$\S3.6$ Permutation Groups

Shaoyun Yi

MATH 546/701I

University of South Carolina

June 3-4, 2020

• Every subgroup of a cyclic group G is cyclic.

- Every subgroup of a cyclic group G is cyclic.
- Let G be a cyclic group. $\left\{ \right.$

• Every *subgroup* of a cyclic group *G* is cyclic.

• Let G be a cyclic group. $\begin{cases} If G \text{ is infinite, then } G \cong \mathbb{Z}. \end{cases}$

• Every *subgroup* of a cyclic group G is cyclic.

• Let G be a cyclic group. $\begin{cases} If G \text{ is infinite, then } G \cong \mathbb{Z}, \\ If |G| = n, \text{ then } G \cong \mathbb{Z}_n. \end{cases}$

- Every *subgroup* of a cyclic group *G* is cyclic.
- Let G be a cyclic group. $\begin{cases}
 If G is infinite, then G \cong Z, \\
 If |G| = n, then G \cong Z_n.
 \end{cases}$
- (a) Any two infinite cyclic groups are isomorphic to each other.

- Every *subgroup* of a cyclic group *G* is cyclic.
- Let G be a cyclic group. $\begin{cases}
 If G \text{ is infinite, then } G \cong \mathbb{Z}, \\
 If |G| = n, \text{ then } G \cong \mathbb{Z}_n.
 \end{cases}$
- (a) Any two infinite cyclic groups are isomorphic to each other.
 (b) Two finite cyclic groups are isomorphic ⇔ they have the same order.
- Subgroups of **Z** :

- Every *subgroup* of a cyclic group *G* is cyclic.
- Let G be a cyclic group. $\begin{cases} If G \text{ is infinite, then } G \cong \mathbb{Z}, \\ If |G| = n, \text{ then } G \cong \mathbb{Z}_n. \end{cases}$
- (a) Any two infinite cyclic groups are isomorphic to each other.
 (b) Two finite cyclic groups are isomorphic ⇔ they have the same order.
- Subgroups of Z : For any $m \in Z$, $mZ = \langle m \rangle \cong Z = \langle 1 \rangle = \langle -1 \rangle$.

- Every *subgroup* of a cyclic group *G* is cyclic.
- Let G be a cyclic group. $\begin{cases} If G \text{ is infinite, then } G \cong \mathbb{Z}, \\ If |G| = n, \text{ then } G \cong \mathbb{Z}_n. \end{cases}$
- (a) Any two infinite cyclic groups are isomorphic to each other.
 (b) Two finite cyclic groups are isomorphic ⇔ they have the same order.
- Subgroups of **Z** : For any $m \in \mathbf{Z}$, $m\mathbf{Z} = \langle m \rangle \cong \mathbf{Z} = \langle 1 \rangle = \langle -1 \rangle$.
 - $m\mathbf{Z} \subseteq n\mathbf{Z} \Leftrightarrow n | m$. $m\mathbf{Z} = n\mathbf{Z} \Leftrightarrow m = \pm n$.
- Subgroups of **Z**_n :

- Every *subgroup* of a cyclic group *G* is cyclic.
- Let G be a cyclic group. $\begin{cases} If G \text{ is infinite, then } G \cong \mathbb{Z}, \\ If |G| = n, \text{ then } G \cong \mathbb{Z}_n. \end{cases}$
- (a) Any two infinite cyclic groups are isomorphic to each other.
 (b) Two finite cyclic groups are isomorphic ⇔ they have the same order.
- Subgroups of Z : For any $m \in Z$, $mZ = \langle m \rangle \cong Z = \langle 1 \rangle = \langle -1 \rangle$.
 - $m\mathbf{Z} \subseteq n\mathbf{Z} \Leftrightarrow n | m$. $m\mathbf{Z} = n\mathbf{Z} \Leftrightarrow m = \pm n$.
- Subgroups of Z_n : For any $d|n, dZ_n = \langle [d]_n \rangle \rightsquigarrow$ subgroup diagram

- Every *subgroup* of a cyclic group *G* is cyclic.
- Let G be a cyclic group. $\begin{cases} If G \text{ is infinite, then } G \cong \mathbb{Z}, \\ If |G| = n, \text{ then } G \cong \mathbb{Z}_n. \end{cases}$
- (a) Any two infinite cyclic groups are isomorphic to each other.
 (b) Two finite cyclic groups are isomorphic ⇔ they have the same order.
- Subgroups of Z : For any $m \in Z$, $mZ = \langle m \rangle \cong Z = \langle 1 \rangle = \langle -1 \rangle$.
 - $m\mathbf{Z} \subseteq n\mathbf{Z} \Leftrightarrow n | m$. $m\mathbf{Z} = n\mathbf{Z} \Leftrightarrow m = \pm n$.
- Subgroups of Z_n: For any d|n, dZ_n = ⟨[d]_n⟩ → subgroup diagram
 (a) Let d = gcd(m, n): ⟨[m]_n⟩ = ⟨[d]_n⟩ & |⟨[m]_n⟩| = |⟨[d]_n⟩| = n/d.

- Every *subgroup* of a cyclic group *G* is cyclic.
- Let G be a cyclic group. $\begin{cases}
 If G \text{ is infinite, then } G \cong \mathbb{Z}, \\
 If |G| = n, \text{ then } G \cong \mathbb{Z}_n.
 \end{cases}$
- (a) Any two infinite cyclic groups are isomorphic to each other.
 (b) Two finite cyclic groups are isomorphic ⇔ they have the same order.
 Subgroups of Z : For any m ∈ Z, mZ = ⟨m⟩ ≅ Z = ⟨1⟩ = ⟨-1⟩.
 mZ ⊆ nZ ⇔ n|m. mZ = nZ ⇔ m = ±n.
 Subgroups of Z_n : For any d|n, dZ_n = ⟨[d]_n⟩ → subgroup diagram

 (a) Let d = gcd(m, n) : ⟨[m]_n⟩ = ⟨[d]_n⟩ & |⟨[m]_n⟩| = |⟨[d]_n⟩| = n/d.
 (i) ⟨[k]_n⟩ = Z_n ⇔ gcd(k, n) = 1, i.e., [k]_n ∈ Z_n[×].

- Every *subgroup* of a cyclic group *G* is cyclic.
- Let G be a cyclic group. $\begin{cases}
 If G \text{ is infinite, then } G \cong \mathbb{Z}, \\
 If |G| = n, \text{ then } G \cong \mathbb{Z}_n.
 \end{cases}$
- (a) Any two infinite cyclic groups are isomorphic to each other.
 (b) Two finite cyclic groups are isomorphic ⇔ they have the same order.
 Subgroups of Z : For any m ∈ Z, mZ = ⟨m⟩ ≃ Z = ⟨1⟩ = ⟨-1⟩.
 mZ ⊆ nZ ⇔ n|m. mZ = nZ ⇔ m = ±n.
 Subgroups of Z_n : For any d|n, dZ_n = ⟨[d]_n⟩ → subgroup diagram

 (a) Let d = gcd(m, n) : ⟨[m]_n⟩ = ⟨[d]_n⟩ & |⟨[m]_n⟩| = |⟨[d]_n⟩| = n/d.
 (i) ⟨[k]_n⟩ = Z_n ⇔ gcd(k, n) = 1, i.e., [k]_n ∈ Z_n[×].
 (ii) If d₁|n and d₂|n, then ⟨[d₁]_n⟩ ⊆ ⟨[d₂]_n⟩ ⇔ d₂|d₁.

- Every *subgroup* of a cyclic group *G* is cyclic.
- Let G be a cyclic group. $\begin{cases}
 If G \text{ is infinite, then } G \cong \mathbb{Z}, \\
 If |G| = n, \text{ then } G \cong \mathbb{Z}_n.
 \end{cases}$
- (a) Any two infinite cyclic groups are isomorphic to each other.
 (b) Two finite cyclic groups are isomorphic ⇔ they have the same order.
 Subgroups of Z : For any m ∈ Z, mZ = ⟨m⟩ ≅ Z = ⟨1⟩ = ⟨-1⟩.
 mZ ⊆ nZ ⇔ n|m. mZ = nZ ⇔ m = ±n.
 Subgroups of Z_n : For any d|n, dZ_n = ⟨[d]_n⟩ → subgroup diagram

 (a) Let d = gcd(m, n) : ⟨[m]_n⟩ = ⟨[d]_n⟩ & |⟨[m]_n⟩| = |⟨[d]_n⟩| = n/d.
 (i) ⟨[k]_n⟩ = Z_n ⇔ gcd(k, n) = 1, i.e., [k]_n ∈ Z_n[×].
 (ii) If d₁|n and d₂|n, then ⟨[d₁]_n⟩ ⊆ ⟨[d₂]_n⟩ ⇔ d₂|d₁.

- Every *subgroup* of a cyclic group *G* is cyclic.
- Let G be a cyclic group. $\begin{cases}
 If G \text{ is infinite, then } G \cong \mathbb{Z}, \\
 If |G| = n, \text{ then } G \cong \mathbb{Z}_n.
 \end{cases}$
- (a) Any two infinite cyclic groups are isomorphic to each other.
 (b) Two finite cyclic groups are isomorphic ⇔ they have the same order.
 Subgroups of Z : For any m ∈ Z, mZ = ⟨m⟩ ≃ Z = ⟨1⟩ = ⟨-1⟩.
 mZ ⊆ nZ ⇔ n|m. mZ = nZ ⇔ m = ±n.
 Subgroups of Z_n : For any d|n, dZ_n = ⟨[d]_n⟩ → subgroup diagram

 (a) Let d = gcd(m, n) : ⟨[m]_n⟩ = ⟨[d]_n⟩ & |⟨[m]_n⟩| = |⟨[d]_n⟩| = n/d.
 (i) ⟨[k]_n⟩ = Z_n ⇔ gcd(k, n) = 1, i.e., [k]_n ∈ Z_n[×].
 (ii) If d₁|n and d₂|n, then ⟨[d₁]_n⟩ ⊆ ⟨[d₂]_n⟩ ⇔ d₂|d₁.
 (iii) If d₁|n and d₂|n and d₁ ≠ d₂, then ⟨[d₁]_n⟩ ≠ ⟨[d₂]_n⟩.

 Z_n ≃ Z<sub>p₁<sup>α₁</sub> × Z<sub>p₂<sup>α₂</sub> × ··· × Z_{p_m^{αm}} → φ(n) = n(1 1/p₁) ··· (1 1/p_m)
 </sub></sup></sub></sup>

- Every *subgroup* of a cyclic group *G* is cyclic.
- Let G be a cyclic group. $\begin{cases}
 If G \text{ is infinite, then } G \cong \mathbb{Z}, \\
 If |G| = n, \text{ then } G \cong \mathbb{Z}_n.
 \end{cases}$
- (a) Any two infinite cyclic groups are isomorphic to each other.
 (b) Two finite cyclic groups are isomorphic ⇔ they have the same order.
 Subgroups of Z : For any m ∈ Z, mZ = ⟨m⟩ ≃ Z = ⟨1⟩ = ⟨-1⟩.
 mZ ⊆ nZ ⇔ n|m. mZ = nZ ⇔ m = ±n.
 Subgroups of Z_n : For any d|n, dZ_n = ⟨[d]_n⟩ → subgroup diagram

 (a) Let d = gcd(m, n) : ⟨[m]_n⟩ = ⟨[d]_n⟩ & |⟨[m]_n⟩| = |⟨[d]_n⟩| = n/d.
 (i) ⟨[k]_n⟩ = Z_n ⇔ gcd(k, n) = 1, i.e., [k]_n ∈ Z_n[×].
 (ii) If d₁|n and d₂|n then ⟨[d₁]_n⟩ ⊆ ⟨[d₂]_n⟩ ⇔ d₂|d₁.
 (iii) If d₁|n and d₂|n and d₁ ≠ d₂, then ⟨[d₁]_n⟩ ≠ ⟨[d₂]_n⟩.

