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Review

A group isomorphism ¢ : (G, *) = (Ga,-)
e Find ¢ & Verify ¢
o ¢(a") =(¢(a))" forallaec Gy andallneZ: n=0vs. n=—1
e o(a) = n= o(¢(a)) = n; abelian; cyclic
Lagrange's Theorem: If |G| = n < oo and H C G, then |H]||n.
o Let a€ G. Then (a) C G and |(a)| = o(a)||G]| in addition if G is finite.
e Any group of prime order is cyclic (and so abelian).

o Cayley's Theorem: Every group is isomorphic to a permutation group.

Cyclic group Cy: Infinite: & Z vs. Finite: = Z,, --» multiplicative G
Subgroups of Z vs. Subgroups of Z,~~ subgroup diagram

Dihedral group Dy: Subgroups of D3, Dy

Alternating group A,: Subgroups of Az, Ay

Z): not always cyclic. |Z)| = p(n) = # of generators of Z,

Product of two subgroups: not always a subgroup.

Direct product of 2 groups ~» n groups: Z, = prq X o Lpam~ @(n)
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Definition 1

Let (Gi,*) and (Gg, ) be two groups. A function ¢ : G — G, is a group
homomorphism if ¢(a* b) = ¢(a) - ¢(b) for all a, b € Gy.
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Every isomorphism is a homomorphism, but conversely not true. (Why?)

Example 2 (Determinant of an invertible matrix)
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Definition 1

Let (Gi,*) and (Gg, ) be two groups. A function ¢ : G — G, is a group
homomorphism if ¢(a* b) = ¢(a) - ¢(b) for all a, b € Gy.

Every isomorphism is a homomorphism, but conversely not true. (Why?)

Example 2 (Determinant of an invertible matrix)

Let G = GL,(R) and G, = R*. Define ¢ : Gi — Gy by ¢(A) = det(A).
¢ is a group homomorphism. (Check it!) [det(AB) = det(A)det(B) v]
¢ is not an isomorphism. More precisely, it is not one to one. (Why?)
It is possible to have different matrices that have the same determinant.
Let n=2. For example, A= |, and B = —I, both have determinant 1.
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.
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Example 3 (Parity of an integer)
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Example 3 (Parity of an integer)
Define ¢ : Z — Z5 by ¢(n) = [n]a.
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Example 3 (Parity of an integer)
Define ¢ : Z — Z5 by ¢(n) = [n]2. ¢ is a homomorphism. (Check it!)

é(n+ m) =[n+ mla = [n]2 + [m]2 = ¢(n) + ¢(m) for all n,m € Z.
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Define ¢ : Z — Z5 by ¢(n) = [n]2. ¢ is a homomorphism. (Check it!)

é(n+ m) =[n+ mla = [n]2 + [m]2 = ¢(n) + ¢(m) for all n,m € Z.
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Example 6 (Linear functions on Z,)
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Example 6 (Linear functions on Z,)
For a fixed m € Z, define ¢ : Z,, — Z,, by ¢([x]) = [mx], for all [x] € Z,,.
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Example 6 (Linear functions on Z,)

For a fixed m € Z, define ¢ : Z,, — Z,, by ¢([x]) = [mx], for all [x] € Z,,.
¢ is well-defined:
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For a fixed m € Z, define ¢ : Z,, — Z,, by ¢([x]) = [mx], for all [x] € Z,,.
¢ is well-defined: If x =y (mod n), then mx = my (mod n).
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Is ¢ onto? A: ¢ is onto < G = (a) (every element of G is a power of a).
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Example 5 (Exponential functions for groups)

Let G be a group, and let a € G. Define ¢ : Z — G by ¢(n) = a", for all n € Z.
¢ is a homomorphism. (Check it!) ¢(n+ m) = a"*™ = a"a™ = ¢(n) - p(m)
Is ¢ onto? A: ¢ is onto < G = (a) (every element of G is a power of a).
Is ¢ one-to-one? A: ¢ is one-to-one < o(a) = oo (Why?) (this ensures
that no two powers with different exponents can be equal to each other).

v

Example 6 (Linear functions on Z,)

For a fixed m € Z, define ¢ : Z,, — Z,, by ¢([x]) = [mx], for all [x] € Z,,.
¢ is well-defined: If x =y (mod n), then mx = my (mod n).
¢ is a homomorphism: (Check it!)

O([X1+ 1) = ¢([x + y1) = [m(x + y)] = [mx] + [my] = &(x) + &(y)
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Let G be a group, and let a € G. Define ¢ : Z — G by ¢(n) = a", for all n € Z.
¢ is a homomorphism. (Check it!) ¢(n+ m) = a"*™ = a"a™ = ¢(n) - p(m)
Is ¢ onto? A: ¢ is onto < G = (a) (every element of G is a power of a).
Is ¢ one-to-one? A: ¢ is one-to-one < o(a) = oo (Why?) (this ensures
that no two powers with different exponents can be equal to each other).

v

Example 6 (Linear functions on Z,)

For a fixed m € Z, define ¢ : Z,, — Z,, by ¢([x]) = [mx], for all [x] € Z,,.
¢ is well-defined: If x =y (mod n), then mx = my (mod n).
¢ is a homomorphism: (Check it!)

O([X1+ 1) = ¢([x + y1) = [m(x + y)] = [mx] + [my] = &(x) + &(y)

Is ¢ one-to-one or onto? A:
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Example 5 (Exponential functions for groups)

Let G be a group, and let a € G. Define ¢ : Z — G by ¢(n) = a", for all n € Z.
¢ is a homomorphism. (Check it!) ¢(n+ m) = a"*™ = a"a™ = ¢(n) - p(m)
Is ¢ onto? A: ¢ is onto < G = (a) (every element of G is a power of a).
Is ¢ one-to-one? A: ¢ is one-to-one < o(a) = oo (Why?) (this ensures
that no two powers with different exponents can be equal to each other).

v

Example 6 (Linear functions on Z,)

For a fixed m € Z, define ¢ : Z,, — Z,, by ¢([x]) = [mx], for all [x] € Z,,.
¢ is well-defined: If x =y (mod n), then mx = my (mod n).
¢ is a homomorphism: (Check it!)

O([X1+ 1) = ¢([x + y1) = [m(x + y)] = [mx] + [my] = &(x) + &(y)

Is ¢ one-to-one or onto? A: ¢ is one-to-one and onto < d = (m, n) = 1.
Thm 10 in Chapter. 1:

v

Yi Homomorphisms June 10-11, 2020 5/23



More Examples, I

Example 5 (Exponential functions for groups)

Let G be a group, and let a € G. Define ¢ : Z — G by ¢(n) = a", for all n € Z.
¢ is a homomorphism. (Check it!) ¢(n+ m) = a"*™ = a"a™ = ¢(n) - p(m)
Is ¢ onto? A: ¢ is onto < G = (a) (every element of G is a power of a).
Is ¢ one-to-one? A: ¢ is one-to-one < o(a) = oo (Why?) (this ensures
that no two powers with different exponents can be equal to each other).

v

Example 6 (Linear functions on Z,)

For a fixed m € Z, define ¢ : Z,, — Z,, by ¢([x]) = [mx], for all [x] € Z,,.
¢ is well-defined: If x =y (mod n), then mx = my (mod n).
¢ is a homomorphism: (Check it!)

O([X1+ 1) = ¢([x + y1) = [m(x + y)] = [mx] + [my] = &(x) + &(y)

Is ¢ one-to-one or onto? A: ¢ is one-to-one and onto < d = (m, n) = 1.
Thm 10 in Chapter. 1: mx =y (mod n) has a solution < d = (m, n)|y.
Moreover,
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Example 5 (Exponential functions for groups)

Let G be a group, and let a € G. Define ¢ : Z — G by ¢(n) = a", for all n € Z.
¢ is a homomorphism. (Check it!) ¢(n+ m) = a"*™ = a"a™ = ¢(n) - p(m)
Is ¢ onto? A: ¢ is onto < G = (a) (every element of G is a power of a).
Is ¢ one-to-one? A: ¢ is one-to-one < o(a) = oo (Why?) (this ensures
that no two powers with different exponents can be equal to each other).

v

Example 6 (Linear functions on Z,)

For a fixed m € Z, define ¢ : Z,, — Z,, by ¢([x]) = [mx], for all [x] € Z,,.
¢ is well-defined: If x =y (mod n), then mx = my (mod n).
¢ is a homomorphism: (Check it!)

O([X1+ 1) = ¢([x + y1) = [m(x + y)] = [mx] + [my] = &(x) + &(y)

Is ¢ one-to-one or onto? A: ¢ is one-to-one and onto < d = (m, n) = 1.
Thm 10 in Chapter. 1: mx =y (mod n) has a solution < d = (m, n)|y.
Moreover, if d|y, there are d distinct solutions modulo n.
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Properties of homomorphisms

If ¢ : Gi — Gy is a group homomorphism, then

(a) ¢(e1) = e;

(b) ¢(a=t) = (¢(a))~* forall a € Gi;
(c) ¢(a") = (¢(a))" for all a € Gy and all n € Z;
(d)

d) ifo(a) = n in Gy, then o(¢(a)) in Gy is a divisor of n.

Proof.
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Properties of homomorphisms

If ¢ : Gi — Gy is a group homomorphism, then

(a) ¢(e1) = e;

(b) ¢(a=t) = (¢(a))~* forall a € Gi;
(c) ¢(a") = (¢(a))" for all a € Gy and all n € Z;
(d)

d) ifo(a) = n in Gy, then o(¢(a)) in Gy is a divisor of n.

Proof.

Proofs of Parts (a), (b), (c) are the same as in the case of an isomorphism.
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Properties of homomorphisms

If ¢ : Gi — Gy is a group homomorphism, then

(a) ¢(e1) = e;

(b) ¢(a=t) = (¢(a))~* forall a € Gi;
(c) ¢(a") = (¢(a))" for all a € Gy and all n € Z;
(d)

d) ifo(a) = n in Gy, then o(¢(a)) in Gy is a divisor of n.

Proof.

Proofs of Parts (a), (b), (c) are the same as in the case of an isomorphism.

(a) #(er)p(er) = ¢(erer) = ¢(e1) = ¢(e1) = e2. (Why?)
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Properties of homomorphisms

If ¢ : Gi — Gy is a group homomorphism, then

(a) ¢(e1) = e;

(b) ¢(a=t) = (¢(a))~* forall a € Gi;
(c) ¢(a") = (¢(a))" for all a € Gy and all n € Z;
(d)

d) ifo(a) = n in Gy, then o(¢(a)) in Gy is a divisor of n.

Proof.
Proofs of Parts (a), (b), (c) are the same as in the case of an isomorphism.
(a) d(er)d(e1) = d(erer) = ¢(e1) = ¢(e1) = e2. (Why?)

(b) d(a)d(a~?) = d(aa™") = p(e1) = &2 = ¢(a~") = (¢(a))~*. (Why?)
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Properties of homomorphisms

If ¢ : Gi — Gy is a group homomorphism, then

(a) ¢(e1) = e;

(b) ¢(a=t) = (¢(a))~* forall a € Gi;
(c) ¢(a") = (¢(a))" for all a € Gy and all n € Z;
(d)

d) ifo(a) = n in Gy, then o(¢(a)) in Gy is a divisor of n.

