsets of G consisting of single elements, and thus G itself. Thus,

 $G \cong \phi(G)$. (Why?) [Theorem 15!]

Homomorphisms

And $\phi(G)$ is a permutation group.(Why?) [

Cayley's theorem: Every group is isomorphic to a permutation group. Given any group G, define $\phi : G \to \text{Sym}(G)$ by $\phi(a) = \lambda_a$, for any $a \in G$, where $\lambda_a \ (\in \text{Sym}(G))$ is the function defined by $\lambda_a(x) = ax$ for all $x \in G$. ϕ is a homomorphism: For all $a, b \in G$, $\phi(ab) = \lambda_{ab} = \lambda_a \lambda_b = \phi(a)\phi(b)$. one-to-one: λ_a is the identity permutation only if a = e. So ker $(\phi) = \{e\}$. Since ϕ is one-to-one, the equivalence classes of the factor set G/ϕ are just the subsets of G consisting of single elements, and thus G itself. Thus,

 $G \cong \phi(G)$. (Why?) [Theorem 15!]

And $\phi(G)$ is a permutation group.(Why?) $[\phi(G)$ is a subgroup of Sym(G)]

Proposition 9 (Let $\phi: G_1 \to G_2$ be a homomorphism, and $a, b \in G_1$.)

Proposition 9 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism, and $a, b \in G_1$.)

The following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $ab^{-1} \in \ker(\phi);$
- (3) a = kb for some $k \in ker(\phi)$;
- (4) $b^{-1}a \in \ker(\phi);$
- (5) a = bk for some $k \in ker(\phi)$;

 $(1) \Rightarrow (2)$

Proposition 9 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism, and $a, b \in G_1$.)

The following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $ab^{-1} \in \ker(\phi);$
- (3) a = kb for some $k \in ker(\phi)$;
- (4) $b^{-1}a \in \ker(\phi);$

(5) a = bk for some
$$k \in {
m ker}(\phi)$$
;

(1) \Rightarrow (2) $\phi(a) = \phi(b) \Rightarrow$

Proposition 9 (Let $\phi : G_1 \to G_2$ be a homomorphism, and $a, b \in G_1$.)

The following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $ab^{-1} \in \ker(\phi);$
- (3) a = kb for some $k \in ker(\phi)$;
- (4) $b^{-1}a \in \ker(\phi);$

$$(5)$$
 a = bk for some $k \in ext{ker}(\phi);$

$$(1) \Rightarrow (2) \ \phi(a) = \phi(b) \Rightarrow \phi(a)(\phi(b))^{-1} = \phi(ab^{-1}) = e_2 \Rightarrow$$

Proposition 9 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism, and $a, b \in G_1$.)

The following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $ab^{-1} \in \ker(\phi);$
- (3) a = kb for some $k \in ker(\phi)$;
- (4) $b^{-1}a \in \ker(\phi);$

$$(5)$$
 a $=$ bk for some $k\in {
m ker}(\phi);$

 $(1) \Rightarrow (2) \ \phi(a) = \phi(b) \Rightarrow \phi(a)(\phi(b))^{-1} = \phi(ab^{-1}) = e_2 \Rightarrow ab^{-1} \in \ker(\phi)$ $(2) \Rightarrow (3)$

Proposition 9 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism, and $a, b \in G_1$.)

The following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $ab^{-1} \in \ker(\phi);$
- (3) a = kb for some $k \in ker(\phi)$;
- (4) $b^{-1}a \in \ker(\phi);$

(5)
$$a=bk$$
 for some $k\in ext{ker}(\phi);$

(1) \Rightarrow (2) $\phi(a) = \phi(b) \Rightarrow \phi(a)(\phi(b))^{-1} = \phi(ab^{-1}) = e_2 \Rightarrow ab^{-1} \in \ker(\phi)$ (2) \Rightarrow (3) If $ab^{-1} = k \in \ker(\phi)$, then a = kb. (3) \Rightarrow (1)

Proposition 9 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism, and $a, b \in G_1$.)

The following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $ab^{-1} \in \ker(\phi);$
- (3) a = kb for some $k \in ker(\phi)$;
- (4) $b^{-1}a \in \ker(\phi);$

(5)
$$a=bk$$
 for some $k\in ext{ker}(\phi);$

(1) \Rightarrow (2) $\phi(a) = \phi(b) \Rightarrow \phi(a)(\phi(b))^{-1} = \phi(ab^{-1}) = e_2 \Rightarrow ab^{-1} \in \ker(\phi)$ (2) \Rightarrow (3) If $ab^{-1} = k \in \ker(\phi)$, then a = kb. (3) \Rightarrow (1) If a = kb, then $\phi(a) = \phi(kb) = \phi(k)\phi(b) = e_2\phi(b) = \phi(b)$.