 Z_n ≃ Z<sub>p₁<sup>α₁</sub> × Z<sub>p₂<sup>α₂</sub> × ··· × Z_{p_m^{αm}} → φ(n) = n(1 1/p₁) ··· (1 1/p_m)
 Let G be a finite abelian group. Let N be the exponent of G.
 </sub></sup></sub></sup>

- Every *subgroup* of a cyclic group *G* is cyclic.
- Let G be a cyclic group. $\begin{cases}
 If G \text{ is infinite, then } G \cong \mathbb{Z}, \\
 If |G| = n, \text{ then } G \cong \mathbb{Z}_n.
 \end{cases}$
- (a) Any two infinite cyclic groups are isomorphic to each other. (b) Two finite cyclic groups are isomorphic \Leftrightarrow they have the same order. • Subgroups of **Z** : For any $m \in \mathbf{Z}$, $m\mathbf{Z} = \langle m \rangle \cong \mathbf{Z} = \langle 1 \rangle = \langle -1 \rangle$. • $m\mathbf{Z} \subset n\mathbf{Z} \Leftrightarrow n | m$. • $m\mathbf{Z} = n\mathbf{Z} \Leftrightarrow m = \pm n$. • Subgroups of Z_n : For any $d|n, dZ_n = \langle [d]_n \rangle \rightsquigarrow$ subgroup diagram (a) Let $d = \gcd(m, n)$: $\langle [m]_n \rangle = \langle [d]_n \rangle \& |\langle [m]_n \rangle| = |\langle [d]_n \rangle| = n/d$. (i) $\langle [k]_n \rangle = \mathbf{Z}_n \Leftrightarrow \gcd(k, n) = 1$, i.e., $[k]_n \in \mathbf{Z}_n^{\times}$. (ii) If $d_1|n$ and $d_2|n$, then $\langle [d_1]_n \rangle \subseteq \langle [d_2]_n \rangle \Leftrightarrow d_2|d_1$. (iii) If $d_1|n$ and $d_2|n$ and $d_1 \neq d_2$, then $\langle [d_1]_n \rangle \neq \langle [d_2]_n \rangle$. • $\mathsf{Z}_n \cong \mathsf{Z}_{p_1^{\alpha_1}} \times \mathsf{Z}_{p_2^{\alpha_2}} \times \cdots \times \mathsf{Z}_{p_m^{\alpha_m}} \rightsquigarrow \varphi(n) = n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_m})$ • Let G be a finite abelian group. Let N be the exponent of G. (a) $N = \max\{o(a) \mid a \in G\}$.

- Every *subgroup* of a cyclic group *G* is cyclic.
- Let G be a cyclic group. $\begin{cases}
 If G \text{ is infinite, then } G \cong \mathbb{Z}, \\
 If |G| = n, \text{ then } G \cong \mathbb{Z}_n.
 \end{cases}$
- (a) Any two infinite cyclic groups are isomorphic to each other. (b) Two finite cyclic groups are isomorphic \Leftrightarrow they have the same order. • Subgroups of **Z** : For any $m \in \mathbf{Z}$, $m\mathbf{Z} = \langle m \rangle \cong \mathbf{Z} = \langle 1 \rangle = \langle -1 \rangle$. • $m\mathbf{Z} \subseteq n\mathbf{Z} \Leftrightarrow n | m$. • $m\mathbf{Z} = n\mathbf{Z} \Leftrightarrow m = \pm n$. • Subgroups of Z_n : For any $d|n, dZ_n = \langle [d]_n \rangle \rightsquigarrow$ subgroup diagram (a) Let $d = \gcd(m, n)$: $\langle [m]_n \rangle = \langle [d]_n \rangle \& |\langle [m]_n \rangle| = |\langle [d]_n \rangle| = n/d$. (i) $\langle [k]_n \rangle = \mathbf{Z}_n \Leftrightarrow \gcd(k, n) = 1$, i.e., $[k]_n \in \mathbf{Z}_n^{\times}$. (ii) If $d_1|n$ and $d_2|n$, then $\langle [d_1]_n \rangle \subseteq \langle [d_2]_n \rangle \Leftrightarrow d_2|d_1$. (iii) If $d_1|n$ and $d_2|n$ and $d_1 \neq d_2$, then $\langle [d_1]_n \rangle \neq \langle [d_2]_n \rangle$. • $\mathsf{Z}_n \cong \mathsf{Z}_{p_1^{\alpha_1}} \times \mathsf{Z}_{p_2^{\alpha_2}} \times \cdots \times \mathsf{Z}_{p_m^{\alpha_m}} \rightsquigarrow \varphi(n) = n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_m})$ • Let G be a finite abelian group. Let N be the exponent of G. (a) $N = \max\{o(a) \mid a \in G\}.$ (b) The group G is cyclic $\Leftrightarrow N = |G|$.

- Every *subgroup* of a cyclic group *G* is cyclic.
- Let G be a cyclic group. $\begin{cases}
 If G \text{ is infinite, then } G \cong \mathbb{Z}, \\
 If |G| = n, \text{ then } G \cong \mathbb{Z}_n.
 \end{cases}$
- (a) Any two infinite cyclic groups are isomorphic to each other. (b) Two finite cyclic groups are isomorphic \Leftrightarrow they have the same order. • Subgroups of **Z** : For any $m \in \mathbf{Z}$, $m\mathbf{Z} = \langle m \rangle \cong \mathbf{Z} = \langle 1 \rangle = \langle -1 \rangle$. • $m\mathbf{Z} \subset n\mathbf{Z} \Leftrightarrow n | m$. • $m\mathbf{Z} = n\mathbf{Z} \Leftrightarrow m = \pm n$. • Subgroups of Z_n : For any d|n, $dZ_n = \langle [d]_n \rangle \rightsquigarrow$ subgroup diagram (a) Let $d = \gcd(m, n) : \langle [m]_n \rangle = \langle [d]_n \rangle \& |\langle [m]_n \rangle| = |\langle [d]_n \rangle| = n/d$. (i) $\langle [k]_n \rangle = \mathbf{Z}_n \Leftrightarrow \gcd(k, n) = 1$, i.e., $[k]_n \in \mathbf{Z}_n^{\times}$. (ii) If $d_1|n$ and $d_2|n$, then $\langle [d_1]_n \rangle \subset \langle [d_2]_n \rangle \Leftrightarrow d_2|d_1$. (iii) If $d_1|n$ and $d_2|n$ and $d_1 \neq d_2$, then $\langle [d_1]_n \rangle \neq \langle [d_2]_n \rangle$. • $\mathsf{Z}_n \cong \mathsf{Z}_{p_1^{\alpha_1}} \times \mathsf{Z}_{p_2^{\alpha_2}} \times \cdots \times \mathsf{Z}_{p_m^{\alpha_m}} \rightsquigarrow \varphi(n) = n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_m})$ • Let G be a finite abelian group. Let N be the exponent of G. (a) $N = \max\{o(a) \mid a \in G\}.$
 - (b) The group G is cyclic $\Leftrightarrow N = |G|$.

• For small *n*, check \mathbf{Z}_n^{\times} cyclic or not without using *primitive root thm*.

- A **permutation** *σ* of a set *S* is a function from *S* to *S* that is both one-to-one and onto.
- Notation:

- A **permutation** *σ* of a set *S* is a function from *S* to *S* that is both one-to-one and onto.
- Notation: Sym(S) = { $\sigma \mid \sigma : S \to S$ } or write S_n if $S = \{1, 2, ..., n\}$.

- A permutation σ of a set S is a function from S to S that is both one-to-one and onto.
- Notation: Sym(S) = { $\sigma \mid \sigma : S \to S$ } or write S_n if $S = \{1, 2, ..., n\}$.
- Sym(S) is a group under \circ . S_n is the symmetric group of degree n.

- A permutation σ of a set S is a function from S to S that is both one-to-one and onto.
- Notation: Sym(S) = { $\sigma \mid \sigma : S \to S$ } or write S_n if $S = \{1, 2, \dots, n\}$.
- Sym(S) is a group under \circ . S_n is the symmetric group of degree n.

•
$$|S_n| = n!$$

- A permutation σ of a set S is a function from S to S that is both one-to-one and onto.
- Notation: Sym(S) = { $\sigma \mid \sigma : S \to S$ } or write S_n if $S = \{1, 2, ..., n\}$.
- Sym(S) is a group under \circ . S_n is the symmetric group of degree n.
- $|S_n| = n!$
- Let $\sigma \in \text{Sym}(S)$. Then $\sigma = (a_1 a_2 \cdots a_k)$ is a cycle of length k.

- A **permutation** *σ* of a set *S* is a function from *S* to *S* that is both one-to-one and onto.
- Notation: Sym(S) = { $\sigma \mid \sigma : S \to S$ } or write S_n if $S = \{1, 2, ..., n\}$.
- Sym(S) is a group under \circ . S_n is the symmetric group of degree n.
- $|S_n| = n!$
- Let $\sigma \in \text{Sym}(S)$. Then $\sigma = (a_1a_2\cdots a_k)$ is a cycle of length k.
- Disjoint cycles are commutative

- A permutation σ of a set S is a function from S to S that is both one-to-one and onto.
- Notation: Sym(S) = { $\sigma \mid \sigma : S \to S$ } or write S_n if $S = \{1, 2, ..., n\}$.
- Sym(S) is a group under \circ . S_n is the symmetric group of degree n.
- $|S_n| = n!$
- Let $\sigma \in \text{Sym}(S)$. Then $\sigma = (a_1a_2\cdots a_k)$ is a cycle of length k.
- Disjoint cycles are commutative
- $\sigma \in S_n$ can be written as a (unique) product of disjoint cycles.

- A permutation σ of a set S is a function from S to S that is both one-to-one and onto.
- Notation: Sym(S) = { $\sigma \mid \sigma : S \to S$ } or write S_n if $S = \{1, 2, ..., n\}$.
- Sym(S) is a group under \circ . S_n is the symmetric group of degree n.
- $|S_n| = n!$
- Let $\sigma \in \text{Sym}(S)$. Then $\sigma = (a_1a_2\cdots a_k)$ is a cycle of length k.
- Disjoint cycles are commutative
- $\sigma \in S_n$ can be written as a (unique) product of disjoint cycles.
- A cycle σ of length m has order m, i.e., $o(\sigma) = m$.

- A permutation σ of a set S is a function from S to S that is both one-to-one and onto.
- Notation: Sym(S) = { $\sigma \mid \sigma : S \to S$ } or write S_n if $S = \{1, 2, ..., n\}$.
- Sym(S) is a group under \circ . S_n is the symmetric group of degree n.
- $|S_n| = n!$
- Let $\sigma \in \text{Sym}(S)$. Then $\sigma = (a_1a_2\cdots a_k)$ is a cycle of length k.
- Disjoint cycles are commutative
- $\sigma \in S_n$ can be written as a (unique) product of disjoint cycles.
- A cycle σ of length m has order m, i.e., $o(\sigma) = m$.
- The order of σ is the **lcm** of the *lengths* (*orders*) of its disjoint cycles.

- A permutation σ of a set S is a function from S to S that is both one-to-one and onto.
- Notation: Sym(S) = { $\sigma \mid \sigma : S \to S$ } or write S_n if $S = \{1, 2, ..., n\}$.
- Sym(S) is a group under \circ . S_n is the symmetric group of degree n.
- $|S_n| = n!$
- Let $\sigma \in \text{Sym}(S)$. Then $\sigma = (a_1a_2\cdots a_k)$ is a cycle of length k.
- Disjoint cycles are commutative
- $\sigma \in S_n$ can be written as a (unique) product of disjoint cycles.
- A cycle σ of length m has order m, i.e., $o(\sigma) = m$.
- The order of σ is the **lcm** of the *lengths* (*orders*) of its disjoint cycles.
- A transposition is a cycle (a_1a_2) of length two.