Proof.
Proofs of Parts (a), (b), (c) are the same as in the case of an isomorphism.
(a) d(er)d(e1) = d(erer) = ¢(e1) = ¢(e1) = e2. (Why?)

(b) d(a)d(a~?) = d(aa™") = p(e1) = &2 = ¢(a~") = (¢(a))~*. (Why?)

(c) This can be proved using a simple induction argument. (Check it!)
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Properties of homomorphisms

Proposition 1

If ¢ : Gi — Gy is a group homomorphism, then
(a) ¢(e1) = e

(b) ¢(a=t) = (¢(a))~* forall a € Gi;

(c) ¢(a") = (¢(a))" for all a € Gy and all n € Z;
(d)

d) ifo(a) = n in Gy, then o(¢(a)) in Gy is a divisor of n.

| A\

Proof

Proofs of Parts (a), (b), (c) are the same as in the case of an isomorphism.
(a) d(er)d(e1) = d(erer) = ¢(e1) = ¢(e1) = e2. (Why?)

(b) ¢(a)p(a~t) = ¢(aa” 1)—¢(el)—ez=>¢( ) =(¢(2)7t. (Why?)
(c) This can be proved using a simple induction argument. (Check it!)
(d) (¢(a))" = ¢(a") = ¢(e1) = e2. Thus, o(¢(a))|n. (Why?)
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Example 7 (Homomorphisms defined on cyclic groups)

Yi Homomorphisms June 10-11, 2020 7/23



Examples

Example 7 (Homomorphisms defined on cyclic groups)

Let C = (a) be a cyclic group. Define a homomorphism ¢ : C — G by
¢(a) = g. Then ¢(a™) = g™. (Why?)
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Example 7 (Homomorphisms defined on cyclic groups)

Let C = (a) be a cyclic group. Define a homomorphism ¢ : C — G by
¢(a) = g. Then ¢(a™) = g™. (Why?)

Since every element of C is of the form a™ for some m € Z, (Why?)
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Example 7 (Homomorphisms defined on cyclic groups)

Let C = (a) be a cyclic group. Define a homomorphism ¢ : C — G by
¢(a) = g. Then ¢(a™) = g™. (Why?)

Since every element of C is of the form a™ for some m € Z, (Why?)
this implies that ¢ is completely determined by its value on a. (Why?)

Note:
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Let C = (a) be a cyclic group. Define a homomorphism ¢ : C — G by
¢(a) = g. Then ¢(a™) = g™. (Why?)

Since every element of C is of the form a” for some m € Z, (Why?)
this implies that ¢ is completely determined by its value on a. (Why?)
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Example 7 (Homomorphisms defined on cyclic groups)

Let C = (a) be a cyclic group. Define a homomorphism ¢ : C — G by
¢(a) = g. Then ¢(a™) = g™. (Why?)

Since every element of C is of the form a™ for some m € Z, (Why?)
this implies that ¢ is completely determined by its value on a. (Why?)
Note: If o(a) = n < oo, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms ¢ : Z, — Z,)
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Example 7 (Homomorphisms defined on cyclic groups)

Let C = (a) be a cyclic group. Define a homomorphism ¢ : C — G by
¢(a) = g. Then ¢(a™) = g™. (Why?)

Since every element of C is of the form a™ for some m € Z, (Why?)
this implies that ¢ is completely determined by its value on a. (Why?)
Note: If o(a) = n < oo, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms ¢ : Z, — Z,)
Any such homomorphism ¢ is completely determined by ¢([1],). (Why?)
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Example 7 (Homomorphisms defined on cyclic groups)

Let C = (a) be a cyclic group. Define a homomorphism ¢ : C — G by
¢(a) = g. Then ¢(a™) = g™. (Why?)

Since every element of C is of the form a™ for some m € Z, (Why?)
this implies that ¢ is completely determined by its value on a. (Why?)
Note: If o(a) = n < oo, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms ¢ : Z, — Z,)

Any such homomorphism ¢ is completely determined by ¢([1],). (Why?)
Say, ¢([1]n) = [m]k with o([m])[n. (Why?)
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Example 7 (Homomorphisms defined on cyclic groups)

Let C = (a) be a cyclic group. Define a homomorphism ¢ : C — G by
¢(a) = g. Then ¢(a™) = g™. (Why?)

Since every element of C is of the form a™ for some m € Z, (Why?)
this implies that ¢ is completely determined by its value on a. (Why?)
Note: If o(a) = n < oo, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms ¢ : Z, — Z,)

Any such homomorphism ¢ is completely determined by ¢([1],). (Why?)
Say, ¢([1]n) = [mlx with o([m]i)|n. (Why?) So n - [m]x = [0]. (Why?)
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Example 7 (Homomorphisms defined on cyclic groups)

Let C = (a) be a cyclic group. Define a homomorphism ¢ : C — G by
¢(a) = g. Then ¢(a™) = g™. (Why?)

Since every element of C is of the form a™ for some m € Z, (Why?)
this implies that ¢ is completely determined by its value on a. (Why?)
Note: If o(a) = n < oo, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms ¢ : Z, — Z,)
Any such homomorphism ¢ is completely determined by ¢([1],). (Why?)
Say, ¢([1]n) = [m]k with o([m]k)|n. (Why?) So n-[m]x = [0]x. (Why?)
It follows that k|nm. (Why?) |
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Example 7 (Homomorphisms defined on cyclic groups)

Let C = (a) be a cyclic group. Define a homomorphism ¢ : C — G by
¢(a) = g. Then ¢(a™) = g™. (Why?)

Since every element of C is of the form a™ for some m € Z, (Why?)
this implies that ¢ is completely determined by its value on a. (Why?)
Note: If o(a) = n < oo, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms ¢ : Z, — Z,)
Any such homomorphism ¢ is completely determined by ¢([1],). (Why?)
Say, ¢([1]n) = [m]k with o([m]k)|n. (Why?) So n-[m]x = [0]x. (Why?)
It follows that k|nm. (Why?) [n - [m]x = [nm]x = [0]«]

v

Yi Homomorphisms June 10-11, 2020 7/23




Example 7 (Homomorphisms defined on cyclic groups)

Let C = (a) be a cyclic group. Define a homomorphism ¢ : C — G by
¢(a) = g. Then ¢(a™) = g™. (Why?)

Since every element of C is of the form a™ for some m € Z, (Why?)
this implies that ¢ is completely determined by its value on a. (Why?)
Note: If o(a) = n < oo, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms ¢ : Z, — Z,)

Any such homomorphism ¢ is completely determined by ¢([1],). (Why?)
Say, 6([L1n) = [mli with o([m]i)|n. (Why?) So n- [l = [0]x. (Why?)
It follows that k|nm. (Why?) [n - [m]x = [nm]x = [0]«]

Thus, ¢([x]n) = [mx]k, for all [x], € Z,, defines a homomorphism if and
only if k|mn.

Furthermore,

y
Yi Homomorphisms June 10-11, 2020 7/23




Example 7 (Homomorphisms defined on cyclic groups)

Let C = (a) be a cyclic group. Define a homomorphism ¢ : C — G by
¢(a) = g. Then ¢(a™) = g™. (Why?)

Since every element of C is of the form a™ for some m € Z, (Why?)
this implies that ¢ is completely determined by its value on a. (Why?)
Note: If o(a) = n < oo, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms ¢ : Z, — Z,)

Any such homomorphism ¢ is completely determined by ¢([1],). (Why?)
Say, ¢([1]a) = [k with o[m]¢)|n. (Why?) So n- [m]y = [0l (Why?)
It follows that k|nm. (Why?) [n - [m]x = [nm]x = [0]«]

Thus, ¢([x]n) = [mx]k, for all [x], € Z,, defines a homomorphism if and
only if k|mn.

Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.
Note that
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Example 7 (Homomorphisms defined on cyclic groups)

Let C = (a) be a cyclic group. Define a homomorphism ¢ : C — G by
¢(a) = g. Then ¢(a™) = g™. (Why?)

Since every element of C is of the form a™ for some m € Z, (Why?)
this implies that ¢ is completely determined by its value on a. (Why?)
Note: If o(a) = n < oo, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms ¢ : Z, — Z,)

Any such homomorphism ¢ is completely determined by ¢([1],). (Why?)
Say, ¢([1]n) = [m]k with o([m]x)|n. (Why?) So n-[m]x = [0]«. (Why?)

It follows that k|nm. (Why?) [n - [m]x = [nm]k = [0]]

Thus, ¢([x]n) = [mx]k, for all [x], € Z,, defines a homomorphism if and
only if k|mn.

Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.
Note that ¢(Z,) is the cyclic subgroup generated by [m], (Why?), and so
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Example 7 (Homomorphisms defined on cyclic groups)

Let C = (a) be a cyclic group. Define a homomorphism ¢ : C — G by
¢(a) = g. Then ¢(a™) = g™. (Why?)

Since every element of C is of the form a™ for some m € Z, (Why?)
this implies that ¢ is completely determined by its value on a. (Why?)
Note: If o(a) = n < oo, then o(g)|n. (Why?) [Proposition 1 (d)]

Example 8 (Homomorphisms ¢ : Z, — Z,)

Any such homomorphism ¢ is completely determined by ¢([1],). (Why?)
Say, ¢([1]n) = [m]k with o([m]x)|n. (Why?) So n-[m]x = [0]«. (Why?)

It follows that k|nm. (Why?) [n - [m]x = [nm]k = [0]]

Thus, ¢([x]n) = [mx]k, for all [x], € Z,, defines a homomorphism if and
only if k|mn.

Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.
Note that ¢(Z,) is the cyclic subgroup generated by [m], (Why?), and so
¢:Z, — Zg is onto < [m] is a generator of Zy, i.e., (m, k) =1. (Why?)
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Kernel and Image of a Homomorphism

Let ¢ : Gi — Gy be a group homomorphism. The kernel of ¢ is the set

ker(¢) = {x € G1 | #(x) = e2}.

The image of ¢ is the set

im(¢) = {¢(x) | x € Gi}.

Note 2
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Kernel and Image of a Homomorphism

Let ¢ : Gi — Gy be a group homomorphism. The kernel of ¢ is the set

ker(¢) = {x € G1 | #(x) = e2}.

The image of ¢ is the set

im(¢) = {¢(x) | x € Gi}.

Note 2
o ker(¢) is a subset of G;.
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Kernel and Image of a Homomorphism

Let ¢ : Gi — Gy be a group homomorphism. The kernel of ¢ is the set

ker(¢) = {x € G1 | #(x) = e2}.

The image of ¢ is the set

im(¢) = {¢(x) | x € Gi}.

Note 2
o ker(¢) is a subset of G;.
e im(¢) is a subset of G,.