Proposition 9 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism, and $a, b \in G_1$.)

The following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $ab^{-1} \in \ker(\phi);$
- (3) a = kb for some $k \in ker(\phi)$;
- (4) $b^{-1}a \in \ker(\phi);$

$$(5)$$
 a = bk for some $k \in ext{ker}(\phi);$

(1) \Rightarrow (2) $\phi(a) = \phi(b) \Rightarrow \phi(a)(\phi(b))^{-1} = \phi(ab^{-1}) = e_2 \Rightarrow ab^{-1} \in \ker(\phi)$ (2) \Rightarrow (3) If $ab^{-1} = k \in \ker(\phi)$, then a = kb. (3) \Rightarrow (1) If a = kb, then $\phi(a) = \phi(kb) = \phi(k)\phi(b) = e_2\phi(b) = \phi(b)$. Similarly it can be shown that (1) implies (4) implies (5) implies (1).

Lemma 17 (Lemma 19 in §3.2: Let H be a subgroup of the group G.)

Proposition 9 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism, and $a, b \in G_1$.)

The following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $ab^{-1} \in \ker(\phi);$
- (3) a = kb for some $k \in ker(\phi)$;
- (4) $b^{-1}a \in \ker(\phi);$
- (5) a = bk for some $k \in ker(\phi)$;

(1) \Rightarrow (2) $\phi(a) = \phi(b) \Rightarrow \phi(a)(\phi(b))^{-1} = \phi(ab^{-1}) = e_2 \Rightarrow ab^{-1} \in \ker(\phi)$ (2) \Rightarrow (3) If $ab^{-1} = k \in \ker(\phi)$, then a = kb. (3) \Rightarrow (1) If a = kb, then $\phi(a) = \phi(kb) = \phi(k)\phi(b) = e_2\phi(b) = \phi(b)$. Similarly it can be shown that (1) implies (4) implies (5) implies (1). \Box Lemma 17 (Lemma 19 in §3.2: Let *H* be a subgroup of the group *G*.) For $a, b \in G$ define $a \sim b$ if $ab^{-1} \in H$. Then \sim is an equivalence relation.

Proposition 9 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism, and $a, b \in G_1$.)

The following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $ab^{-1} \in \ker(\phi);$
- (3) a = kb for some $k \in ker(\phi)$;
- (4) $b^{-1}a \in \ker(\phi);$

(5)
$$a = bk$$
 for some $k \in ext{ker}(\phi);$

(1) \Rightarrow (2) $\phi(a) = \phi(b) \Rightarrow \phi(a)(\phi(b))^{-1} = \phi(ab^{-1}) = e_2 \Rightarrow ab^{-1} \in \ker(\phi)$ (2) \Rightarrow (3) If $ab^{-1} = k \in \ker(\phi)$, then a = kb. (3) \Rightarrow (1) If a = kb, then $\phi(a) = \phi(kb) = \phi(k)\phi(b) = e_2\phi(b) = \phi(b)$. Similarly it can be shown that (1) implies (4) implies (5) implies (1). \Box Lemma 17 (Lemma 19 in §3.2: Let *H* be a subgroup of the group *G*.) For $a, b \in G$ define $a \sim b$ if $ab^{-1} \in H$. Then \sim is an equivalence relation.

By Proposition 9, we let $H = \text{ker}(\phi)$.

Yi

Proposition 9 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism, and $a, b \in G_1$.)

The following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $ab^{-1} \in \ker(\phi);$
- (3) a = kb for some $k \in ker(\phi)$;
- (4) $b^{-1}a \in \ker(\phi);$
- (5) a = bk for some $k \in ker(\phi)$;

(1) \Rightarrow (2) $\phi(a) = \phi(b) \Rightarrow \phi(a)(\phi(b))^{-1} = \phi(ab^{-1}) = e_2 \Rightarrow ab^{-1} \in \ker(\phi)$ (2) \Rightarrow (3) If $ab^{-1} = k \in \ker(\phi)$, then a = kb. (3) \Rightarrow (1) If a = kb, then $\phi(a) = \phi(kb) = \phi(k)\phi(b) = e_2\phi(b) = \phi(b)$. Similarly it can be shown that (1) implies (4) implies (5) implies (1). \Box Lemma 17 (Lemma 19 in §3.2: Let *H* be a subgroup of the group *G*.) For $a, b \in G$ define $a \sim b$ if $ab^{-1} \in H$. Then \sim is an equivalence relation. By Proposition 9, we let $H = \ker(\phi)$. Then, we write $G / \ker(\phi)$ for G / ϕ .

Remark 1 (Restate Theorem 15)

Remark 1 (Restate Theorem 15)

Let $\phi : G_1 \to G_2$ be a homomorphism. Then $G_1/\ker(\phi) \cong \phi(G_1) = \operatorname{im}(\phi)$.