- A permutation σ of a set S is a function from S to S that is both one-to-one and onto.
- Notation: Sym(S) = { $\sigma \mid \sigma : S \to S$ } or write S_n if $S = \{1, 2, ..., n\}$.
- Sym(S) is a group under \circ . S_n is the symmetric group of degree n.
- $|S_n| = n!$
- Let $\sigma \in \text{Sym}(S)$. Then $\sigma = (a_1a_2\cdots a_k)$ is a cycle of length k.
- Disjoint cycles are commutative
- $\sigma \in S_n$ can be written as a (unique) product of disjoint cycles.
- A cycle σ of length m has order m, i.e., $o(\sigma) = m$.
- The order of σ is the **lcm** of the *lengths* (*orders*) of its disjoint cycles.
- A transposition is a cycle (a_1a_2) of length two.
- $\sigma \in S_n$ can be written as a (NOT unique) product of transpositions.

- A permutation σ of a set S is a function from S to S that is both one-to-one and onto.
- Notation: Sym(S) = { $\sigma \mid \sigma : S \to S$ } or write S_n if $S = \{1, 2, ..., n\}$.
- Sym(S) is a group under \circ . S_n is the symmetric group of degree n.
- $|S_n| = n!$
- Let $\sigma \in \text{Sym}(S)$. Then $\sigma = (a_1a_2\cdots a_k)$ is a cycle of length k.
- Disjoint cycles are commutative
- $\sigma \in S_n$ can be written as a (unique) product of disjoint cycles.
- A cycle σ of length m has order m, i.e., $o(\sigma) = m$.
- The order of σ is the **lcm** of the *lengths* (*orders*) of its disjoint cycles.
- A transposition is a cycle (a_1a_2) of length two.
- $\sigma \in S_n$ can be written as a (NOT unique) product of transpositions.
- Product of transpositions: Even permutation vs. Odd permutation

- A permutation σ of a set S is a function from S to S that is both one-to-one and onto.
- Notation: Sym(S) = { $\sigma \mid \sigma : S \to S$ } or write S_n if $S = \{1, 2, ..., n\}$.
- Sym(S) is a group under \circ . S_n is the symmetric group of degree n.
- $|S_n| = n!$
- Let $\sigma \in \text{Sym}(S)$. Then $\sigma = (a_1a_2\cdots a_k)$ is a cycle of length k.
- Disjoint cycles are commutative
- $\sigma \in S_n$ can be written as a (unique) product of disjoint cycles.
- A cycle σ of length m has order m, i.e., $o(\sigma) = m$.
- The order of σ is the **lcm** of the *lengths* (*orders*) of its disjoint cycles.
- A transposition is a cycle (a_1a_2) of length two.
- $\sigma \in S_n$ can be written as a (NOT unique) product of transpositions.
- Product of transpositions: Even permutation vs. Odd permutation
- A cycle of odd length is even. & A cycle of even length is odd.

Any subgroup of the symmetric group Sym(S) on a set S is called a **permutation group**.

Note 1 (Let G be a finite group.)

Any subgroup of the symmetric group Sym(S) on a set S is called a **permutation group**.

Note 1 (Let G be a finite group.)

As we have observed, each row in the multiplication table represents a permutation of the group elements.

Any subgroup of the symmetric group Sym(S) on a set S is called a **permutation group**.

Note 1 (Let G be a finite group.)

As we have observed, each row in the multiplication table represents a permutation of the group elements. Furthermore, each row corresponds to multiplication by a given element,

Any subgroup of the symmetric group Sym(S) on a set S is called a **permutation group**.

Note 1 (Let G be a finite group.)

As we have observed, each row in the multiplication table represents a permutation of the group elements. Furthermore, each row corresponds to multiplication by a given element, and so there is a natural way to assign a permutation to each element $a \in G$.

Definition 1

Any subgroup of the symmetric group Sym(S) on a set S is called a **permutation group**.

Note 1 (Let G be a finite group.)

As we have observed, each row in the multiplication table represents a permutation of the group elements. Furthermore, each row corresponds to multiplication by a given element, and so there is a natural way to assign a permutation to each element $a \in G$.

In fact, this natural way will be important in the proof of Cayley's theorem.

Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Every group G is isomorphic to a permutation group.

Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$, for all $x \in G$.

Every group G is isomorphic to a permutation group.

Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$, for all $x \in G$.

• λ_a is one-to-one:

Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$, for all $x \in G$.

- λ_a is one-to-one: if $\lambda_a(x_1) = \lambda_a(x_2) \Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2$. (Why?)
- λ_a is onto:

Every group G is isomorphic to a permutation group.

Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$, for all $x \in G$.

• λ_a is one-to-one: if $\lambda_a(x_1) = \lambda_a(x_2) \Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2$. (Why?)

• λ_a is onto: For any $x \in G$, we have $\lambda_a(a^{-1}x) = a(a^{-1}x) = x$. (Why?)

Every group G is isomorphic to a permutation group.

Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$, for all $x \in G$.

• λ_a is one-to-one: if $\lambda_a(x_1) = \lambda_a(x_2) \Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2$. (Why?)

• λ_a is onto: For any $x \in G$, we have $\lambda_a(a^{-1}x) = a(a^{-1}x) = x$. (Why?)

Thus, λ_a is a permutation of *G*.

Every group G is isomorphic to a permutation group.

Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$, for all $x \in G$.

• λ_a is one-to-one: if $\lambda_a(x_1) = \lambda_a(x_2) \Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2$. (Why?)

• λ_a is onto: For any $x \in G$, we have $\lambda_a(a^{-1}x) = a(a^{-1}x) = x$. (Why?)

Thus, λ_a is a permutation of G. This shows that $\phi : G \to \text{Sym}(G)$ defined by $\phi(a) = \lambda_a$ is well-defined.

Every group G is isomorphic to a permutation group.

Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$, for all $x \in G$.

• λ_a is one-to-one: if $\lambda_a(x_1) = \lambda_a(x_2) \Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2$. (Why?)

• λ_a is onto: For any $x \in G$, we have $\lambda_a(a^{-1}x) = a(a^{-1}x) = x$. (Why?)

Thus, λ_a is a permutation of G. This shows that $\phi : G \to \text{Sym}(G)$ defined by $\phi(a) = \lambda_a$ is well-defined. *Claim:* $G_{\lambda} = \phi(G)$ is a subgroup of Sym(G).

Every group G is isomorphic to a permutation group.

Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$, for all $x \in G$.

- λ_a is one-to-one: if $\lambda_a(x_1) = \lambda_a(x_2) \Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2$. (Why?)
- λ_a is onto: For any $x \in G$, we have $\lambda_a(a^{-1}x) = a(a^{-1}x) = x$. (Why?)

Thus, λ_a is a permutation of G. This shows that $\phi : G \to \text{Sym}(G)$ defined by $\phi(a) = \lambda_a$ is well-defined. *Claim:* $G_{\lambda} = \phi(G)$ is a subgroup of Sym(G).

(i) Closure:

Every group G is isomorphic to a permutation group.

Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$, for all $x \in G$.

• λ_a is one-to-one: if $\lambda_a(x_1) = \lambda_a(x_2) \Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2$. (Why?)

• λ_a is onto: For any $x \in G$, we have $\lambda_a(a^{-1}x) = a(a^{-1}x) = x$. (Why?)

Thus, λ_a is a permutation of G. This shows that $\phi : G \to \text{Sym}(G)$ defined by $\phi(a) = \lambda_a$ is well-defined. *Claim:* $G_{\lambda} = \phi(G)$ is a subgroup of Sym(G).

(i) Closure: For any $\lambda_a, \lambda_b \in G_\lambda$ with $a, b \in G$, to show $\lambda_a \lambda_b \in G_\lambda$.

Every group G is isomorphic to a permutation group.

Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$, for all $x \in G$.

- λ_a is one-to-one: if $\lambda_a(x_1) = \lambda_a(x_2) \Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2$. (Why?)
- λ_a is onto: For any $x \in G$, we have $\lambda_a(a^{-1}x) = a(a^{-1}x) = x$. (Why?)

Thus, λ_a is a permutation of G. This shows that $\phi : G \to \text{Sym}(G)$ defined by $\phi(a) = \lambda_a$ is well-defined. *Claim:* $G_{\lambda} = \phi(G)$ is a subgroup of Sym(G).

(i) Closure: For any $\lambda_a, \lambda_b \in G_\lambda$ with $a, b \in G$, to show $\lambda_a \lambda_b \in G_\lambda$.

$$\lambda_a \lambda_b(x) = \lambda_a(\lambda_b(x)) = \lambda_a(bx) = a(bx) = (ab)x = \lambda_{ab}(x),$$

for all $x \in G$.

Every group G is isomorphic to a permutation group.

Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$, for all $x \in G$.

- λ_a is one-to-one: if $\lambda_a(x_1) = \lambda_a(x_2) \Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2$. (Why?)
- λ_a is onto: For any $x \in G$, we have $\lambda_a(a^{-1}x) = a(a^{-1}x) = x$. (Why?)

Thus, λ_a is a permutation of G. This shows that $\phi : G \to \text{Sym}(G)$ defined by $\phi(a) = \lambda_a$ is well-defined. *Claim:* $G_{\lambda} = \phi(G)$ is a subgroup of Sym(G).

(i) Closure: For any $\lambda_a, \lambda_b \in G_\lambda$ with $a, b \in G$, to show $\lambda_a \lambda_b \in G_\lambda$.

$$\lambda_a\lambda_b(x) = \lambda_a(\lambda_b(x)) = \lambda_a(bx) = a(bx) = (ab)x = \lambda_{ab}(x),$$

for all $x \in G$. This implies that $\lambda_a \lambda_b = \lambda_{ab} \in G_{\lambda}$. (Why?) (ii) Identity:

Every group G is isomorphic to a permutation group.

Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$, for all $x \in G$.

- λ_a is one-to-one: if $\lambda_a(x_1) = \lambda_a(x_2) \Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2$. (Why?)
- λ_a is onto: For any $x \in G$, we have $\lambda_a(a^{-1}x) = a(a^{-1}x) = x$. (Why?)

Thus, λ_a is a permutation of G. This shows that $\phi : G \to \text{Sym}(G)$ defined by $\phi(a) = \lambda_a$ is well-defined. *Claim:* $G_{\lambda} = \phi(G)$ is a subgroup of Sym(G).

(i) Closure: For any $\lambda_a, \lambda_b \in G_\lambda$ with $a, b \in G$, to show $\lambda_a \lambda_b \in G_\lambda$.

$$\lambda_a\lambda_b(x) = \lambda_a(\lambda_b(x)) = \lambda_a(bx) = a(bx) = (ab)x = \lambda_{ab}(x),$$

for all $x \in G$. This implies that $\lambda_a \lambda_b = \lambda_{ab} \in G_{\lambda}$. (Why?)

(ii) Identity: λ_e . For any $\lambda_a \in G_\lambda$, $\lambda_a \lambda_e = \lambda_{ae} = \lambda_a \& \lambda_e \lambda_a = \lambda_{ea} = \lambda_a$. (iii) Inverses:

Every group G is isomorphic to a permutation group.

Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$, for all $x \in G$.

- λ_a is one-to-one: if $\lambda_a(x_1) = \lambda_a(x_2) \Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2$. (Why?)
- λ_a is onto: For any $x \in G$, we have $\lambda_a(a^{-1}x) = a(a^{-1}x) = x$. (Why?)