Yi Homomorphisms June 10-11, 2020 8 /23



Revisit Example 5: Exponential functions for groups

Let G be a group, and let a € G. Define ¢ : Z — G by ¢(n) = a", for all n € Z.
¢ is a homomorphism. (See Example 5)

_
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Revisit Example 5: Exponential functions for groups

Let G be a group, and let a € G. Define ¢ : Z — G by ¢(n) = a", for all n € Z.
¢ is a homomorphism. (See Example 5)

What is ker(¢p) =7
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Revisit Example 5: Exponential functions for groups

Let G be a group, and let a € G. Define ¢ : Z — G by ¢(n) = a", for all n € Z.
¢ is a homomorphism. (See Example 5)

_

What is ker(¢p) =7

By definition, ker(¢) = {n | a” = e}. Let o(a) be the order of a in G. So,
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Revisit Example 5: Exponential functions for groups

Let G be a group, and let a € G. Define ¢ : Z — G by ¢(n) = a", for all n € Z.
¢ is a homomorphism. (See Example 5)

_

What is ker(¢p) =7

By definition, ker(¢) = {n | a” = e}. Let o(a) be the order of a in G. So,
e If o(a) = m < oo, then ker(¢) = (m) = mZ. (Why?)
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Revisit Example 5: Exponential functions for groups

Let G be a group, and let a € G. Define ¢ : Z — G by ¢(n) = a", for all n € Z.
¢ is a homomorphism. (See Example 5)

_

What is ker(¢p) =7

By definition, ker(¢) = {n | a” = e}. Let o(a) be the order of a in G. So,
e If o(a) = m < oo, then ker(¢) = (m) = mZ. (Why?)
e If o(a) = oo, then ker(¢) = {0}. (Why?)

Note:
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Revisit Example 5: Exponential functions for groups

Let G be a group, and let a € G. Define ¢ : Z — G by ¢(n) = a", for all n € Z.
¢ is a homomorphism. (See Example 5)

_

What is ker(¢p) =7

By definition, ker(¢) = {n | a” = e}. Let o(a) be the order of a in G. So,
e If o(a) = m < oo, then ker(¢) = (m) = mZ. (Why?)
e If o(a) = oo, then ker(¢) = {0}. (Why?)

Note: In either case, ker(¢) is a subgroup of Z.

_
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Revisit Example 5: Exponential functions for groups

Let G be a group, and let a € G. Define ¢ : Z — G by ¢(n) = a", for all n € Z.
¢ is a homomorphism. (See Example 5)

_

What is ker(¢p) =7

By definition, ker(¢) = {n | a” = e}. Let o(a) be the order of a in G. So,
e If o(a) = m < oo, then ker(¢) = (m) = mZ. (Why?)
e If o(a) = oo, then ker(¢) = {0}. (Why?)

Note: In either case, ker(¢) is a subgroup of Z.

What is im(¢) =7
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Revisit Example 5: Exponential functions for groups

Let G be a group, and let a € G. Define ¢ : Z — G by ¢(n) = a", for all n € Z.
¢ is a homomorphism. (See Example 5)

_

What is ker(¢p) =7

By definition, ker(¢) = {n | a” = e}. Let o(a) be the order of a in G. So,
e If o(a) = m < oo, then ker(¢) = (m) = mZ. (Why?)
e If o(a) = oo, then ker(¢) = {0}. (Why?)

Note: In either case, ker(¢) is a subgroup of Z.

What is im(¢) =7

By definition, im(¢) = {a" | n € Z} = (a).
Note:
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Revisit Example 5: Exponential functions for groups

Let G be a group, and let a € G. Define ¢ : Z — G by ¢(n) = a", for all n € Z.
¢ is a homomorphism. (See Example 5)

_

What is ker(¢p) =7

By definition, ker(¢) = {n | a” = e}. Let o(a) be the order of a in G. So,
e If o(a) = m < oo, then ker(¢) = (m) = mZ. (Why?)
e If o(a) = oo, then ker(¢) = {0}. (Why?)

Note: In either case, ker(¢) is a subgroup of Z.

What is im(¢) =7

By definition, im(¢) = {a" | n € Z} = (a).
Note: im(¢) = (a) is a subgroup of G.
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ker(¢) is a subgroup of G; & im(¢) is a subgroup of G,

Theorem 10
Let ¢ : Gi — Gy be a group homomorphism. Then

(a) ker(¢) is a subgroup of Gj.
(b) im(¢) is a subgroup of Gp.
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ker(¢) is a subgroup of G; & im(¢) is a subgroup of G,

Theorem 10

Let ¢ : Gi — Gy be a group homomorphism. Then
(a) ker(¢) is a subgroup of Gj.

(b) im(¢) is a subgroup of Gp.

(a) ker(¢) is nonempty:
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ker(¢) is a subgroup of G; & im(¢) is a subgroup of G,

Theorem 10

Let ¢ : Gi — Gy be a group homomorphism. Then
(a) ker(¢) is a subgroup of Gj.

(b) im(¢) is a subgroup of Gp.

(a) ker(¢) is nonempty: e; € ker(¢). (Why?) |
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ker(¢) is a subgroup of G; & im(¢) is a subgroup of G,

Theorem 10

Let ¢ : Gi — Gy be a group homomorphism. Then
(a) ker(¢) is a subgroup of Gj.

(b) im(¢) is a subgroup of Gp.

(a) ker(¢) is nonempty: e1 € ker(¢). (Why?) [¢(e1) = ]
For a, b € ker(¢), to show ab™! € ker(¢).
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ker(¢) is a subgroup of G; & im(¢) is a subgroup of G,

Theorem 10
Let ¢ : Gi — Gy be a group homomorphism. Then

(a) ker(¢) is a subgroup of Gj.
(b) im(¢) is a subgroup of Gp.

(a) ker(¢) is nonempty: e; € ker(¢). (Why?) [d)( 1) = e]
For a, b € ker(¢), to show ab™! € ker(¢). So ¢(a) = ex & ¢(b) =
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ker(¢) is a subgroup of G; & im(¢) is a subgroup of G,

Theorem 10
Let ¢ : Gi — Gy be a group homomorphism. Then

(a) ker(¢) is a subgroup of Gj.
(b) im(¢) is a subgroup of Gp.

(a) ker(¢) is nonempty: e; € ker(¢). (Why?) [d)( 1) = ]
For a, b € ker(¢), to show ab™! € ker(¢). So ¢(a) = o(b) = en.
¢(ab™) = ¢(a)p(b™") = p(a)p(b)” 5 =e

232 = €2.
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ker(¢) is a subgroup of G; & im(¢) is a subgroup of G,

Theorem 10
Let ¢ : Gi — Gy be a group homomorphism. Then

(a) ker(¢) is a subgroup of Gj.
(b) im(¢) is a subgroup of Gp.

(a) ker(¢) is nonempty: e; € ker(¢). (Why?) [d)( 1) = ]
For a, b € ker(¢), to show ab™! € ker(¢). So ¢(a) = o(b) = en.
¢(ab™t) = p(a)p(b~1) = d(a)(b) S e
(b) im(¢) is nonempty:

232 = €2.

Homomorphisms June 10-11, 2020 10 / 23



ker(¢) is a subgroup of G; & im(¢) is a subgroup of G,

Theorem 10
Let ¢ : Gi — Gy be a group homomorphism. Then

(a) ker(¢) is a subgroup of Gj.
(b) im(¢) is a subgroup of Gp.

(a) ker(¢) is nonempty: e; € ker(¢). (Why?) [d)( 1) = e]
For a, b € ker(¢), to show ab™! € ker(¢). So ¢(a) = 62 & gb( )=
¢(ab™t) = ¢(a)d(b~") = ¢(a)d(b)~ S e
(b) im(¢) is nonempty: e € im(¢). (Why?) [
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ker(¢) is a subgroup of G; & im(¢) is a subgroup of G,

Theorem 10
Let ¢ : Gi — Gy be a group homomorphism. Then

(a) ker(¢) is a subgroup of Gj.
(b) im(¢) is a subgroup of Gp.

(a) ker(¢) is nonempty: e; € ker(¢). (Why?) [d)(el) = o]
For a, b € ker(¢), to show ab™! € ker(¢). So ¢(a ):eg&gb( )=
¢(ab™t) = ¢(a)d(b~1) = ¢(a)d(b)~ S e’ = e.
(b) im(¢) is nonempty: e; € im(¢). (Why?) [¢(e1) = e
For x,y € im(¢), to show xy ! € im(¢).
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ker(¢) is a subgroup of G; & im(¢) is a subgroup of G,

Theorem 10
Let ¢ : Gi — Gy be a group homomorphism. Then

(a) ker(¢) is a subgroup of Gj.
(b) im(¢) is a subgroup of Gp.

(a) ker(¢) is nonempty: e1 € ker(¢). (Why?) [¢(e1) = ]
For a, b € ker(¢), to show ab™! € ker(¢). So ¢(a) = 62 & ¢(b) = en.
¢(ab™t) = p(a)o(b ") = d(a)g(b) ' = 26y = €.
(b) im(¢) is nonempty: e € im(¢). (Why?) [¢(e1) = €]
For x,y € im(¢), to show xy ! € im(¢). So ¢(a) = x and ¢(b) =
for some a, b € G;. Therefore,
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ker(¢) is a subgroup of G; & im(¢) is a subgroup of G,

Theorem 10
Let ¢ : Gi — Gy be a group homomorphism. Then

(a) ker(¢) is a subgroup of Gj.
(b) im(¢) is a subgroup of Gp.

(a) ker(¢) is nonempty: e1 € ker(¢). (Why?) [¢(e1) = ]
For a, b € ker(¢), to show ab™! € ker(¢). So ¢(a) = &2 & ¢(b) = &2
¢(ab™) = ¢(a)p(b™1) = d(a)p(b) ! = ere; ' = €.

(b) im(¢) is nonempty: e € im(¢). (Why?) [¢(e1) = €]
For x,y € im(¢), to show xy ! € im(¢). So ¢(a) = x and ¢(b) =
for some a, b € G;. Therefore,

xy~t = ¢(a)(g(b)) "t = p(a)p(b~t) = d(ab~t).
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ker(¢) is a subgroup of G; & im(¢) is a subgroup of G,

Theorem 10
Let ¢ : Gi — Gy be a group homomorphism. Then

(a) ker(¢) is a subgroup of Gj.
(b) im(¢) is a subgroup of Gp.

(a) ker(¢) is nonempty: e; € ker(¢). (Why?) [¢(e1) =
For a, b € ker(¢), to show ab™! € ker(¢). So ¢(a) = ex & ¢(b) = es.
¢(ab™t) = p(a)p(b~") = d(a)p(b) = e
(b) im(¢) is nonempty: e € im(¢). (Why?) [¢(e1) = e]
For x,y € im(¢), to show xy ! € im(¢). So ¢(a) = x and ¢(b) =
for some a, b € G;. Therefore,

xy~t = ¢(a)(g(b)) "t = p(a)p(b~t) = d(ab~t).