Remark 2 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism of abelian groups.)

Remark 1 (Restate Theorem 15)

Let $\phi : G_1 \to G_2$ be a homomorphism. Then $G_1 / \ker(\phi) \cong \phi(G_1) = \operatorname{im}(\phi)$.

Remark 2 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism of abelian groups.)

With operations denoted additively, then **Prop. 9** has the following form: For $a, b \in G_1$, the following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $a b \in \ker(\phi);$
- (3) a = b + k for some $k \in \text{ker}(\phi)$.

Example 18 (A special case of Proposition 4: m = 1)

Remark 1 (Restate Theorem 15)

Let $\phi : G_1 \to G_2$ be a homomorphism. Then $G_1/\ker(\phi) \cong \phi(G_1) = \operatorname{im}(\phi)$.

Remark 2 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism of abelian groups.)

With operations denoted additively, then **Prop. 9** has the following form: For $a, b \in G_1$, the following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $a b \in \ker(\phi);$
- (3) a = b + k for some $k \in \text{ker}(\phi)$.

Example 18 (A special case of Proposition 4: m = 1)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_n$ by $\phi(x) = [x]_n$. Then ϕ is a homomorphism.

Remark 1 (Restate Theorem 15)

Let $\phi : G_1 \to G_2$ be a homomorphism. Then $G_1/\ker(\phi) \cong \phi(G_1) = \operatorname{im}(\phi)$.

Remark 2 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism of abelian groups.)

With operations denoted additively, then **Prop. 9** has the following form: For $a, b \in G_1$, the following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $a b \in \ker(\phi);$
- (3) a = b + k for some $k \in \text{ker}(\phi)$.

Example 18 (A special case of Proposition 4: m = 1)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_n$ by $\phi(x) = [x]_n$. Then ϕ is a homomorphism. What is the ker $(\phi) =$? **A**:

Remark 1 (Restate Theorem 15)

Let $\phi : G_1 \to G_2$ be a homomorphism. Then $G_1/\ker(\phi) \cong \phi(G_1) = \operatorname{im}(\phi)$.

Remark 2 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism of abelian groups.)

With operations denoted additively, then **Prop. 9** has the following form: For $a, b \in G_1$, the following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $a b \in \ker(\phi);$
- (3) a = b + k for some $k \in \text{ker}(\phi)$.

Example 18 (A special case of Proposition 4: m = 1)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_n$ by $\phi(x) = [x]_n$. Then ϕ is a homomorphism. What is the ker $(\phi) =$? A: ker $(\phi) = n\mathbf{Z} = \langle n \rangle$. So

Remark 1 (Restate Theorem 15)

Let $\phi : G_1 \to G_2$ be a homomorphism. Then $G_1/\ker(\phi) \cong \phi(G_1) = \operatorname{im}(\phi)$.

Remark 2 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism of abelian groups.)

With operations denoted additively, then **Prop. 9** has the following form: For $a, b \in G_1$, the following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $a b \in \ker(\phi);$
- (3) a = b + k for some $k \in \text{ker}(\phi)$.

Example 18 (A special case of Proposition 4: m = 1)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_n$ by $\phi(x) = [x]_n$. Then ϕ is a homomorphism. What is the ker $(\phi) =$? A: ker $(\phi) = n\mathbf{Z} = \langle n \rangle$. So $\mathbf{Z}/n\mathbf{Z} \cong \mathbf{Z}_n$.

Remark 1 (Restate Theorem 15)

Let $\phi : G_1 \to G_2$ be a homomorphism. Then $G_1/\ker(\phi) \cong \phi(G_1) = \operatorname{im}(\phi)$.

Remark 2 (Let $\phi: G_1 \rightarrow G_2$ be a homomorphism of abelian groups.)

With operations denoted additively, then **Prop. 9** has the following form: For $a, b \in G_1$, the following conditions are equivalent:

- (1) $\phi(a) = \phi(b);$
- (2) $a b \in \ker(\phi);$
- (3) a = b + k for some $k \in \text{ker}(\phi)$.

Example 18 (A special case of Proposition 4: m = 1)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_n$ by $\phi(x) = [x]_n$. Then ϕ is a homomorphism. What is the ker $(\phi) =$? A: ker $(\phi) = n\mathbf{Z} = \langle n \rangle$. So $\mathbf{Z}/n\mathbf{Z} \cong \mathbf{Z}_n$.

$$\phi(x) = \phi(y) \Leftrightarrow [x]_n = [y]_n \Leftrightarrow x \equiv y \pmod{n} \Leftrightarrow x - y = mn \text{ for } m \in \mathsf{Z}$$