Thus, λ_a is a permutation of G. This shows that $\phi : G \to \text{Sym}(G)$ defined by $\phi(a) = \lambda_a$ is well-defined. *Claim:* $G_{\lambda} = \phi(G)$ is a subgroup of Sym(G).

(i) Closure: For any $\lambda_a, \lambda_b \in G_\lambda$ with $a, b \in G$, to show $\lambda_a \lambda_b \in G_\lambda$.

$$\lambda_a\lambda_b(x) = \lambda_a(\lambda_b(x)) = \lambda_a(bx) = a(bx) = (ab)x = \lambda_{ab}(x),$$

for all $x \in G$. This implies that $\lambda_a \lambda_b = \lambda_{ab} \in G_{\lambda}$. (Why?)

(ii) Identity: λ_e . For any $\lambda_a \in G_{\lambda}$, $\lambda_a \lambda_e = \lambda_{ae} = \lambda_a \& \lambda_e \lambda_a = \lambda_{ea} = \lambda_a$. (iii) Inverses: $\lambda_{a^{-1}}$. It is easy to see that $(\lambda_a)^{-1} = \lambda_{a^{-1}}$. (Check it!)

Every group G is isomorphic to a permutation group.

Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$, for all $x \in G$.

- λ_a is one-to-one: if $\lambda_a(x_1) = \lambda_a(x_2) \Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2$. (Why?)
- λ_a is onto: For any $x \in G$, we have $\lambda_a(a^{-1}x) = a(a^{-1}x) = x$. (Why?)

Thus, λ_a is a permutation of G. This shows that $\phi : G \to \text{Sym}(G)$ defined by $\phi(a) = \lambda_a$ is well-defined. *Claim:* $G_{\lambda} = \phi(G)$ is a subgroup of Sym(G).

(i) Closure: For any $\lambda_a, \lambda_b \in G_\lambda$ with $a, b \in G$, to show $\lambda_a \lambda_b \in G_\lambda$.

$$\lambda_a\lambda_b(x) = \lambda_a(\lambda_b(x)) = \lambda_a(bx) = a(bx) = (ab)x = \lambda_{ab}(x),$$

for all $x \in G$. This implies that $\lambda_a \lambda_b = \lambda_{ab} \in G_{\lambda}$. (Why?)

(ii) Identity: λ_e . For any $\lambda_a \in G_{\lambda}$, $\lambda_a \lambda_e = \lambda_{ae} = \lambda_a \& \lambda_e \lambda_a = \lambda_{ea} = \lambda_a$. (iii) Inverses: $\lambda_{a^{-1}}$. It is easy to see that $(\lambda_a)^{-1} = \lambda_{a^{-1}}$. (Check it!)

Define $\phi : \mathbf{G} \to \mathbf{G}_{\lambda}$ by $\phi(\mathbf{a}) = \lambda_{\mathbf{a}}$.

Define $\phi : G \to G_{\lambda}$ by $\phi(a) = \lambda_a$. To show ϕ is a group isomorphism.

Define $\phi : G \to G_{\lambda}$ by $\phi(a) = \lambda_a$. To show ϕ is a group isomorphism. • well-defined:

Define $\phi : \mathbf{G} \to \mathbf{G}_{\lambda}$ by $\phi(\mathbf{a}) = \lambda_{\mathbf{a}}$. To show ϕ is a group isomorphism.

- well-defined: Trivial. ✓
- ϕ preserves products:

Define $\phi : G \to G_{\lambda}$ by $\phi(a) = \lambda_a$. To show ϕ is a group isomorphism.

- well-defined: Trivial. ✓
- ϕ preserves products: For any $a, b \in G$, to show $\phi(ab) = \phi(a)\phi(b)$.

Define $\phi : \mathbf{G} \to \mathbf{G}_{\lambda}$ by $\phi(\mathbf{a}) = \lambda_{\mathbf{a}}$. To show ϕ is a group isomorphism.

- well-defined: Trivial. ✓
- ϕ preserves products: For any $a, b \in G$, to show $\phi(ab) = \phi(a)\phi(b)$. $\phi(ab) = \lambda_{ab} = \lambda_a \lambda_b = \phi(a)\phi(b)$.
- ϕ is one-to-one:

Define $\phi : G \to G_{\lambda}$ by $\phi(a) = \lambda_a$. To show ϕ is a group isomorphism.

- well-defined: Trivial. ✓
- φ preserves products: For any a, b ∈ G, to show φ(ab) = φ(a)φ(b).
 φ(ab) = λ_{ab} = λ_aλ_b = φ(a)φ(b).

• ϕ is one-to-one: If $\phi(a) = \phi(b)$ for $a, b \in G$, then it is to show a = b.

Define $\phi : \mathbf{G} \to \mathbf{G}_{\lambda}$ by $\phi(\mathbf{a}) = \lambda_{\mathbf{a}}$. To show ϕ is a group isomorphism.

- well-defined: Trivial. ✓
- φ preserves products: For any a, b ∈ G, to show φ(ab) = φ(a)φ(b).
 φ(ab) = λ_{ab} = λ_aλ_b = φ(a)φ(b).
- ϕ is one-to-one: If $\phi(a) = \phi(b)$ for $a, b \in G$, then it is to show a = b. For all $x \in G$, $\phi(a) = \phi(b) \Rightarrow$

Define $\phi : G \to G_{\lambda}$ by $\phi(a) = \lambda_a$. To show ϕ is a group isomorphism.

- well-defined: Trivial. ✓
- φ preserves products: For any a, b ∈ G, to show φ(ab) = φ(a)φ(b).
 φ(ab) = λ_{ab} = λ_aλ_b = φ(a)φ(b).
- φ is one-to-one: If φ(a) = φ(b) for a, b ∈ G, then it is to show a = b.
 For all x ∈ G, φ(a) = φ(b) ⇒ λ_a(x) = λ_b(x) ⇒

Define $\phi : \mathbf{G} \to \mathbf{G}_{\lambda}$ by $\phi(\mathbf{a}) = \lambda_{\mathbf{a}}$. To show ϕ is a group isomorphism.

- well-defined: Trivial. ✓
- φ preserves products: For any a, b ∈ G, to show φ(ab) = φ(a)φ(b).
 φ(ab) = λ_{ab} = λ_aλ_b = φ(a)φ(b).
- φ is one-to-one: If φ(a) = φ(b) for a, b ∈ G, then it is to show a = b.
 For all x ∈ G, φ(a) = φ(b) ⇒ λ_a(x) = λ_b(x) ⇒ ax = bx ⇒

Define $\phi : \mathbf{G} \to \mathbf{G}_{\lambda}$ by $\phi(\mathbf{a}) = \lambda_{\mathbf{a}}$. To show ϕ is a group isomorphism.

- well-defined: Trivial. ✓
- φ preserves products: For any a, b ∈ G, to show φ(ab) = φ(a)φ(b).
 φ(ab) = λ_{ab} = λ_aλ_b = φ(a)φ(b).
- φ is one-to-one: If φ(a) = φ(b) for a, b ∈ G, then it is to show a = b. For all x ∈ G, φ(a) = φ(b) ⇒ λ_a(x) = λ_b(x) ⇒ ax = bx ⇒ a = b.
 φ is onto:

Define $\phi : G \to G_{\lambda}$ by $\phi(a) = \lambda_a$. To show ϕ is a group isomorphism.

- well-defined: Trivial. ✓
- φ preserves products: For any a, b ∈ G, to show φ(ab) = φ(a)φ(b).
 φ(ab) = λ_{ab} = λ_aλ_b = φ(a)φ(b).
- φ is one-to-one: If φ(a) = φ(b) for a, b ∈ G, then it is to show a = b. For all x ∈ G, φ(a) = φ(b) ⇒ λ_a(x) = λ_b(x) ⇒ ax = bx ⇒ a = b.
 φ is onto: Trivial. By the definition of G_λ = φ(G).

Define $\phi : \mathbf{G} \to \mathbf{G}_{\lambda}$ by $\phi(\mathbf{a}) = \lambda_{\mathbf{a}}$. To show ϕ is a group isomorphism.

- well-defined: Trivial. ✓
- φ preserves products: For any a, b ∈ G, to show φ(ab) = φ(a)φ(b).
 φ(ab) = λ_{ab} = λ_aλ_b = φ(a)φ(b).
- φ is one-to-one: If φ(a) = φ(b) for a, b ∈ G, then it is to show a = b. For all x ∈ G, φ(a) = φ(b) ⇒ λ_a(x) = λ_b(x) ⇒ ax = bx ⇒ a = b.
 φ is onto: Trivial. By the definition of G_λ = φ(G). Thus, φ is a group isomorphism.

Define $\phi : \mathbf{G} \to \mathbf{G}_{\lambda}$ by $\phi(\mathbf{a}) = \lambda_{\mathbf{a}}$. To show ϕ is a group isomorphism.

- well-defined: Trivial. ✓
- φ preserves products: For any a, b ∈ G, to show φ(ab) = φ(a)φ(b).
 φ(ab) = λ_{ab} = λ_aλ_b = φ(a)φ(b).
- φ is one-to-one: If φ(a) = φ(b) for a, b ∈ G, then it is to show a = b. For all x ∈ G, φ(a) = φ(b) ⇒ λ_a(x) = λ_b(x) ⇒ ax = bx ⇒ a = b.
 φ is onto: Trivial. By the definition of G_λ = φ(G). Thus, φ is a group isomorphism.

So, $G \cong G_{\lambda}$, where G_{λ} is a subgroup of Sym(G), i.e., a permutation group.

a change in position where the distance between points is preserved and figures remain congruent (having the same size and shape). It may be

- a translation (slide)
- a reflection (flip)
- a rotation (turn)
- or a combination of these.

a change in position where the distance between points is preserved and figures remain congruent (having the same size and shape). It may be

- a translation (slide)
- a reflection (flip)
- a rotation (turn)
- or a combination of these.

Each of the rigid motions determines a permutation of the vertices of the square,

a change in position where the distance between points is preserved and figures remain congruent (having the same size and shape). It may be

- a translation (slide)
- a reflection (flip)
- a rotation (turn)
- or a combination of these.

Each of the rigid motions determines a permutation of the vertices of the square, and the permutation notation gives a convenient way to describe these motions.

a change in position where the distance between points is preserved and figures remain congruent (having the same size and shape). It may be

- a translation (slide)
- a reflection (flip)
- a rotation (turn)
- or a combination of these.

Each of the rigid motions determines a permutation of the vertices of the square, and the permutation notation gives a convenient way to describe these motions.

There are a total of **eight** rigid motions of a square. (Why?)

a change in position where the distance between points is preserved and figures remain congruent (having the same size and shape). It may be

- a translation (slide)
- a reflection (flip)
- a rotation (turn)
- or a combination of these.

Each of the rigid motions determines a permutation of the vertices of the square, and the permutation notation gives a convenient way to describe these motions.

There are a total of **eight** rigid motions of a square. (Why?)

• There are four choices of a position in which to place first vertex A,

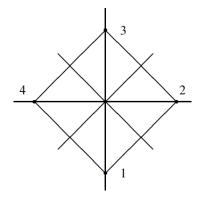
a change in position where the distance between points is preserved and figures remain congruent (having the same size and shape). It may be

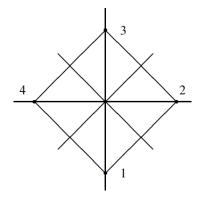
- a translation (slide)
- a reflection (flip)
- a rotation (turn)
- or a combination of these.

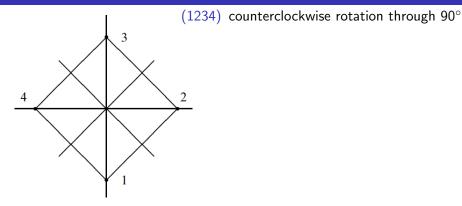
Each of the rigid motions determines a permutation of the vertices of the square, and the permutation notation gives a convenient way to describe these motions.