Theorem 11 (Let ¢ : G; — G, be a group homomorphism.)
(a) ¢ is one-to-one if and only if ker(¢) = {e1}.
(b) @ is onto if and only if im(¢) =
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Proof of Theorem 11

(a) ¢ is one-to-one if and only if ker(¢) = {e1}.
Let ¢ : G1 — Gy be a group homomorphism.
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Proof of Theorem 11

(a) ¢ is one-to-one if and only if ker(¢) = {e1}.
Let ¢ : G1 — Gy be a group homomorphism. By Proposition 5 in §3.4:
¢ is one-to-one < ¢(x) = e = x = ey, i.e., ker(¢) = {e1}. O

(b)
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Proof of Theorem 11

(a) ¢ is one-to-one if and only if ker(¢) = {e1}.
Let ¢ : G1 — Gy be a group homomorphism. By Proposition 5 in §3.4:
¢ is one-to-one < ¢(x) = e = x = ey, i.e., ker(¢) = {e1}. O

(b) ¢ is onto if and only if im(¢) = G.
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Proof of Theorem 11

(a) ¢ is one-to-one if and only if ker(¢) = {e1}.
Let ¢ : G1 — Gy be a group homomorphism. By Proposition 5 in §3.4:
¢ is one-to-one < ¢(x) = e = x = ey, i.e., ker(¢) = {e1}. O

(b) ¢ is onto if and only if im(¢) = Gp. Trivial. (Why?) O

Proposition 1 (d):
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Proof of Theorem 11

(a) ¢ is one-to-one if and only if ker(¢) = {e1}.
Let ¢ : G1 — Gy be a group homomorphism. By Proposition 5 in §3.4:
¢ is one-to-one < ¢(x) = e = x = ey, i.e., ker(¢) = {e1}. O

(b) ¢ is onto if and only if im(¢) = Gp. Trivial. (Why?) O

Proposition 1 (d): If o(a) = nin Gy, then o(¢(a)) in Gy is a divisor of n.

Proposition 2 (More properties that are preserved by homomorphisms)
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Proof of Theorem 11

(a) ¢ is one-to-one if and only if ker(¢) = {e1}.
Let ¢ : G1 — Gy be a group homomorphism. By Proposition 5 in §3.4:
¢ is one-to-one < ¢(x) = e = x = ey, i.e., ker(¢) = {e1}. O

(b) ¢ is onto if and only if im(¢) = Gp. Trivial. (Why?) O

Proposition 1 (d): If o(a) = nin Gy, then o(¢(a)) in Gy is a divisor of n.

Proposition 2 (More properties that are preserved by homomorphisms)

Let ¢ : G1 — Gy be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G is also abelian.

(b) If Gy is cyclic, then Gy is also cyclic.

_
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Proof of Theorem 11

(a) ¢ is one-to-one if and only if ker(¢) = {e1}.
Let ¢ : G1 — Gy be a group homomorphism. By Proposition 5 in §3.4:
¢ is one-to-one < ¢(x) = e = x = ey, i.e., ker(¢) = {e1}. O

(b) ¢ is onto if and only if im(¢) = Gp. Trivial. (Why?) O

Proposition 1 (d): If o(a) = nin Gy, then o(¢(a)) in Gy is a divisor of n.

Proposition 2 (More properties that are preserved by homomorphisms)

Let ¢ : G1 — Gy be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G is also abelian.

(b) If Gy is cyclic, then Gy is also cyclic.

Proposition 2 (a) & (b) are not necessarily true if ¢ is not onto. \
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Proof of Proposition 2

Let ¢ : G — G be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G, is also abelian.

(b) If Gy is cyclic, then Gy is also cyclic.
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Proof of Proposition 2

Let ¢ : G — G be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G, is also abelian.

(b) If Gy is cyclic, then Gy is also cyclic.

(a) For any x,y € G, there exist a, b € G; such that ¢(a) = x, ¢(b) = y.
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Proof of Proposition 2

Let ¢ : G — G be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G, is also abelian.

(b) If Gy is cyclic, then Gy is also cyclic.

(a) For any x,y € G, there exist a, b € G; such that ¢(a) = x, ¢(b) =
xy = 6(a)(b) = p(ab)=¢(ba) = ¢(b)p(a) = yx.
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Proof of Proposition 2

Let ¢ : G — G be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G, is also abelian.

(b) If Gy is cyclic, then Gy is also cyclic.

(a) For any x,y € G, there exist a, b € G; such that ¢(a) = x, ¢(b) =

xy = ¢(a)o(b) = ¢(ab)=¢(ba) = ¢(b)¢(a) = yx.
(b) Let Gy = (a) for a generator a € Gy. Claim: G, = (¢(a)).
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Proof of Proposition 2

Let ¢ : G — G be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G, is also abelian.

(b) If Gy is cyclic, then Gy is also cyclic.

(a) For any x,y € G, there exist a, b € G; such that ¢(a) = x, ¢(b) =

xy = ¢(a)o(b) = ¢(ab)=¢(ba) = ¢(b)¢(a) = yx.
(b) Let Gy = (a) for a generator a € Gy. Claim: G, = (¢(a)).
° (¢(a)) C Ga:
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Proof of Proposition 2

Let ¢ : G — G be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G, is also abelian.

(b) If Gy is cyclic, then Gy is also cyclic.

(a) For any x,y € G, there exist a, b € G; such that ¢(a) = x, ¢(b) =

xy = ¢(a)o(b) = ¢(ab)=¢(ba) = ¢(b)¢(a) = yx.
(b) Let Gy = (a) for a generator a € Gy. Claim: G, = (¢(a)).
o (¢(a)) C Gy : Trivial. (Why?) [
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Proof of Proposition 2

Let ¢ : G — G be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G, is also abelian.

(b) If Gy is cyclic, then Gy is also cyclic.

(a) For any x,y € G, there exist a, b € G; such that ¢(a) = x, ¢(b) =

xy = 6(a)(b) = p(ab)=¢(ba) = ¢(b)p(a) = yx.
(b) Let Gy = (a) for a generator a € Gy. Claim: Gy = (¢(a)).
o (¢p(a)) C Gy : Trivial. (Why?) [¢(a) € Go]
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Proof of Proposition 2

Let ¢ : G — G be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G, is also abelian.

(b) If Gy is cyclic, then Gy is also cyclic.

(a) For any x,y € G, there exist a, b € G; such that ¢(a) = x, ¢(b) =

xy = 6(a)(b) = p(ab)=¢(ba) = ¢(b)p(a) = yx.
(b) Let Gy = (a) for a generator a € Gy. Claim: G, = (¢(a)).
o (¢p(a)) C Gy : Trivial. (Why?) [¢(a) € Go]
o Gy C (#(a)) : To show every element y of G, is a power of ¢(a).
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Proof of Proposition 2

Let ¢ : G — G be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G, is also abelian.

(b) If Gy is cyclic, then Gy is also cyclic.

(a) For any x,y € G, there exist a, b € G; such that ¢(a) = x, ¢(b) =

xy = 6(a)(b) = p(ab)=¢(ba) = ¢(b)p(a) = yx.
(b) Let Gy = (a) for a generator a € Gy. Claim: Gy = (¢(a)).
o (¢(a)) C Gy : Trivial. (Why?) [¢(a) € G3]
o Gy C (#(a)) : To show every element y of G, is a power of ¢(a).
We can write y = ¢(b) for some b € G;. (Why?)
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Proof of Proposition 2

Let ¢ : G — G be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G, is also abelian.

(b) If Gy is cyclic, then Gy is also cyclic.

(a) For any x,y € G, there exist a, b € G; such that ¢(a) = x, ¢(b) =

xy = 6(a)(b) = p(ab)=¢(ba) = ¢(b)p(a) = yx.
(b) Let Gy = (a) for a generator a € Gy. Claim: Gy = (¢(a)).
o (¢(a)) C Gy : Trivial. (Why?) [¢(a) € G3]
o Gy C (#(a)) : To show every element y of G, is a power of ¢(a).
We can write y = ¢(b) for some b € Gy. (Why?) We can also write
b= a™ for some m € Z. (Why?)
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Proof of Proposition 2

Let ¢ : G — G be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G, is also abelian.

(b) If Gy is cyclic, then Gy is also cyclic.

(a) For any x,y € G, there exist a, b € G; such that ¢(a) = x, ¢(b) =

xy = 6(a)(b) = p(ab)=¢(ba) = ¢(b)p(a) = yx.
(b) Let Gy = (a) for a generator a € Gy. Claim: Gy = (¢(a)).
o (¢(a)) C Gy : Trivial. (Why?) [¢(a) € G3]
o Gy C (#(a)) : To show every element y of G, is a power of ¢(a).
We can write y = ¢(b) for some b € Gy. (Why?) We can also write
b= a™ for some m € Z. (Why?) This implies that

y = ¢(b) = ¢(a") = (¢(a))™.
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Proof of Proposition 2

Let ¢ : G — G be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G, is also abelian.
(b) If Gy is cyclic, then Gy is also cyclic.

(a) For any x,y € G, there exist a, b € G; such that ¢(a) = x, ¢(b) =

xy = 6(a)(b) = p(ab)=¢(ba) = ¢(b)p(a) = yx.
(b) Let Gy = (a) for a generator a € Gy. Claim: Gy = (¢(a)).
o (¢(a)) C Gy : Trivial. (Why?) [¢(a) € G3]
o Gy C (#(a)) : To show every element y of G, is a power of ¢(a).
We can write y = ¢(b) for some b € Gy. (Why?) We can also write
b= a™ for some m € Z. (Why?) This implies that

y = ¢(b) = ¢(a") = (¢(a))™.
Thus, Gy = (¢(a)).
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Proof of Proposition 2

Let ¢ : G — G be a group homomorphism. And assume that ¢ is onto.
(a) If Gy is abelian, then G, is also abelian.
(b) If Gy is cyclic, then Gy is also cyclic.

(a) For any x,y € G, there exist a, b € G; such that ¢(a) = x, ¢(b) =

xy = 6(a)(b) = p(ab)=¢(ba) = ¢(b)p(a) = yx.
(b) Let Gy = (a) for a generator a € Gy. Claim: Gy = (¢(a)).
o (¢(a)) C Gy : Trivial. (Why?) [¢(a) € G3]
o Gy C (#(a)) : To show every element y of G, is a power of ¢(a).
We can write y = ¢(b) for some b € Gy. (Why?) We can also write
b= a™ for some m € Z. (Why?) This implies that

y = ¢(b) = ¢(a") = (¢(a))™.
Thus, Go = (¢(a)). That is, Gy is also cyclic.
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,

for all [x]n € Z,. And ¢([x]n) = [mx]k is well-defined if and only if k|mn.
Furthermore,
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,
for all [x]n € Z,. And ¢([x]n) = [mx]k is well-defined if and only if k|mn.
Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.

Question 3 (How about the other cases?)
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,
for all [x], € Z,. And ¢([x],) = [mx]k is well-defined if and only if k|mn.
Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z,,, and from Z,, to Z.

Proposition 3
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,
for all [x], € Z,. And ¢([x],) = [mx]k is well-defined if and only if k|mn.
Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z,,, and from Z,, to Z.

Proposition 3

Let m be a fixed integer. Define a function ¢ : Z — Z by ¢(x) = mx.
Then ¢ is a homomorphism. Every homomorphism must be of this form.

¢ is a homomorphism:

v
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,
for all [x], € Z,. And ¢([x],) = [mx]k is well-defined if and only if k|mn.
Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z,,, and from Z,, to Z.

Proposition 3

Let m be a fixed integer. Define a function ¢ : Z — Z by ¢(x) = mx.
Then ¢ is a homomorphism. Every homomorphism must be of this form.

¢ is a homomorphism: ¢(x 4+ y) = m(x + y) = mx + my = ¢(x) + é(y).

v
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,
for all [x], € Z,. And ¢([x],) = [mx]k is well-defined if and only if k|mn.
Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z,,, and from Z,, to Z.

Proposition 3

Let m be a fixed integer. Define a function ¢ : Z — Z by ¢(x) = mx.
Then ¢ is a homomorphism. Every homomorphism must be of this form.
Proof.