There are a total of **eight** rigid motions of a square. (Why?)

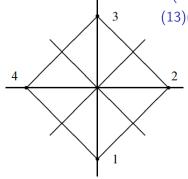
- There are four choices of a position in which to place first vertex A,
- and then **two** choices for second vertex since it must be adjacent to A.



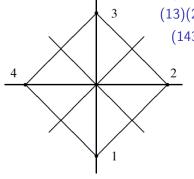




(1234) counterclockwise rotation through 90°(13)(24) counterclockwise rotation through 180°



(1234) counterclockwise rotation through 90°
(13)(24) counterclockwise rotation through 180°
(1432) counterclockwise rotation through 270°



2

3

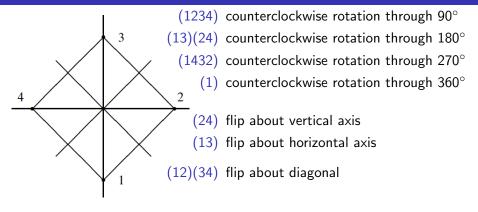
(1234) counterclockwise rotation through 90°
(13)(24) counterclockwise rotation through 180°
(1432) counterclockwise rotation through 270°
(1) counterclockwise rotation through 360°

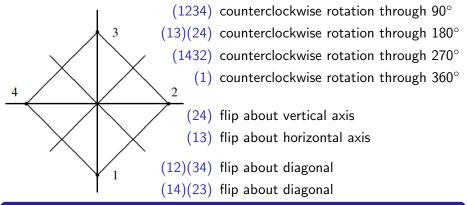
4

(1234) counterclockwise rotation through 90° (13)(24) counterclockwise rotation through 180° (1432) counterclockwise rotation through 270° (1) counterclockwise rotation through 360° 2 (24) flip about vertical axis

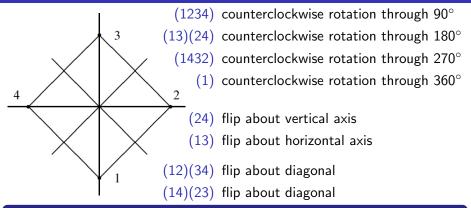
4





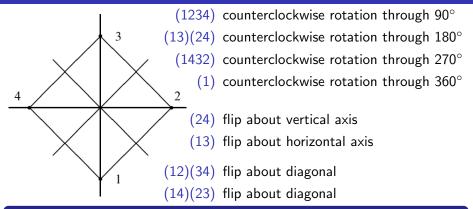


Note 2



Note 2

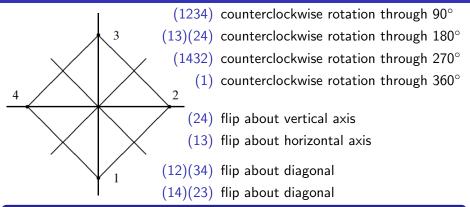
Note that we do not obtain all elements of S_4 as rigid motion, since, for example,



Note 2

Note that we do not obtain all elements of S_4 as rigid motion, since, for example, (12) would represent an impossible configuration.

Question 1



Note 2

Note that we do not obtain all elements of S_4 as rigid motion, since, for example, (12) would represent an impossible configuration.

Question 1

What is the order of each rigid motion?

Yi

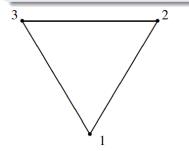
Rigid motions of a square: Multiplication table

Rigid motions of a square: Multiplication table

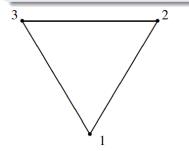
	(1)	(1234)	(13)(24)	(1432)	(24)	(12)(34)	(13)	(14)(23)
(1)	(1)	(1234)	(13)(24)	(1432)	(24)	(12)(34)	(13)	(14)(23)
(1234)	(1234)	(13)(24)	(1432)	(1)	(12)(34)	(13)	(14)(23)	(24)
(13)(24)	(13)(24)	(1432)	(1)	(1234)	(13)	(14)(23)	(24)	(12)(34)
(1432)	(1432)	(1)	(1234)	(13)(24)	(14)(23)	(24)	(12)(34)	(13)
(24)	(24)	(14)(23)	(13)	(12)(34)	(1)	(1432)	(13)(24)	(1234)
(12)(34)	(12)(34)	(24)	(14)(23)	(13)	(1234)	(1)	(1432)	(13)(24)
(13)	(13)	(12)(34)	(24)	(14)(23)	(13)(24)	(1234)	(1)	(1432)
(14)(23)	(14)(23)	(13)	(12)(34)	(24)	(1432)	(13)(24)	(1234)	(1)

Proposition 1

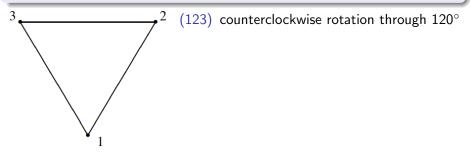
Proposition 1



Proposition 1

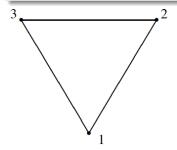


Proposition 1



Proposition 1

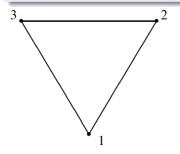
The rigid motions of an equilateral triangle yield the group S_3 .



(123) counterclockwise rotation through 120°(132) counterclockwise rotation through 240°

Proposition 1

The rigid motions of an equilateral triangle yield the group S_3 .

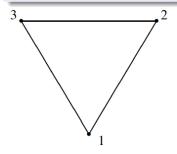


(123) counterclockwise rotation through 120° (132) counterclockwise rotation through 240°

(1) counterclockwise rotation through 360°

Proposition 1

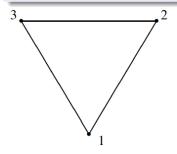
The rigid motions of an equilateral triangle yield the group S_3 .



(123) counterclockwise rotation through 120°
(132) counterclockwise rotation through 240°
(1) counterclockwise rotation through 360°

(23) flip about vertical axis

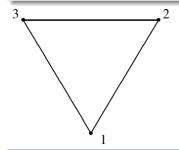
Proposition 1



- (123) counterclockwise rotation through 120°
 (132) counterclockwise rotation through 240°
 (1) counterclockwise rotation through 360°
 - (23) flip about vertical axis
 - (13) flip about angle bisector

Proposition 1

The rigid motions of an equilateral triangle yield the group S_3 .

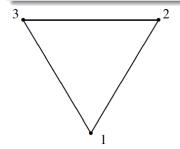


- (123) counterclockwise rotation through 120°
 (132) counterclockwise rotation through 240°
 (1) counterclockwise rotation through 360°
 - (23) flip about vertical axis
 - (13) flip about angle bisector
 - (12) flip about angle bisector

Note 3 (Another notion for describing S_3 in §3.3)

Proposition 1

The rigid motions of an equilateral triangle yield the group S_3 .



(123) counterclockwise rotation through 120°
(132) counterclockwise rotation through 240°
(1) counterclockwise rotation through 360°

(23) flip about vertical axis

- (13) flip about angle bisector
- (12) flip about angle bisector

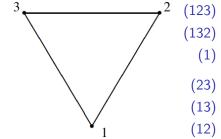
Note 3 (Another notion for describing S_3 in §3.3)

 $S_3 = \{e, a, a^2, b, ab, a^2b\}$, where $a^3 = e, b^2 = e, ba = a^2b = a^{-1}b$.

Note 4 (Another notion for describing Rigid Motions of a Square)

Proposition 1

The rigid motions of an equilateral triangle yield the group S_3 .



(123) counterclockwise rotation through 120°
(132) counterclockwise rotation through 240°
(1) counterclockwise rotation through 360°

- (23) flip about vertical axis
- (13) flip about angle bisector
- (12) flip about angle bisector

Note 3 (Another notion for describing S_3 in §3.3)

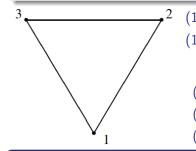
$$S_3 = \{e, a, a^2, b, ab, a^2b\}$$
, where $a^3 = e, b^2 = e, ba = a^2b = a^{-1}b$.

Note 4 (Another notion for describing Rigid Motions of a Square)

Let a = (1234) and b = (24). It can be shown that $ba = a^3b$.

Proposition 1

The rigid motions of an equilateral triangle yield the group S_3 .



(123) counterclockwise rotation through 120°
(132) counterclockwise rotation through 240°
(1) counterclockwise rotation through 360°

- (23) flip about vertical axis
- (13) flip about angle bisector
- (12) flip about angle bisector

Note 3 (Another notion for describing S_3 in §3.3)

$$S_3 = \{e, a, a^2, b, ab, a^2b\}$$
, where $a^3 = e, b^2 = e, ba = a^2b = a^{-1}b$.

Note 4 (Another notion for describing Rigid Motions of a Square)

Let a = (1234) and b = (24). It can be shown that $ba = a^3b$. The group $G = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b = a^{-1}b$.

Proposition 2

Proposition 2

There are 2n rigid motions of a regular n-gon.

Proposition 2

There are 2n rigid motions of a regular n-gon.

i) There are n choices of a position in which to place first vertex A,

Proposition 2

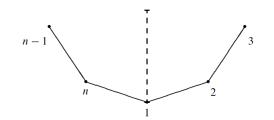
There are 2n rigid motions of a regular n-gon.

i) There are *n* choices of a position in which to place first vertex *A*,
ii) and then two choices for second vertex since it must be adjacent to *A*.

Proposition 2

There are 2n rigid motions of a regular n-gon.

i) There are *n* choices of a position in which to place first vertex *A*,
ii) and then two choices for second vertex since it must be adjacent to *A*.

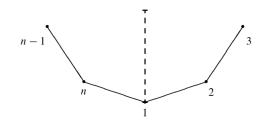


i)

Proposition 2

There are 2n rigid motions of a regular n-gon.

i) There are *n* choices of a position in which to place first vertex *A*,
ii) and then two choices for second vertex since it must be adjacent to *A*.

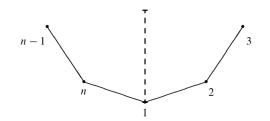


i) Let a be a counterclockwise rotation about the center, through 360/n degrees.

Proposition 2

There are 2n rigid motions of a regular n-gon.

i) There are *n* choices of a position in which to place first vertex *A*,
ii) and then two choices for second vertex since it must be adjacent to *A*.

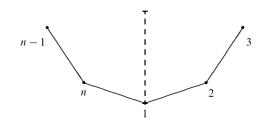


i) Let *a* be a counterclockwise rotation about the center, through 360/n degrees. Thus *a* is a the cycle $(123 \cdots n)$ of length *n* and has order *n*. ii)

Proposition 2

There are 2n rigid motions of a regular n-gon.

i) There are *n* choices of a position in which to place first vertex *A*,
ii) and then two choices for second vertex since it must be adjacent to *A*.

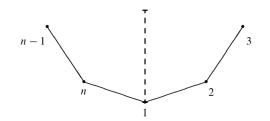


i) Let a be a counterclockwise rotation about the center, through 360/n degrees.
Thus a is a the cycle (123 ··· n) of length n and has order n.
ii) Let b be a flip about the line of symmetry through position number 1.

Proposition 2

There are 2n rigid motions of a regular n-gon.

There are *n* choices of a position in which to place first vertex A, i) ii) and then two choices for second vertex since it must be adjacent to A.



i) Let a be a counterclockwise rotation about the center, through 360/n degrees. Thus *a* is a the cycle $(123 \cdots n)$ of length *n* and has order *n*. ii) Let b be a flip about the line of symmetry through position number 1. Thus b has order 2 and is given by the product of transpositions $(2n)(3n-1)\cdots$. Permutation Groups June 3-4, 2020 11 / 23

Yi

Consider the set $S = \{a^k, a^k b \mid 0 \le k < n\}$ of rigid motions.

• The elements a^k for $0 \le k < n$ are all distinct. (Why?) [

Consider the set $S = \{a^k, a^k b \mid 0 \le k < n\}$ of rigid motions.

• The elements a^k for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]

- The elements a^k for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- The elements $a^k b$ for $0 \le k < n$ are all distinct. (Why?) [

- The elements a^k for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- The elements $a^k b$ for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]

- The elements a^k for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- The elements $a^k b$ for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- $a^k \neq a^j b$ for all $0 \leq k, j < n$. (Why?) [

- The elements a^k for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- The elements $a^k b$ for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- $a^k \neq a^j b$ for all $0 \le k, j < n$. (Why?) [a^k does NOT flip the *n*-gon]

Consider the set $S = \{a^k, a^k b \mid 0 \le k < n\}$ of rigid motions.

- The elements a^k for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- The elements $a^k b$ for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- $a^k \neq a^j b$ for all $0 \le k, j < n$. (Why?) [a^k does NOT flip the *n*-gon]

Thus, |S| = 2n, and so G = S.

Note 5 (Notion for describing Rigid Motions of a regular *n*-gon)

Consider the set $S = \{a^k, a^k b \mid 0 \le k < n\}$ of rigid motions.

- The elements a^k for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- The elements $a^k b$ for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- $a^k \neq a^j b$ for all $0 \le k, j < n$. (Why?) [a^k does NOT flip the *n*-gon] Thus, |S| = 2n, and so G = S.

Note 5 (Notion for describing Rigid Motions of a regular *n*-gon)

 $G = \{a^k, a^k b \mid 0 \le k < n\}, \text{ where } a^n = e, b^2 = e, ba = a^{n-1}b = a^{-1}b.$

Consider the set $S = \{a^k, a^k b \mid 0 \le k < n\}$ of rigid motions.

- The elements a^k for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- The elements $a^k b$ for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- $a^k \neq a^j b$ for all $0 \le k, j < n$. (Why?) [a^k does NOT flip the *n*-gon] Thus, |S| = 2n, and so G = S.

Note 5 (Notion for describing Rigid Motions of a regular *n*-gon)

 $G = \{a^k, a^k b \mid 0 \le k < n\}, \text{ where } a^n = e, b^2 = e, ba = a^{n-1}b = a^{-1}b.$

Goal: To show $ba = a^{-1}b$.

Consider the set $S = \{a^k, a^k b \mid 0 \le k < n\}$ of rigid motions.

- The elements a^k for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- The elements $a^k b$ for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- $a^k \neq a^j b$ for all $0 \le k, j < n$. (Why?) [a^k does NOT flip the *n*-gon] Thus, |S| = 2n, and so G = S.

Note 5 (Notion for describing Rigid Motions of a regular *n*-gon)

 $G = \{a^k, a^k b \mid 0 \le k < n\}, \text{ where } a^n = e, b^2 = e, ba = a^{n-1}b = a^{-1}b.$

Goal: To show $ba = a^{-1}b$. Note: $a^{-1} = a^{n-1}$ (Why?)&

Consider the set $S = \{a^k, a^k b \mid 0 \le k < n\}$ of rigid motions.

- The elements a^k for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- The elements $a^k b$ for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- $a^k \neq a^j b$ for all $0 \le k, j < n$. (Why?) [a^k does NOT flip the *n*-gon] Thus, |S| = 2n, and so G = S.

Note 5 (Notion for describing Rigid Motions of a regular *n*-gon)

 $G = \{a^k, a^k b \mid 0 \le k < n\}, \text{ where } a^n = e, b^2 = e, ba = a^{n-1}b = a^{-1}b.$

Goal: To show $ba = a^{-1}b$. Note: $a^{-1} = a^{n-1}$ (Why?)& $b^{-1} = b$ (Why?)

Consider the set $S = \{a^k, a^k b \mid 0 \le k < n\}$ of rigid motions.

- The elements a^k for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- The elements $a^k b$ for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- $a^k \neq a^j b$ for all $0 \leq k, j < n$. (Why?) [a^k does NOT flip the *n*-gon] Thus, |S| = 2n, and so G = S.

Note 5 (Notion for describing Rigid Motions of a regular *n*-gon)

 $G = \{a^k, a^k b \mid 0 \le k < n\}, \text{ where } a^n = e, b^2 = e, ba = a^{n-1}b = a^{-1}b.$

Goal: To show $ba = a^{-1}b$. **Note:** $a^{-1} = a^{n-1}$ (Why?)& $b^{-1} = b$ (Why?) That is, to show $bab = a^{-1}$.

Consider the set $S = \{a^k, a^k b \mid 0 \le k < n\}$ of rigid motions.

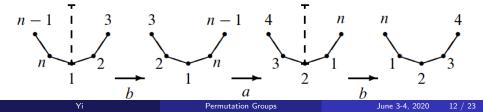
- The elements a^k for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]
- The elements $a^k b$ for $0 \le k < n$ are all distinct. (Why?) [o(a) = n]

• $a^k \neq a^j b$ for all $0 \leq k, j < n$. (Why?) [a^k does NOT flip the *n*-gon] Thus, |S| = 2n, and so G = S.

Note 5 (Notion for describing Rigid Motions of a regular *n*-gon)

 $G = \{a^k, a^k b \mid 0 \le k < n\}, \text{ where } a^n = e, b^2 = e, ba = a^{n-1}b = a^{-1}b.$

Goal: To show $ba = a^{-1}b$. **Note:** $a^{-1} = a^{n-1}$ (Why?)& $b^{-1} = b$ (Why?) That is, to show $bab = a^{-1}$.



Definition 4

Definition 4

Let $n \ge 3$ be an integer. The group of rigid motions of a regular *n*-gon is called the *n*th **dihedral group**, denoted by D_n . Note that $|D_n| = 2n$.

Proposition 3 (Note 5)

Definition 4

Let $n \ge 3$ be an integer. The group of rigid motions of a regular *n*-gon is called the *n*th **dihedral group**, denoted by D_n . Note that $|D_n| = 2n$.

Proposition 3 (Note 5)

$$D_n = \{a^k, a^k b \mid 0 \le k < n\}, \text{ where } a^n = e, b^2 = e, ba = a^{-1}b.$$

Definition 4

Let $n \ge 3$ be an integer. The group of rigid motions of a regular *n*-gon is called the *n*th **dihedral group**, denoted by D_n . Note that $|D_n| = 2n$.

Proposition 3 (Note 5)

 $D_n = \{a^k, a^k b \mid 0 \le k < n\}, \text{ where } a^n = e, b^2 = e, ba = a^{-1}b.$

Remark 1 (Let $n \ge 4$.)

• We will not list all the subgroups of S_n. (Why?) [

Definition 4

Let $n \ge 3$ be an integer. The group of rigid motions of a regular *n*-gon is called the *n*th **dihedral group**, denoted by D_n . Note that $|D_n| = 2n$.

Proposition 3 (Note 5)

 $D_n = \{a^k, a^k b \mid 0 \le k < n\}, \text{ where } a^n = e, b^2 = e, ba = a^{-1}b.$

Remark 1 (Let $n \ge 4$.)

• We will not list all the subgroups of S_n. (Why?) [there are too many!!]

Definition 4

Let $n \ge 3$ be an integer. The group of rigid motions of a regular *n*-gon is called the *n*th **dihedral group**, denoted by D_n . Note that $|D_n| = 2n$.

Proposition 3 (Note 5)

$$D_n = \{a^k, a^k b \mid 0 \le k < n\}, \text{ where } a^n = e, b^2 = e, ba = a^{-1}b.$$

- We will not list all the subgroups of S_n. (Why?) [there are too many!!]
- The "simple" subgroups of S_n : cyclic subgroup generated by $\sigma \in S_n$.

Definition 4

Let $n \ge 3$ be an integer. The group of rigid motions of a regular *n*-gon is called the *n*th **dihedral group**, denoted by D_n . Note that $|D_n| = 2n$.

Proposition 3 (Note 5)

$$D_n = \{a^k, a^k b \mid 0 \le k < n\}, \text{ where } a^n = e, b^2 = e, ba = a^{-1}b.$$

- We will not list all the subgroups of S_n. (Why?) [there are too many!!]
- The "simple" subgroups of S_n : cyclic subgroup generated by $\sigma \in S_n$.
- The dihedral group D_n is one important example of subgroups of S_n .

Definition 4

Let $n \ge 3$ be an integer. The group of rigid motions of a regular *n*-gon is called the *n*th **dihedral group**, denoted by D_n . Note that $|D_n| = 2n$.

Proposition 3 (Note 5)

$$D_n = \{a^k, a^k b \mid 0 \le k < n\}, \text{ where } a^n = e, b^2 = e, ba = a^{-1}b.$$

- We will not list all the subgroups of S_n . (Why?) [there are too many!!]
- The "simple" subgroups of S_n : cyclic subgroup generated by $\sigma \in S_n$.
- The dihedral group D_n is one important example of subgroups of S_n .
- The alternating group A_n is another one important example. (soon!)

Proposition 4

Proposition 4

If $G = S_3$, then every proper subgroup of S_3 is cyclic. (Why?)

Proposition 4

If $G = S_3$, then every proper subgroup of S_3 is cyclic. (Why?)

By Lagrange's theorem, a proper subgroup of S_3 must have order 1, 2, or 3.

Proposition 4

If $G = S_3$, then every proper subgroup of S_3 is cyclic. (Why?)

By Lagrange's theorem, a proper subgroup of S_3 must have order 1, 2, or 3. And subgroups of order 2 or 3 must be cyclic. (Why?) &

Proposition 4

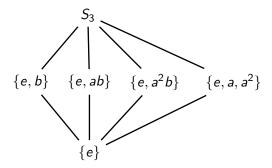
If $G = S_3$, then every proper subgroup of S_3 is cyclic. (Why?)

By Lagrange's theorem, a proper subgroup of S_3 must have order 1, 2, or 3. And subgroups of order 2 or 3 must be cyclic. (Why?) & $\{e\}$ is trivial. \checkmark **The subgroup diagram of** S_3 :

Proposition 4

If $G = S_3$, then every proper subgroup of S_3 is cyclic. (Why?)

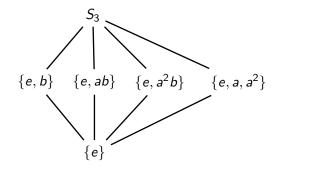
By Lagrange's theorem, a proper subgroup of S_3 must have order 1, 2, or 3. And subgroups of order 2 or 3 must be cyclic. (Why?) & $\{e\}$ is trivial. \checkmark **The subgroup diagram of** S_3 :



Proposition 4

If $G = S_3$, then every proper subgroup of S_3 is cyclic. (Why?)

By Lagrange's theorem, a proper subgroup of S_3 must have order 1, 2, or 3. And subgroups of order 2 or 3 must be cyclic. (Why?) & $\{e\}$ is trivial. \checkmark **The subgroup diagram of** S_3 :



Note that $D_3 = S_3 = \{e, a, a^2, b, ab, a^2b\}$, where $a^3 = e, b^2 = e, ba = a^2b$. Yi Permutation Groups June 34, 2020 14/23

Note:

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$.

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$. The possible orders of proper subgroups of D_4 are 1, 2, or 4. (Why?)

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$. The possible orders of proper subgroups of D_4 are 1, 2, or 4. (Why?)