¢ is a homomorphism: ¢(x + y) = m(x + y) = mx + my = ¢(x) + ¢(y).
This is a special case of Example 7 since Z is an infinity cyclic group.

|

v
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,
for all [x], € Z,. And ¢([x],) = [mx]k is well-defined if and only if k|mn.
Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z,,, and from Z,, to Z.

Proposition 3

Let m be a fixed integer. Define a function ¢ : Z — Z by ¢(x) = mx.
Then ¢ is a homomorphism. Every homomorphism must be of this form.

Proof.

¢ is a homomorphism: ¢(x + y) = m(x + y) = mx + my = ¢(x) + ¢(y).
This is a special case of Example 7 since Z is an infinity cyclic group.
In particular, let ¢(1) = m for some integer m since

|

v
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,
for all [x], € Z,. And ¢([x],) = [mx]k is well-defined if and only if k|mn.
Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z,,, and from Z,, to Z.

Proposition 3

Let m be a fixed integer. Define a function ¢ : Z — Z by ¢(x) = mx.
Then ¢ is a homomorphism. Every homomorphism must be of this form.

Proof.

¢ is a homomorphism: ¢(x + y) = m(x + y) = mx + my = ¢(x) + ¢(y).
This is a special case of Example 7 since Z is an infinity cyclic group.
In particular, let ¢(1) = m for some integer m since 1 is a generator of Z.
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v
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,
for all [x], € Z,. And ¢([x],) = [mx]k is well-defined if and only if k|mn.
Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z,,, and from Z,, to Z.

Proposition 3

Let m be a fixed integer. Define a function ¢ : Z — Z by ¢(x) = mx.

Then ¢ is a homomorphism. Every homomorphism must be of this form.

Proof.

|

¢ is a homomorphism: ¢(x + y) = m(x + y) = mx + my = ¢(x) + ¢(y

This is a special case of Example 7 since Z is an infinity cyclic group.

In particular, let ¢(1) = m for some integer m since 1 is a generator of Z.

For x € Z1, ¢(x) =

).
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,
for all [x], € Z,. And ¢([x],) = [mx]k is well-defined if and only if k|mn.
Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z,,, and from Z,, to Z.

Proposition 3

Let m be a fixed integer. Define a function ¢ : Z — Z by ¢(x) = mx.

Then ¢ is a homomorphism. Every homomorphism must be of this form.

Proof.

|

¢ is a homomorphism: ¢(x + y) = m(x + y) = mx + my = ¢(x) + ¢(y

This is a special case of Example 7 since Z is an infinity cyclic group.

In particular, let ¢(1) = m for some integer m since 1 is a generator of Z.

Forx € ZT, ¢p(x) = (1 +---+1) =

).
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,
for all [x], € Z,. And ¢([x],) = [mx]k is well-defined if and only if k|mn.
Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z,,, and from Z,, to Z.

Proposition 3

Let m be a fixed integer. Define a function ¢ : Z — Z by ¢(x) = mx.

Then ¢ is a homomorphism. Every homomorphism must be of this form.

Proof.

|

¢ is a homomorphism: ¢(x + y) = m(x + y) = mx + my = ¢(x) + ¢(y

This is a special case of Example 7 since Z is an infinity cyclic group.

In particular, let ¢(1) = m for some integer m since 1 is a generator of Z.

For x € Z*,p(x) = p(1 +--- +1) = ¢(1) + - + ¢(1) =
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,
for all [x], € Z,. And ¢([x],) = [mx]k is well-defined if and only if k|mn.
Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z,,, and from Z,, to Z.

Proposition 3

Let m be a fixed integer. Define a function ¢ : Z — Z by ¢(x) = mx.

Then ¢ is a homomorphism. Every homomorphism must be of this form.

Proof.

|

¢ is a homomorphism: ¢(x + y) = m(x + y) = mx + my = ¢(x) + ¢(y

This is a special case of Example 7 since Z is an infinity cyclic group.

In particular, let ¢(1) = m for some integer m since 1 is a generator of Z.

Forx € ZT,¢p(x) = (1 +---+1)=¢(1)+ -+ + ¢(1) = x¢(1) =
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,
for all [x], € Z,. And ¢([x],) = [mx]k is well-defined if and only if k|mn.
Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z,,, and from Z,, to Z.

Proposition 3

Let m be a fixed integer. Define a function ¢ : Z — Z by ¢(x) = mx.

Then ¢ is a homomorphism. Every homomorphism must be of this form.

Proof.

|

¢ is a homomorphism: ¢(x + y) = m(x + y) = mx + my = ¢(x) + ¢(y

This is a special case of Example 7 since Z is an infinity cyclic group.
In particular, let ¢(1) = m for some integer m since 1 is a generator of
Forx € ZV,p(x) = (1 +---+1) = (1) + - + &(1) = x¢p(1) = mx.

).

Z.
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,
for all [x], € Z,. And ¢([x],) = [mx]k is well-defined if and only if k|mn.
Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z,,, and from Z,, to Z.

Proposition 3

Let m be a fixed integer. Define a function ¢ : Z — Z by ¢(x) = mx.

Then ¢ is a homomorphism. Every homomorphism must be of this form.

Proof.

¢ is a homomorphism: ¢(x + y) = m(x + y) = mx + my = ¢(x) + ¢(
This is a special case of Example 7 since Z is an infinity cyclic group.
In particular, let ¢(1) = m for some integer m since 1 is a generator of
Forx € ZV,p(x) = (1 +---+1) = (1) + - + &(1) = x¢p(1) = mx.
For x € Z7, so x = —|x| :

|
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Examples: Homorphisms between cyclic groups

Example 8: We define a homomorphism ¢ : Z, — Z by ¢([x]n) = [mx]«,
for all [x], € Z,. And ¢([x],) = [mx]k is well-defined if and only if k|mn.
Furthermore, every homomorphism ¢ : Z,, — Z, must be of this form.

Question 3 (How about the other cases?)

Find all homomorphisms from Z to Z, from Z to Z,,, and from Z,, to Z.

Proposition 3

Let m be a fixed integer. Define a function ¢ : Z — Z by ¢(x) = mx.
Then ¢ is a homomorphism. Every homomorphism must be of this form.

Proof.
¢ is a homomorphism: ¢(x + y) = m(x + y) = mx + my = ¢(x) + ¢(y).
This is a special case of Example 7 since Z is an infinity cyclic group.

In particular, let ¢(1) = m for some integer m since 1 is a generator of Z.
Forx € ZV,p(x) = (1 +---+1) = (1) + - + &(1) = x¢p(1) = mx.

For x € Z7, so x = —|x| : ¢(x) = &(—|x]) = —o(|x|) = —m|x| = mx. my

|
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Example cont.: Homorphisms between Z and Z,

Proposition 4
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Example cont.: Homorphisms between Z and Z,

Proposition 4

Let [m], € Z,. Define a function ¢ : Z — Z,, by ¢p(x) = [mx],. Then ¢ is
a homomorphism. Every homomorphism must be of this form.
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Example cont.: Homorphisms between Z and Z,

Proposition 4

Let [m], € Z,. Define a function ¢ : Z — Z,, by ¢p(x) = [mx],. Then ¢ is
a homomorphism. Every homomorphism must be of this form.

The proof is the same as for homomorphisms Z — Z.

Proposition 5
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Example cont.: Homorphisms between Z and Z,

Proposition 4

Let [m], € Z,. Define a function ¢ : Z — Z,, by ¢p(x) = [mx],. Then ¢ is
a homomorphism. Every homomorphism must be of this form.

The proof is the same as for homomorphisms Z — Z. [

Proposition 5

The only homomorphism Z,, — Z is the function defined by ¢([x],) =0
for all [x]n € Zp.
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Example cont.: Homorphisms between Z and Z,

Proposition 4

Let [m], € Z,. Define a function ¢ : Z — Z,, by ¢p(x) = [mx],. Then ¢ is
a homomorphism. Every homomorphism must be of this form.

The proof is the same as for homomorphisms Z — Z.

Proposition 5

The only homomorphism Z,, — Z is the function defined by ¢([x],) =0
for all [x]n € Zp.

In Z,,, o([x]n) = m|n. And so
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Example cont.: Homorphisms between Z and Z,

Proposition 4

Let [m], € Z,. Define a function ¢ : Z — Z,, by ¢p(x) = [mx],. Then ¢ is
a homomorphism. Every homomorphism must be of this form.

The proof is the same as for homomorphisms Z — Z.

Proposition 5

The only homomorphism Z,, — Z is the function defined by ¢([x],) =0
for all [x]n € Zp.

In Z,, 0o([x]n) = m|n. And so o(é([x]n))|m in Z. (Why?) |
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Example cont.: Homorphisms between Z and Z,

Proposition 4

Let [m], € Z,. Define a function ¢ : Z — Z,, by ¢p(x) = [mx],. Then ¢ is
a homomorphism. Every homomorphism must be of this form.

The proof is the same as for homomorphisms Z — Z.

Proposition 5

The only homomorphism Z,, — Z is the function defined by ¢([x],) =0
for all [x]n € Zp.

In Z,, 0([x]n) = m|n. And so o(d([x]n))|m in Z. (Why?) [Prop.1 (d)]
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Example cont.: Homorphisms between Z and Z,

Proposition 4

Let [m], € Z,. Define a function ¢ : Z — Z,, by ¢p(x) = [mx],. Then ¢ is
a homomorphism. Every homomorphism must be of this form.

The proof is the same as for homomorphisms Z — Z.

Proposition 5

The only homomorphism Z,, — Z is the function defined by ¢([x],) =0
for all [x]n € Zp.

In Z,, 0([x]n) = m|n. And so o(d([x]n))|m in Z. (Why?) [Prop.1 (d)]
However, in Z, only 0 has a finite order (o(0) = 1).
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Example cont.: Homorphisms between Z and Z,

Proposition 4

Let [m], € Z,. Define a function ¢ : Z — Z,, by ¢p(x) = [mx],. Then ¢ is
a homomorphism. Every homomorphism must be of this form.

The proof is the same as for homomorphisms Z — Z.

Proposition 5

The only homomorphism Z,, — Z is the function defined by ¢([x],) =0
for all [x]n € Zp.

In Z,, 0([x]n) = m|n. And so o(d([x]n))|m in Z. (Why?) [Prop.1 (d)]

However, in Z, only 0 has a finite order (0(0) = 1). Thus, ¢([x],) =0. O
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Normal subgroup

Proposition 6 (Let ¢ : G; — G, be a homomorphism.)
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Normal subgroup

Proposition 6 (Let ¢ : G; — G, be a homomorphism.)

Let g be any element in Gy. Then gkg™! € ker(¢) for all k € ker(¢).

Note:
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Normal subgroup

Proposition 6 (Let ¢ : G; — G, be a homomorphism.)

Let g be any element in Gy. Then gkg™! € ker(¢) for all k € ker(¢).

Note: We have shown that ker(¢) is a subgroup of G; in Theorem 10 (a).

_
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Normal subgroup

Proposition 6 (Let ¢ : G; — G, be a homomorphism.)

Let g be any element in Gy. Then gkg™! € ker(¢) for all k € ker(¢).

Note: We have shown that ker(¢) is a subgroup of G; in Theorem 10 (a).

d(gkg™') =
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Normal subgroup

Proposition 6 (Let ¢ : G; — G, be a homomorphism.)