I. The trivial subgroups: $\{e\}, D_4$.

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$. The possible orders of proper subgroups of D_4 are 1, 2, or 4. (Why?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$. The possible orders of proper subgroups of D_4 are 1, 2, or 4. (Why?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) a has order 4. In fact,

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$. The possible orders of proper subgroups of D_4 are 1, 2, or 4. (Why?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:

(a) a has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) *a* has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)
 - (b) Each of the elements a^2 , b, ab, a^2b , a^3b has order 2. (Check it!)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) a has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)
 - (b) Each of the elements a^2 , b, ab, a^2b , a^3b has order 2. (Check it!)
- III. Are there (proper) subgroups of D_4 that are not cyclic?

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$. The possible orders of proper subgroups of D_4 are 1, 2, or 4. (Why?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) a has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)
 - (b) Each of the elements a^2 , b, ab, a^2b , a^3b has order 2. (Check it!)

III. Are there (proper) subgroups of D_4 that are not cyclic? Yes! (How?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) a has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)
 - (b) Each of the elements a^2 , b, ab, a^2b , a^3b has order 2. (Check it!)
- III. Are there (proper) subgroups of D₄ that are not cyclic? Yes! (How?)
 (i) If H is a non-cyclic (proper) subgroup, then |H| = 4. (Why?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) a has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)
 - (b) Each of the elements a^2 , b, ab, a^2b , a^3b has order 2. (Check it!)
- III. Are there (proper) subgroups of D_4 that are not cyclic? Yes! (How?)
 - (i) If H is a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
 - (ii) Any non-identity element of H has order 2. (Why?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) a has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)
 - (b) Each of the elements a^2 , b, ab, a^2b , a^3b has order 2. (Check it!)
- III. Are there (proper) subgroups of D_4 that are not cyclic? Yes! (How?)
 - (i) If H is a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
 - (ii) Any non-identity element of H has order 2. (Why?)
 - (iii) $H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$: Say, $H = \{e, x, y, xy\}$, and so yx = xy. (Why?)

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$. The possible orders of proper subgroups of D_4 are 1, 2, or 4. (Why?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) a has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)
 - (b) Each of the elements a^2 , b, ab, a^2b , a^3b has order 2. (Check it!)

III. Are there (proper) subgroups of D_4 that are not cyclic? Yes! (How?)

- (i) If H is a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
- (ii) Any non-identity element of H has order 2. (Why?)
- (iii) $H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$: Say, $H = \{e, x, y, xy\}$, and so yx = xy. (Why?)
- (iv) Consider all possible pairs of elements of order 2 to find all such H's.(v) In fact,

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$. The possible orders of proper subgroups of D_4 are 1, 2, or 4. (Why?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) a has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)
 - (b) Each of the elements a^2 , b, ab, a^2b , a^3b has order 2. (Check it!)

III. Are there (proper) subgroups of D_4 that are not cyclic? Yes! (How?)

- (i) If H is a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
- (ii) Any non-identity element of *H* has order 2. (Why?)
- (iii) $H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$: Say, $H = \{e, x, y, xy\}$, and so yx = xy. (Why?)
- (iv) Consider all possible pairs of elements of order 2 to find all such H's.
- (v) In fact, there are two such groups. (Check it!)

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$. The possible orders of proper subgroups of D_4 are 1, 2, or 4. (Why?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) a has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)
 - (b) Each of the elements a^2 , b, ab, a^2b , a^3b has order 2. (Check it!)

III. Are there (proper) subgroups of D_4 that are not cyclic? Yes! (How?)

- (i) If H is a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
- (ii) Any non-identity element of H has order 2. (Why?)

iii)
$$H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$$
: Say, $H = \{e, x, y, xy\}$, and so $yx = xy$. (Why?)

- (iv) Consider all possible pairs of elements of order 2 to find all such H's.
- (v) In fact, there are two such groups. (Check it!)

(1) $H_1 = \{e, a^2, b, a^2b\}$:

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$. The possible orders of proper subgroups of D_4 are 1, 2, or 4. (Why?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) a has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)
 - (b) Each of the elements a^2 , b, ab, a^2b , a^3b has order 2. (Check it!)

III. Are there (proper) subgroups of D_4 that are not cyclic? Yes! (How?)

- (i) If *H* is a non-cyclic (proper) subgroup, then |H| = 4. (Why?) (ii) Any non-identity element of *H* has order 2. (Why?) (iii) $H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$: Say, $H = \{e, x, y, xy\}$, and so yx = xy. (Why?)
- (iv) Consider all possible pairs of elements of order 2 to find all such H's.
- (v) In fact, there are two such groups. (Check it!)

(1) $H_1 = \{e, a^2, b, a^2b\}$: $ba^2 = (ba)a = a^3(ba) = a^3(a^3b) = a^2b \checkmark$

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$. The possible orders of proper subgroups of D_4 are 1, 2, or 4. (Why?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) a has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)
 - (b) Each of the elements a^2 , b, ab, a^2b , a^3b has order 2. (Check it!)

III. Are there (proper) subgroups of D_4 that are not cyclic? Yes! (How?)

(i) If *H* is a non-cyclic (proper) subgroup, then |*H*| = 4. (Why?)
(ii) Any non-identity element of *H* has order 2. (Why?)
(iii) *H* ≅ Z₂ × Z₂: Say, *H* = {*e*, *x*, *y*, *xy*}, and so *yx* = *xy*. (Why?)
(iv) Consider all possible pairs of elements of order 2 to find all such *H*'s.
(v) In fact, there are two such groups. (Check it!)

(1)
$$H_1 = \{e, a^2, b, a^2b\}$$
: $ba^2 = (ba)a = a^3(ba) = a^3(a^3b) = a^2b \checkmark$
(2) $H_2 = \{e, a^2, ab, a^3b\}$:

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$. The possible orders of proper subgroups of D_4 are 1, 2, or 4. (Why?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) a has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)
 - (b) Each of the elements a^2 , b, ab, a^2b , a^3b has order 2. (Check it!)

III. Are there (proper) subgroups of D_4 that are not cyclic? Yes! (How?)

(i) If *H* is a non-cyclic (proper) subgroup, then |*H*| = 4. (Why?)
(ii) Any non-identity element of *H* has order 2. (Why?)
(iii) *H* ≅ Z₂ × Z₂: Say, *H* = {*e*, *x*, *y*, *xy*}, and so *yx* = *xy*. (Why?)
(iv) Consider all possible pairs of elements of order 2 to find all such *H*'s.
(v) In fact, there are two such groups. (Check it!)

(1)
$$H_1 = \{e, a^2, b, a^2b\}$$
: $ba^2 = (ba)a = a^3(ba) = a^3(a^3b) = a^2b \checkmark$
(2) $H_2 = \{e, a^2, ab, a^3b\}$: $(ab)a^2 = a(ba)a = a(a^3b)a = ba = a^3b \checkmark$

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$. The possible orders of proper subgroups of D_4 are 1, 2, or 4. (Why?)

- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) a has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)
 - (b) Each of the elements a^2 , b, ab, a^2b , a^3b has order 2. (Check it!)

III. Are there (proper) subgroups of D_4 that are not cyclic? Yes! (How?)

- (i) If H is a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
- (ii) Any non-identity element of H has order 2. (Why?)
- (iii) $H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$: Say, $H = \{e, x, y, xy\}$, and so yx = xy. (Why?)
- (iv) Consider all possible pairs of elements of order 2 to find all such H's. (v) In fact, there are two such groups. (Check it!)
 - (1) $H_1 = \{e, a^2, b, a^2b\}$: $ba^2 = (ba)a = a^3(ba) = a^3(a^3b) = a^2b \checkmark$ (2) $H_2 = \{e, a^2, ab, a^3b\}$: $(ab)a^2 = a(ba)a = a(a^3b)a = ba = a^3b \checkmark$
- $(\ensuremath{\mathsf{vi}})$ A cyclic subgroup is the smallest subgroup containing the generator;

Note: $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^3b$. The possible orders of proper subgroups of D_4 are 1, 2, or 4. (Why?)

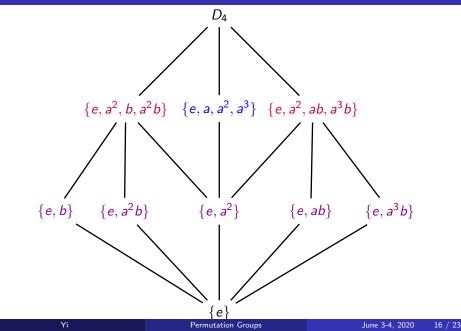
- I. The trivial subgroups: $\{e\}, D_4$.
- II. The cyclic (proper) subgroups:
 - (a) a has order 4. In fact, $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$. (Why?)
 - (b) Each of the elements a^2 , b, ab, a^2b , a^3b has order 2. (Check it!)

III. Are there (proper) subgroups of D_4 that are not cyclic? Yes! (How?)

- (i) If H is a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
- (ii) Any non-identity element of H has order 2. (Why?)
- (iii) $H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$: Say, $H = \{e, x, y, xy\}$, and so yx = xy. (Why?)
- (iv) Consider all possible pairs of elements of order 2 to find all such H's. (v) In fact, there are two such groups. (Check it!)
 - (1) $H_1 = \{e, a^2, b, a^2b\}$: $ba^2 = (ba)a = a^3(ba) = a^3(a^3b) = a^2b \checkmark$ (2) $H_2 = \{e, a^2, ab, a^3b\}$: $(ab)a^2 = a(ba)a = a(a^3b)a = ba = a^3b \checkmark$
- (vi) A cyclic subgroup is the smallest subgroup containing the generator; these subgroups H's are the smallest ones containing the two elements used to construct it.

Subgroups of D₄ cont.: Subgroup diagram

Subgroups of D₄ cont.: Subgroup diagram



Recall that a permutation is called **even** if it can be expressed as an even number of transpositions, and **odd** otherwise.

Proposition 5

Recall that a permutation is called **even** if it can be expressed as an even number of transpositions, and **odd** otherwise.

Proposition 5

The set of all even permutations of S_n is a subgroup of S_n .

Recall that a permutation is called **even** if it can be expressed as an even number of transpositions, and **odd** otherwise.

Proposition 5

The set of all even permutations of S_n is a subgroup of S_n .

Since S_n is a finite set, we can apply Corollary 8 in §3.2. In particular,

Recall that a permutation is called **even** if it can be expressed as an even number of transpositions, and **odd** otherwise.

Proposition 5

The set of all even permutations of S_n is a subgroup of S_n .

Since S_n is a finite set, we can apply Corollary 8 in §3.2. In particular, (i) Nonempty:

Recall that a permutation is called **even** if it can be expressed as an even number of transpositions, and **odd** otherwise.

Proposition 5

The set of all even permutations of S_n is a subgroup of S_n .

Since S_n is a finite set, we can apply Corollary 8 in §3.2. In particular, (i) Nonempty: The identity permutation is even. (Why?)

Recall that a permutation is called **even** if it can be expressed as an even number of transpositions, and **odd** otherwise.

Proposition 5

The set of all even permutations of S_n is a subgroup of S_n .

Since S_n is a finite set, we can apply Corollary 8 in §3.2. In particular, (i) Nonempty: The identity permutation is even. (Why?) [(1) = (12)(21)](ii) Closure:

Recall that a permutation is called **even** if it can be expressed as an even number of transpositions, and **odd** otherwise.

Proposition 5

The set of all even permutations of S_n is a subgroup of S_n .

Since S_n is a finite set, we can apply Corollary 8 in §3.2. In particular, (i) Nonempty: The identity permutation is even. (Why?) [(1) = (12)(21)] (ii) Closure: If σ and τ are even permutations, so is $\tau\sigma$. (Why?)

Definition 5

Recall that a permutation is called **even** if it can be expressed as an even number of transpositions, and **odd** otherwise.

Proposition 5

The set of all even permutations of S_n is a subgroup of S_n .