Let g be any element in Gy. Then gkg™! € ker(¢) for all k € ker(¢).

Note: We have shown that ker(¢) is a subgroup of G; in Theorem 10 (a).

d(gkg™t) = p(g)d(k)p(g ™) =
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Normal subgroup

Proposition 6 (Let ¢ : G; — G, be a homomorphism.)

Let g be any element in Gy. Then gkg™! € ker(¢) for all k € ker(¢).

Note: We have shown that ker(¢) is a subgroup of G; in Theorem 10 (a).

P(gkg™') = d(g)d(k)p(e ™) = d(g)exip(g) * =
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Normal subgroup

Proposition 6 (Let ¢ : G; — G, be a homomorphism.)

Let g be any element in Gy. Then gkg™! € ker(¢) for all k € ker(¢).

Note: We have shown that ker(¢) is a subgroup of G; in Theorem 10 (a).

d(gkg ™) = d(g)d(k)p(g ™) = d(g)ed(g) * = d(g)d(g) ' =
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Normal subgroup

Proposition 6 (Let ¢ : Gi — G, be a homomorphism.)

Let g be any element in Gy. Then gkg™! € ker(¢) for all k € ker(¢).

Note: We have shown that ker(¢) is a subgroup of G; in Theorem 10 (a).

d(gkg™t) = p(g)d(k)p(g ™) = d(g)exp(g) ™ = p(g)d(8) ! = e O

Definition 12
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Normal subgroup

Proposition 6 (Let ¢ : Gi — G, be a homomorphism.)

Let g be any element in Gy. Then gkg™! € ker(¢) for all k € ker(¢).

Note: We have shown that ker(¢) is a subgroup of G; in Theorem 10 (a).

d(gkg ™) = d(g)d(k)p(g ™) = d(g)e2dp(g) ! = d(g)d(g) ! = e O

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg™* € H
forall he H and g € G.

Example 13 (Let ¢ : G; — G, be a homomorphism.)

v
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Normal subgroup

Proposition 6 (Let ¢ : G; — G, be a homomorphism.)

Let g be any element in Gy. Then gkg™! € ker(¢) for all k € ker(¢).

Note: We have shown that ker(¢) is a subgroup of G; in Theorem 10 (a).

d(gkg ™) = d(g)d(k)p(g ™) = d(g)e2dp(g) ! = d(g)d(g) ! = e O

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg™* € H
forall he H and g € G.

Example 13 (Let ¢ : G; — G, be a homomorphism.)

(1) ker(¢) is a normal subgroup of Gi; see Proposition 6.
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Normal subgroup

Proposition 6 (Let ¢ : G; — G, be a homomorphism.)
Let g be any element in Gy. Then gkg™! € ker(¢) for all k € ker(¢).

Note: We have shown that ker(¢) is a subgroup of G; in Theorem 10 (a).

d(gkg ™) = d(g)d(k)p(g ™) = d(g)e2dp(g) ! = d(g)d(g) ! = e O

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg™* € H
forall he H and g € G.

Example 13 (Let ¢ : G; — G, be a homomorphism.)

(1) ker(¢) is a normal subgroup of Gi; see Proposition 6.
(2) If H= G or H = {e}, then H is normal.
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Normal subgroup

Proposition 6 (Let ¢ : G; — G, be a homomorphism.)
Let g be any element in Gy. Then gkg™! € ker(¢) for all k € ker(¢).

Note: We have shown that ker(¢) is a subgroup of G; in Theorem 10 (a).

d(gkg ™) = d(g)d(k)p(g ™) = d(g)e2dp(g) ! = d(g)d(g) ! = e O

Definition 12

A subgroup H of the group G is called a normal subgroup if ghg™* € H
forall he H and g € G.

Example 13 (Let ¢ : G; — G, be a homomorphism.)

(1) ker(¢) is a normal subgroup of Gi; see Proposition 6.
(2) If H= G or H = {e}, then H is normal.

(3) Any subgroup of an abelian group is normal.
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)

(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)
(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.
If Hy is a normal in Gy, then ¢~ *(H,) is normal in G;.
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)
(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.
If Hy is a normal in Gy, then ¢~ *(H,) is normal in G;.

(a) Nonempty:
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)
(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.
If Hy is a normal in Gy, then ¢~ *(H,) is normal in G;.

(a) Nonempty: ex € ¢(Hip). (Why?)
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)
(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.
If Hy is a normal in Gy, then ¢~ *(H,) is normal in G;.

(a) Nonempty: ex € ¢(Hi). (Why?) For any x,y € ¢(H1), there exist
a,b € Hy with ¢(a) = x and ¢(b) =y, and
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)
(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.
If Hy is a normal in Gy, then ¢~ *(H,) is normal in G;.

(a) Nonempty: ex € ¢(Hi). (Why?) For any x,y € ¢(H1), there exist
a,b € Hy with ¢(a) = x and ¢(b) =y, and
xy~t = ¢(a)(¢(b)) "t = d(a)p(b~t) = p(ab~t)EP(HL). v
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)

(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.

If Hy is a normal in Gy, then ¢~ *(H,) is normal in G;.

(a) Nonempty: ex € ¢(Hi). (Why?) For any x,y € ¢(H1), there exist
a,b € Hy with ¢(a) = x and qb(b) y, and
3yt = 6(a)(6(b) " = B(2)4(b1) = dlab)e(H). v
Let x € Gy and y € ¢(H1). To show xyx 1 € ¢(Hy). (Why?)
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)

(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.

If Hy is a normal in Gy, then ¢~ *(H,) is normal in G;.

(a) Nonempty: ex € ¢(Hi). (Why?) For any x,y € ¢(H1), there exist
a,b € Hy with ¢(a) = x and ¢(b) =y, and
3yt = 6(a)(6(b) " = B(2)4(b1) = dlab)e(H). v
Let x € Gy and y € ¢(Hy). To show xyx ! € ¢(Hy). (Why?)
There exist g € Gy and a € Hy with ¢(g) = x (Why?)
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)

(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.

If Hy is a normal in Gy, then ¢~ *(H,) is normal in G;.

(a) Nonempty: ex € ¢(Hi). (Why?) For any x,y € ¢(H1), there exist
a,b € Hy with ¢(a) = x and ¢(b) =y, and
3yt = 6(a)(6(b) " = B(2)4(b1) = dlab)e(H). v
Let x € Gy and y € ¢(Hy). To show xyx ! € ¢(Hy). (Why?)
There exist g € G1 and a € Hy with ¢(g) = x (Why?) and y = ¢(a).
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)

(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.

If Hy is a normal in Gy, then ¢~ *(H,) is normal in G;.

(a) Nonempty: ex € ¢(Hi). (Why?) For any x,y € ¢(H1), there exist
a,b € Hy with ¢(a) = x and ¢(b) =y, and
3yt = 6(a)(6(b) " = B(2)4(b1) = dlab)e(H). v
Let x € Gy and y € ¢(Hy). To show xyx ! € ¢(Hy). (Why?)
There exist g € G1 and a € Hy with ¢(g) = x (Why?) and y = ¢(a).

xyx 1 = 6(8)6(a)o(g 1) = dleag V) Eb(H) (Why?) v
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)

(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.

If Hy is a normal in Gy, then ¢~ *(H,) is normal in G;.

(a) Nonempty: ex € ¢(Hi). (Why?) For any x,y € ¢(H1), there exist
a,b € Hy with ¢(a) = x and qb(b) y, and
3yt = 6(a)(6(b) " = B(2)4(b1) = dlab)e(H). v
Let x € Gy and y € ¢(Hy). To show xyx ! € ¢(Hy). (Why?)
There exist g € G1 and a € Hy with ¢(g) = x (Why?) and y = ¢(a).

xyx 1 = 6(8)6(a)o(g 1) = dleag V) Eb(H) (Why?) v
(b) ¢71(H2) = {a € Gi | ¢(a) € Ha}.
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)

(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.

If Hy is a normal in Gy, then ¢~ *(H,) is normal in G;.

(a) Nonempty: ex € ¢(Hi). (Why?) For any x,y € ¢(H1), there exist
a,b € Hy with ¢(a) = x and qb(b) y, and
3yt = 6(a)(6(b) " = B(2)4(b1) = dlab)e(H). v
Let x € Gy and y € ¢(Hy). To show xyx ! € ¢(Hy). (Why?)
There exist g € G1 and a € Hy with ¢(g) = x (Why?) and y = ¢(a).

xyx 1 = 6(8)6(a)o(g 1) = dleag V) Eb(H) (Why?) v
(b) ¢~ (H2) = {a € Gi | ¢(a) € Ha}. Nonempty:
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Proposition 7 (Let ¢ : G; — G, be a homomorphism.)

(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.
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There exist g € G1 and a € Hy with ¢(g) = x (Why?) and y = ¢(a).
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Proposition 7 (Let ¢ : G; — G, be a homomorphism.)

(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)

(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)

(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.

If Hy is a normal in Gy, then ¢~ *(H,) is normal in G;.

(a) Nonempty: ex € ¢(Hi). (Why?) For any x,y € ¢(H1), there exist
a,b € Hy with ¢(a) = x and qb(b) =y, and
3yt = 6(a)(6(b) " = B(2)4(b1) = dlab)e(H). v
Let x € Gy and y € ¢(Hy). To show xyx ! € ¢(Hy). (Why?)
There exist g € G1 and a € Hy with ¢(g) = x (Why?) and y = ¢(a).

xyx 1 = 6(8)6(a)o(g 1) = dleag V) Eb(H) (Why?) v
(b) ¢7Y(Hs) = {3 € G1 | ¢(a) € Ha}. Nonempty: e; € ¢~ 1(Hz). (Why?)

For any a,b € ¢~ 1(Hz),ab™t € ¢~ 1(Ho) since gb(ab DeH,. (Why?)
Let g € Gy and a € ¢~ 1(Hz). To show gag—t € ¢~ 1(H,). (Why?)
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)

(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G,.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.

If Hy is a normal in Gy, then ¢~ *(H,) is normal in G;.

(a) Nonempty: ex € ¢(Hi). (Why?) For any x,y € ¢(H1), there exist
a,b € Hy with ¢(a) = x and qb(b) =y, and
3yt = 6(a)(6(b) " = B(2)4(b1) = dlab)e(H). v
Let x € Gy and y € ¢(Hy). To show xyx ! € ¢(Hy). (Why?)
There exist g € G1 and a € Hy with ¢(g) = x (Why?) and y = ¢(a).

= (8)o(a)olg ™) = dlgag ) Eo(Hh) (Why?)
(b) ¢~ (Ha) = {3 € G1 | ¢(a) € Ha}. Nonempty: e1 € ¢~ '(Ha). (Why?)
For any a,b € ¢~ 1(Ha),ab™! € ¢p~1(H,) since gb(ab DeH,. (Why?)
Let g € Gy and a € ¢~ 1(Hz). To show gag—t € ¢~ 1(H,). (Why?)

This is true since
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How subgroups are related via a homomorphism

Proposition 7 (Let ¢ : G; — G, be a homomorphism.)

(a) If Hy is a subgroup of Gy, then ¢(H1) is a subgroup of G;.
If ¢ is onto and Hy is normal in Gy, then ¢(Hy) is normal in Gp.

(b) If Hy is a subgroup of Gy, then ¢~ 1(Hs) is a subgroup of Gi.

If Hy is a normal in Gy, then ¢~ *(H,) is normal in G;.

(a) Nonempty: ex € ¢(Hi). (Why?) For any x,y € ¢(H1), there exist
a,b € Hy with ¢(a) = x and qb(b) =y, and
3yt = 6(a)(6(b) " = B(2)4(b1) = dlab)e(H). v
Let x € Gy and y € ¢(Hy). To show xyx ! € ¢(Hy). (Why?)
There exist g € G1 and a € Hy with ¢(g) = x (Why?) and y = ¢(a).

xyx 1 = g(g)p(a)d(g ™) = d(gagt)ed(Hr) (Why?) v
(b) ¢~ (Ha) = {3 € G1 | ¢(a) € Ha}. Nonempty: e € ¢~'(Ha). (Why?)
For any a, b € ¢~ 1(H ), ab=! € ¢71(H,) since gb(ab DeH,. (Why?)
Let g € Gy and a € ¢~ 1(Hz). To show gag—t € ¢~ 1(H,). (Why?)
This is true since ¢(gag ") = ¢(g)p(a)(¢(g)) "cHo. (Why?) [
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Equivalence relation on G; associated with ¢

Definition 14 (Let ¢ : G; — G, be a homomorphism.)

Yi Homomorphisms June 10-11, 2020 17 / 23



Equivalence relation on G; associated with ¢

Definition 14 (Let ¢ : G; — G, be a homomorphism.)

Natural equivalent relation on Gy : a ~4 b if ¢(a) = ¢(b), where a, b € G;.

Notation:
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Equivalence relation on G; associated with ¢

Definition 14 (Let ¢ : G; — G, be a homomorphism.)
Natural equivalent relation on Gy : a ~4 b if ¢(a) = ¢(b), where a, b € G;.

Notation: The set of equivalence classes of this relation: G;/¢ = {[a]s},
where [a]y is the equivalence class of a € Gi. (Think about [r], in Z,)

Proposition 8 (Let ¢ : G; — G, be a homomorphism.)
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Equivalence relation on G; associated with ¢

Definition 14 (Let ¢ : G; — G, be a homomorphism.)
Natural equivalent relation on Gy : a ~4 b if ¢(a) = ¢(b), where a, b € G;.

Notation: The set of equivalence classes of this relation: G;/¢ = {[a]s},
where [a]y is the equivalence class of a € Gi. (Think about [r], in Z,)

Proposition 8 (Let ¢ : G; — G, be a homomorphism.)

The multiplication of equivalence classes in the set Gi/¢ is well-defined,
and Gy1/¢ is a group under this multiplication.
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Equivalence relation on G; associated with ¢

Definition 14 (Let ¢ : G; — G, be a homomorphism.)
Natural equivalent relation on Gy : a ~4 b if ¢(a) = ¢(b), where a, b € G;.

Notation: The set of equivalence classes of this relation: G;/¢ = {[a]s},
where [a]y is the equivalence class of a € Gi. (Think about [r], in Z,)

Proposition 8 (Let ¢ : G; — G, be a homomorphism.)

The multiplication of equivalence classes in the set Gi/¢ is well-defined,
and Gy/¢ is a group under this multiplication. The natural projection

7TZGl—>Gl/qZ5

defined by m(a) = [a]y is a group homomorphism.

(Recall the multiplication of congruence classes in Z,,: [a]n[b], = [ab]n)
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Proof of Proposition 8

(i) Multiplication is well-defined:
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Proof of Proposition 8

(i) Multiplication is well-defined: show ac ~¢ bd if a ~y b and c ~¢ d.
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Proof of Proposition 8

(i) Multiplication is well-defined: show ac ~¢ bd if a ~y b and c ~¢ d.
If ¢(a) = ¢(b) and ¢(c) = ¢(d), then
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Proof of Proposition 8

(i) Multiplication is well-defined: show ac ~¢ bd if a ~y b and c ~¢ d.
If ¢(a) = ¢(b) and ¢(c) = ¢(d), then
¢(ac) = ¢(a)p(c) = ¢(b)¢(d) = ¢(bd).
(i) Associativity: (Check it!)
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(i) Multiplication is well-defined: show ac ~¢ bd if a ~y b and c ~¢ d.
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If ¢(a) = ¢(b) and ¢(c) = ¢(d), then
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(iii) Identity:
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Proof of Proposition 8

(i) Multiplication is well-defined: show ac ~¢ bd if a ~y b and c ~¢ d.
If ¢(a) = ¢(b) and ¢(c) = ¢(d), then
¢(ac) = ¢(a)p(c) = ¢(b)¢(d) = ¢(bd).

(ii) Associativity: (Check it!) For all a, b, c € Gy,

[l ([blslcls) = lalg[bely = [a(be)ls=[(ab)cly = ([als[b]s)[cls
(iii) Identity: The class [e]y is an identity element since for all a € Gi:

[elolals = [eals = [als and [als[e]s = [aely = [a]s

(iv) Inverses:

June 10-11, 2020 18 / 23



Proof of Proposition 8

(i) Multiplication is well-defined: show ac ~¢ bd if a ~y b and c ~¢ d.
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(i) Multiplication is well-defined: show ac ~¢ bd if a ~y b and c ~¢ d.
If ¢(a) = ¢(b) and ¢(c) = ¢(d), then
¢(ac) = ¢(a)p(c) = ¢(b)¢(d) = ¢(bd).
(ii) Associativity: (Check it!) For all a, b, c € Gy,
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Thus, G1/¢ is a group under the multiplication of equivalence classes.
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Proof of Proposition 8

(i) Multiplication is well-defined: show ac ~¢ bd if a ~y b and c ~¢ d.
If ¢(a) = ¢(b) and ¢(c) = ¢(d), then
¢(ac) = ¢(a)p(c) = ¢(b)¢(d) = ¢(bd).
(ii) Associativity: (Check it!) For all a, b, c € Gy,
[l ([blslcls) = lalg[bely = [a(be)ls=[(ab)cly = ([als[b]s)[cls
(iii) Identity: The class [e]y is an identity element since for all a € Gi:
[elolals = [eals = [als and [als[e]s = [aely = [a]s
(iv) Inverses: For any equivalence class [a], its inverse is [a~ 1], since
[a slale = [a7*als = [ely and  [alg[a~ ]y = [aa~ ]y = [e]s
Thus, G1/¢ is a group under the multiplication of equivalence classes.

Define the natural projection 7 : Gi — Gi/¢ by m(a) = [a]s.
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Proof of Proposition 8

(i) Multiplication is well-defined: show ac ~¢ bd if a ~y b and c ~¢ d.
If ¢(a) = ¢(b) and ¢(c) = ¢(d), then
¢(ac) = ¢(a)p(c) = ¢(b)¢(d) = ¢(bd).
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(iii) Identity: The class [e]y is an identity element since for all a € Gi:
[elolals = [eals = [als and [als[e]s = [aely = [a]s
(iv) Inverses: For any equivalence class [a], its inverse is [a~ 1], since
[a slale = [a7*als = [ely and  [alg[a~ ]y = [aa~ ]y = [e]s
Thus, G1/¢ is a group under the multiplication of equivalence classes.

Define the natural projection 7 : Gi — Gi/¢ by m(a) = [a]s.
7 is a group homomorphism: (Check it!) For all a, b € G,
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Proof of Proposition 8

(i) Multiplication is well-defined: show ac ~¢ bd if a ~y b and c ~¢ d.
If ¢(a) = ¢(b) and ¢(c) = ¢(d), then
¢(ac) = ¢(a)p(c) = ¢(b)¢(d) = ¢(bd).
(ii) Associativity: (Check it!) For all a, b, c € Gy,
[l ([blslcls) = lalg[bely = [a(be)ls=[(ab)cly = ([als[b]s)[cls
(iii) Identity: The class [e]y is an identity element since for all a € Gi:
[elolals = [eals = [als and [als[e]s = [aely = [a]s
(iv) Inverses: For any equivalence class [a], its inverse is [a~ 1], since
[a slale = [a7*als = [ely and  [alg[a~ ]y = [aa~ ]y = [e]s
Thus, G1/¢ is a group under the multiplication of equivalence classes.

Define the natural projection 7 : Gi — Gi/¢ by m(a) = [a]s.
7 is a group homomorphism: (Check it!) For all a, b € G,

m(ab) = [ably = [a]s[b]y = m(a)m (D).
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An extremely important theorem

Theorem 15 (Let ¢ : G; — G, be a homomorphism.)
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An extremely important theorem

Theorem 15 (Let ¢ : G; — G, be a homomorphism.)

There exists a group isomorphism ¢ : Gy /¢ — ¢(G1), where ¢ is defined by
#([aly) = #(a), for all [a], € Gi/.

Note
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An extremely important theorem

Theorem 15 (Let ¢ : G; — G, be a homomorphism.)

There exists a group isomorphism ¢ : Gy /¢ — ¢(G1), where ¢ is defined by
[a]¢) ¢(a), for all [a]¢ € Gi/¢.

o
G Gi/¢ i> »(G1) —% Gy : ¢ = 1o, vis the inclusion mapping
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An extremely important theorem

Theorem 15 (Let ¢ : G; — G, be a homomorphism.)

There exists a group isomorphism ¢ : Gy /¢ — ¢(Gy), where ¢ is defined by

[alg) = @(a), for all [a], € G1/¢.

o
G = Gi/¢ i> #(G1) —= Gy : ¢ = 1o, v is the inclusion mapping
Proof
(i) well-defined: If [a], = [b]s, then ¢(a) = B(b). So B([als) = ¢([b]s)-

(ii) one-to-one:
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Theorem 15 (Let ¢ : G; — G, be a homomorphism.)

There exists a group isomorphism ¢ : Gy /¢ — ¢(Gy), where ¢ is defined by
[al¢) = #(a), for all [a] € G1/¢.

(
G = Gi/¢ 2, #(G1) —= Gy : ¢ = 1o, v is the inclusion mapping
Proof
(i) well-defined: If [a], = [b]s, then ¢(a) = B(b). So B([als) = ¢([b]s)-
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An extremely important theorem

Theorem 15 (Let ¢ : G; — G, be a homomorphism.)

There exists a group isomorphism ¢ : Gy /¢ — ¢(Gy), where ¢ is defined by
[al¢) = #(a), for all [a] € G1/¢.

(
G = Gi/¢ 2, #(G1) —= Gy : ¢ = 1o, v is the inclusion mapping
Proof
(i) well-defined: If [a], = [b]s, then ¢(a) = B(b). So B([als) = ¢([b]s)-
(i) one-to-one: If ¢([aly) = ¢([b]s), then ¢(a) = B(b). So [a]y = [b]e-
(i} onto: im(3) = {F([als) | 2 € Gi} = {#(2) | a € Gi} = im(g) =

y
June 10-11, 2020 19 /23




An extremely important theorem

Theorem 15 (Let ¢ : G; — G, be a homomorphism.)

There exists a group isomorphism ¢ : Gy /¢ — ¢(Gy), where ¢ is defined by
[al¢) = #(a), for all [a] € G1/¢.

(
G = Gi/¢ 2, #(G1) —= Gy : ¢ = 1o, v is the inclusion mapping
Proof
(i) well-defined: If [a], = [b]s, then ¢(a) = B(b). So B([als) = ¢([b]s)-
(i) one-to-one: If ¢([aly) = ¢([b]s), then ¢(a) = B(b). So [a]y = [b]e-
(iii) onto: im(¢) = {é([aly) | 2 € G1} = {(a) | 2 € G1} = im(¢) = $(G1)
(

iv) ¢ is a group homomorphism:

y
June 10-11, 2020 19 /23




An extremely important theorem

Theorem 15 (Let ¢ : G; — G, be a homomorphism.)

There exists a group isomorphism ¢ : Gy /¢ — ¢(Gy), where ¢ is defined by
[al¢) = #(a), for all [a] € G1/¢.

(
G = Gi/¢ 2, #(G1) —= Gy : ¢ = 1o, v is the inclusion mapping
Proof
(i) well-defined: If [a], = [b]s, then ¢(a) = B(b). So B([als) = ¢([b]s)-
(i) one-to-one: If ¢([aly) = ¢([b]s), then ¢(a) = B(b). So [a]y = [b]e-
(iii) onto: im(¢) = {é([aly) | 2 € G1} = {(a) | 2 € G1} = im(¢) = $(G1)
(

iv) ¢ is a group homomorphism: For any [a]s, [bls € G1/¢,

y
June 10-11, 2020 19 /23




An extremely important theorem

Theorem 15 (Let ¢ : G; — G, be a homomorphism.)

There exists a group isomorphism ¢ : Gy /¢ — ¢(Gy), where ¢ is defined by

o([alg) = ¢(a), for all [a]y € G1/o.

G = Gi/¢ 2, #(G1) —= Gy : ¢ = 1o, v is the inclusion mapping
(i) well-defined: If [a], = [b]s, then ¢(a) = B(b). So B([als) = ¢([b]s)-
(i) one-to-one: If ¢([aly) = ¢([b]s), then ¢(a) = B(b). So [a]y = [b]e-
(iii) onto: im(¢) = {é([aly) | 2 € G1} = {(a) | 2 € G1} = im(¢) = $(G1)
(iv) ¢ is a group homomorphism: For any [aly, [b]s € G1/¢,

#([als[bls) = é([ably) = é(ab) = p(a)p(b) = é([als)H([blo)-
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Example: Characterization of cyclic groups

Theorem 16 (Theorem 2 in §3.5)

Every cyclic group G is isomorphic to either Z or Z,,, for some n € Z+.

Another proof: (Using Theorem 15).
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and only if m = k (mod n). This shows that Z/¢ is the additive
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Example: Characterization of cyclic groups

Theorem 16 (Theorem 2 in §3.5)

Every cyclic group G is isomorphic to either Z or Z,,, for some n € Z+.

Another proof: (Using Theorem 15).

Given G = (a), define ¢ : Z — G by ¢(m) = a™. (Example 5: ¢ is onto)
e If o(a) = oo, then ¢ is one-to-one. (Why?) So Z = ¢(Z)= G(Why?)
Since ¢ is one-to-one, the equivalence classes of the factor set Z/¢ are

just the subsets of Z consisting of single elements, and thus Z itself.

o If o(a) = n, then a™ = a¥ & m = k (mod n). Thus, ¢(m) = ¢(k) if

and only if m = k (mod n). This shows that Z/¢ is the additive
group of congruence classes modulo n. Therefore, G = Z,. (Why?)
By Theorem 15, Z/¢p = ¢(Z)= G & Z /¢ = Z,,.

[]
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Example: Another proof of Cayley's theorem (use Thm 15)

Cayley’s theorem: Every group is isomorphic to a permutation group.
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Example: Another proof of Cayley's theorem (use Thm 15)

Cayley’s theorem: Every group is isomorphic to a permutation group.

Given any group G, define ¢ : G — Sym(G) by ¢(a) = \,, for any a € G,
where \; (€ Sym(G)) is the function defined by \,(x) = ax for all x € G.

¢ is a homomorphism: For all a,b € G, ¢(ab) = Aop = Aarp = ¢(a)o(b).
one-to-one: A, is the identity permutation only if a = e. So ker(¢) = {e}.

Since ¢ is one-to-one, the equivalence classes of the factor set G/¢ are just
the subsets of G consisting of single elements, and thus G itself. Thus,

G = ¢(G). (Why?) [Theorem 15!]

And ¢(G) is a permutation group.(Why?) [¢(G) is a subgroup of Sym(G)]
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G/ ker(¢): The more standard notation for G/¢

Proposition 9 (Let ¢ : G; — G, be a homomorphism, and a, b € G;.)
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G/ ker(¢): The more standard notation for G/¢

Proposition 9 (Let ¢ : G; — G, be a homomorphism, and a, b € G;.)
The following conditions are equivalent:
) ¢(a) = ¢(b);
ab~! € ker(¢);
3) a = kb for some k € ker(¢);

2)
)
4) b1la € ker(¢);
)
)

5) a = bk for some k € ker(¢);

(1
(
(
(
(
(

1)=(2)
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G/ ker(¢): The more standard notation for G/¢

Proposition 9 (Let ¢ : G; — G, be a homomorphism, and a, b € G;.)

The following conditions are equivalent:

) #(a) = o(b);

2) ab~! € ker(¢);

3) a = kb for some k € ker(¢);

4) b1la € ker(¢);
)
)

5) a = bk for some k € ker(¢);

(1
(
(
(
(
(

1) = (2) ¢(a) = ¢(b) =
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G/ ker(¢): The more standard notation for G/¢

Proposition 9 (Let ¢ : G; — G, be a homomorphism, and a, b € G;.)

The following conditions are equivalent:
) ¢(a) = ¢(b);

ab~! € ker(¢);
3) a = kb for some k € ker(¢);

2)
)
4) b1la € ker(¢);
)
)

5) a = bk for some k € ker(¢);

(1
(
(
(
(
(

1) = (2) ¢(a) = ¢(b) = ¢(a)($(b)) " = d(ab™!) = e =
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G/ ker(¢): The more standard notation for G/¢

Proposition 9 (Let ¢ : G; — G, be a homomorphism, and a, b € G;.)

The following conditions are equivalent:

v
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G/ ker(¢): The more standard notation for G/¢

Proposition 9 (Let ¢ : G; — G, be a homomorphism, and a, b € G;.)

The following conditions are equivalent:

1) ¢(a) = &(b);

v

1) = (2) ¢(a) = ¢(b) = ¢(a)(¢(b)) ' = d(ab™!) = e2 = ab™* € ker(¢)
2) = (3) If ab™! = k € ker(¢), then a = kb.
3) =

—~ o~ A~ ~ o~ A~ o~ —~
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G/ ker(¢): The more standard notation for G/¢

Proposition 9 (Let ¢ : G; — G, be a homomorphism, and a, b € G;.)
The following conditions are equivalent:

1) ¢(a) = &(b);

v

1) = (2) ¢(a) = ¢(b) = ¢(a)(¢(b)) ' = d(ab™!) = e2 = ab™* € ker(¢)
2) = (3) If ab™! = k € ker(¢), then a = kb.
3) =

(1) If a = kb, then ¢(a) = ¢(kb) = ¢(k)$(b) = e2¢p(b) = ¢(b).

—~ o~ A~ ~ o~ A~ o~ —~
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G/ ker(¢): The more standard notation for G/¢

Proposition 9 (Let ¢ : G; — G, be a homomorphism, and a, b € G;.)

The following conditions are equivalent:
(1) ¢(a) = ¢(b);

(2) ab~! € ker(9);

(3) a = kb for some k € ker(¢);
(4) bla € ker(¢);

(5) a = bk for some k € ker(¢),
(1) =

(2) =

v

1) = (2) ¢(a) = d(b) = ¢(a)(d(b)) ™+ = d(ab™!) = e2 = ab~* € ker(¢)
2) = (3) If ab™! = k € ker(¢), then a = kb.
3

(3) = (1) If a = kb, then ¢(a) = ¢(kb) = ¢(k)$(b) = ex¢(b) = ¢(b).
Similarly it can be shown that (1) implies (4) implies (5) implies (1). [

Lemma 17 (Lemma 19 in §3.2: Let H be a subgroup of the group G.)
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Proposition 9 (Let ¢ : G; — G, be a homomorphism, and a, b € G;.)

The following conditions are equivalent:
(1) ¢(a) = ¢(b);

(2) ab~! € ker(9);

(3) a= kb for some k € ker(¢),

(4) b~"a € ker(¢);

(5) a = bk for some k € ker(¢),

(1)

(2) =

v
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Similarly it can be shown that (1) implies (4) implies (5) implies (1). [

=

Lemma 17 (Lemma 19 in §3.2: Let H be a subgroup of the group G.)

For a,b € G definea~ b ifab™t € H. Then ~ is an equivalence relation.

Yi Homomorphisms June 10-11, 2020 22 /23



G/ ker(¢): The more standard notation for G/¢
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(3) a = kb for some k € ker(¢);
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Similarly it can be shown that (1) implies (4) implies (5) implies (1). [

=

Lemma 17 (Lemma 19 in §3.2: Let H be a subgroup of the group G.)

For a,b € G definea~ b ifab™t € H. Then ~ is an equivalence relation.

By Proposition 9, we let H = ker(¢).
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G/ ker(¢): The more standard notation for G/¢

Proposition 9 (Let ¢ : G; — G, be a homomorphism, and a, b € G;.)

The following conditions are equivalent:
(1) ¢(a) = ¢(b);

(2) ab~! € ker(9);

(3) a = kb for some k € ker(¢);
(4) bla € ker(¢);

(5) a = bk for some k € ker(¢),
(1)

(2) =

v

1) = (2) ¢(a) = ¢(b) = ¢(a)(¢(b)) ™! = ¢(ab™") = ez = ab™" € ker(¢)
2) = (3) If ab™! = k € ker(¢), then a = kb.

(3) = (1) If a = kb, then ¢(a) = ¢(kb) = ¢(k)$(b) = ex¢(b) = ¢(b).
Similarly it can be shown that (1) implies (4) implies (5) implies (1). [

=

Lemma 17 (Lemma 19 in §3.2: Let H be a subgroup of the group G.)

For a,b € G definea~ b ifab™t € H. Then ~ is an equivalence relation.

B Proposmon 9, we let H = ker(¢). Then, we write G/ ker(¢) for G/¢

Homomorphlsms June 10-11, 2020



Some remarks

Remark 1 (Restate Theorem 15)

Yi Homomorphisms June 10-11, 2020 23 /23



Some remarks
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Some remarks

Remark 1 (Restate Theorem 15)
Let ¢ : G — Go be a homomorphism. Then Gi/ ker(¢) = ¢(G1) = im(¢).

Remark 2 (Let ¢ : G; — G, be a homomorphism of abelian groups.)

With operations denoted additively, then Prop.9 has the following form:
For a, b € Gy, the following conditions are equivalent:

(1) ¢(a) = ¢(b);
(2) a— b € ker(o);
(3) a= b+ k for some k € ker(¢).

Example 18 (A special case of Proposition 4: m = 1)
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Remark 1 (Restate Theorem 15)

Let ¢ : G — Go be a homomorphism. Then Gi/ ker(¢) = ¢(G1) = im(¢).

Remark 2 (Let ¢ : G; — G, be a homomorphism of abelian groups.)
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