Since S_n is a finite set, we can apply Corollary 8 in §3.2. In particular, (i) Nonempty: The identity permutation is even. (Why?) [(1) = (12)(21)](ii) Closure: If σ and τ are even permutations, so is $\tau\sigma$. (Why?)

Definition 5

The set of all even permutations of S_n is called the **alternating group** on n elements, and will be denoted by A_n .

Theorem 6 (Let n > 1.)

Recall that a permutation is called **even** if it can be expressed as an even number of transpositions, and **odd** otherwise.

Proposition 5

The set of all even permutations of S_n is a subgroup of S_n .

Since S_n is a finite set, we can apply Corollary 8 in §3.2. In particular, (i) Nonempty: The identity permutation is even. (Why?) [(1) = (12)(21)](ii) Closure: If σ and τ are even permutations, so is $\tau\sigma$. (Why?)

Definition 5

The set of all even permutations of S_n is called the **alternating group** on n elements, and will be denoted by A_n .

Theorem 6 (Let n > 1.)

$$|A_n|=\frac{|S_n|}{2}=\frac{n!}{2}.$$

Recall that a permutation is called **even** if it can be expressed as an even number of transpositions, and **odd** otherwise.

Proposition 5

The set of all even permutations of S_n is a subgroup of S_n .

Since S_n is a finite set, we can apply Corollary 8 in §3.2. In particular, (i) Nonempty: The identity permutation is even. (Why?) [(1) = (12)(21)] (ii) Closure: If σ and τ are even permutations, so is $\tau\sigma$. (Why?)

Definition 5

The set of all even permutations of S_n is called the **alternating group** on n elements, and will be denoted by A_n .

Theorem 6 (Let n > 1.)

 $|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}$. This is the largest possible cardinality for a proper subgroup.

Let O_n be the set of odd permutations in S_n . Note:

Let O_n be the set of odd permutations in S_n . Note: O_n is not a subgroup. (Why?)

Let O_n be the set of odd permutations in S_n . Note: O_n is not a subgroup. (Why?)

We have $S_n = A_n \bigsqcup O_n$ (Why?),

Let O_n be the set of odd permutations in S_n . Note: O_n is not a subgroup. (Why?)

We have $S_n = A_n \bigsqcup O_n$ (Why?), so $|S_n| = |A_n| + |O_n|$.

Let O_n be the set of odd permutations in S_n . Note: O_n is not a subgroup. (Why?)

We have $S_n = A_n \bigsqcup O_n$ (Why?), so $|S_n| = |A_n| + |O_n|$.

I. For each odd permutation σ , the permutation (12) σ is even. (Why?)

Let O_n be the set of odd permutations in S_n . Note: O_n is not a subgroup. (Why?)

We have $S_n = A_n \bigsqcup O_n$ (Why?), so $|S_n| = |A_n| + |O_n|$.

I. For each odd permutation σ , the permutation (12) σ is even. (Why?) If σ and τ are two distinct odd permutations, then (12) $\sigma \neq$ (12) τ . Proof by contradiction:

Let O_n be the set of odd permutations in S_n . Note: O_n is not a subgroup. (Why?)

We have $S_n = A_n \bigsqcup O_n$ (Why?), so $|S_n| = |A_n| + |O_n|$.

I. For each odd permutation σ , the permutation $(12)\sigma$ is even. (Why?) If σ and τ are two distinct odd permutations, then $(12)\sigma \neq (12)\tau$. Proof by contradiction: Suppose $(12)\sigma = (12)\tau$, then $\sigma \stackrel{!}{=} \tau$. (Why?) Let O_n be the set of odd permutations in S_n . Note: O_n is not a subgroup. (Why?)

We have $S_n = A_n \bigsqcup O_n$ (Why?), so $|S_n| = |A_n| + |O_n|$.

- I. For each odd permutation σ , the permutation $(12)\sigma$ is even. (Why?) If σ and τ are two distinct odd permutations, then $(12)\sigma \neq (12)\tau$. Proof by contradiction: Suppose $(12)\sigma = (12)\tau$, then $\sigma \stackrel{!}{=} \tau$. (Why?) Thus, $|A_n| \geq |O_n|$. (Why?)
- II. Similarly,

Let O_n be the set of odd permutations in S_n . Note: O_n is not a subgroup. (Why?)

We have $S_n = A_n \bigsqcup O_n$ (Why?), so $|S_n| = |A_n| + |O_n|$.

- I. For each odd permutation σ , the permutation $(12)\sigma$ is even. (Why?) If σ and τ are two distinct odd permutations, then $(12)\sigma \neq (12)\tau$. Proof by contradiction: Suppose $(12)\sigma = (12)\tau$, then $\sigma \stackrel{!}{=} \tau$. (Why?) Thus, $|A_n| \geq |O_n|$. (Why?)
- II. Similarly, we can show that $|O_n| \ge |A_n|$.

Let O_n be the set of odd permutations in S_n . Note: O_n is not a subgroup. (Why?)

We have $S_n = A_n \bigsqcup O_n$ (Why?), so $|S_n| = |A_n| + |O_n|$.

- I. For each odd permutation σ , the permutation (12) σ is even. (Why?) If σ and τ are two distinct odd permutations, then (12) $\sigma \neq$ (12) τ . Proof by contradiction: Suppose (12) $\sigma =$ (12) τ , then $\sigma \stackrel{!}{=} \tau$. (Why?) Thus, $|A_n| \geq |O_n|$. (Why?)
- II. Similarly, we can show that $|O_n| \ge |A_n|$.

III. Therefore,
$$|A_n| = |O_n| = \frac{|S_n|}{2} = \frac{n!}{2}$$
. (Why?)

Recall that

• Recall that $S_3 = \{(1), (12), (13), (23), (123), (132)\}$, then

• Recall that $S_3 = \{(1), (12), (13), (23), (123), (132)\}$, then we have $A_3 = \{(1), (123), (132)\}$. (Why?)

- Recall that $S_3 = \{(1), (12), (13), (23), (123), (132)\}$, then we have $A_3 = \{(1), (123), (132)\}$. (Why?)
- $|S_4| = 4! = 24$:

- Recall that $S_3 = \{(1), (12), (13), (23), (123), (132)\}$, then we have $A_3 = \{(1), (123), (132)\}$. (Why?)
- $|S_4| = 4! = 24$: List all the possible *decomposition types* of elements.

Definition 7

- Recall that $S_3 = \{(1), (12), (13), (23), (123), (132)\}$, then we have $A_3 = \{(1), (123), (132)\}$. (Why?)
- $|S_4| = 4! = 24$: List all the possible *decomposition types* of elements.

Definition 7

The **decomposition type** of a permutation σ in S_n is the list of all the cycle lengths involved in a decomposition of σ into disjoint cycles.

Upshot: Possible decomposition types of permutations of S_4 : (Check it!)

- Recall that $S_3 = \{(1), (12), (13), (23), (123), (132)\}$, then we have $A_3 = \{(1), (123), (132)\}$. (Why?)
- $|S_4| = 4! = 24$: List all the possible *decomposition types* of elements.

Definition 7

The **decomposition type** of a permutation σ in S_n is the list of all the cycle lengths involved in a decomposition of σ into disjoint cycles.

Upshot: Possible decomposition types of permutations of S_4 : (Check it!) (i) a single cycle of length 1, 2, 3 or 4

- Recall that $S_3 = \{(1), (12), (13), (23), (123), (132)\}$, then we have $A_3 = \{(1), (123), (132)\}$. (Why?)
- $|S_4| = 4! = 24$: List all the possible *decomposition types* of elements.

Definition 7

The **decomposition type** of a permutation σ in S_n is the list of all the cycle lengths involved in a decomposition of σ into disjoint cycles.

Upshot: Possible decomposition types of permutations of S₄: (Check it!)
(i) a single cycle of length 1, 2, 3 or 4
(ii) two disjoint cycles of length 2

Question 2

- Recall that $S_3 = \{(1), (12), (13), (23), (123), (132)\}$, then we have $A_3 = \{(1), (123), (132)\}$. (Why?)
- $|S_4| = 4! = 24$: List all the possible *decomposition types* of elements.

Definition 7

The **decomposition type** of a permutation σ in S_n is the list of all the cycle lengths involved in a decomposition of σ into disjoint cycles.

Upshot: Possible decomposition types of permutations of S_4 : (Check it!)

- (i) a single cycle of length 1, 2, 3 or 4
- (ii) two disjoint cycles of length 2

Question 2

Which of these are even permutations?

- Recall that $S_3 = \{(1), (12), (13), (23), (123), (132)\}$, then we have $A_3 = \{(1), (123), (132)\}$. (Why?)
- $|S_4| = 4! = 24$: List all the possible *decomposition types* of elements.

Definition 7

The **decomposition type** of a permutation σ in S_n is the list of all the cycle lengths involved in a decomposition of σ into disjoint cycles.

Upshot: Possible decomposition types of permutations of S_4 : (Check it!)

- (i) a single cycle of length 1, 2, 3 or 4
- (ii) two disjoint cycles of length 2

Question 2

Which of these are even permutations?

(a) single cycles of length 1 and 3

- Recall that $S_3 = \{(1), (12), (13), (23), (123), (132)\}$, then we have $A_3 = \{(1), (123), (132)\}$. (Why?)
- $|S_4| = 4! = 24$: List all the possible *decomposition types* of elements.

Definition 7

The **decomposition type** of a permutation σ in S_n is the list of all the cycle lengths involved in a decomposition of σ into disjoint cycles.

Upshot: Possible decomposition types of permutations of S_4 : (Check it!)

- (i) a single cycle of length 1, 2, 3 or 4
- (ii) two disjoint cycles of length 2

Question 2

Which of these are even permutations?

- (a) single cycles of length 1 and 3
- (b) two disjoint cycles of length 2

• single cycle of length 1:

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3:

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:

$$\binom{4}{3} =$$
 Four choices:

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:

$$\binom{4}{3} = \text{Four choices:} \quad 123 \quad 124 \quad 134 \quad 234$$

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:

 $\binom{4}{3}$ = Four choices: 123 124 134 234

For each choice, there are two ways to make a cycle. (Why?)

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:
 - $\binom{4}{3} = \text{Four choices:} 123 \quad 124 \quad 134 \quad 234$ For each choice, there are **two** ways to make a cycle. (Why?) The following is the list of all cycles of length 3 in S_4 :
- (123), (132), (124), (142), (134), (143), (234), (243) • two disjoint cycles of length 2:

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:
 - $\binom{4}{3}$ = Four choices: 123 124 134 234 For each choice, there are **two** ways to make a cycle. (Why?) The following is the list of all cycles of length 3 in S_4 : (123), (132), (124), (142), (134), (143), (234), (243)
- two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:
- $\begin{pmatrix} 4 \\ 3 \end{pmatrix} = \text{Four choices:} 123 \quad 124 \quad 134 \quad 234$ For each choice, there are **two** ways to make a cycle. (Why?) The following is the list of all cycles of length 3 in *S*₄: (123), (132), (124), (142), (134), (143), (234), (243)
 two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4
 - $\binom{4}{2}$ = Six choices:

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:
- $\begin{pmatrix} 4 \\ 3 \end{pmatrix} = \text{Four choices:} 123 \quad 124 \quad 134 \quad 234$ For each choice, there are **two** ways to make a cycle. (Why?) The following is the list of all cycles of length 3 in S_4 : (123), (132), (124), (142), (134), (143), (234), (243) • two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4
 - two disjoint cycles of length 2: Choose any two of the #\$ 1, 2, 3, 4 $\binom{4}{2} = \text{Six choices:} 12 \quad 13 \quad 14 \quad 23 \quad 24 \quad 34$

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:
 - $\binom{4}{3}$ = Four choices: 123 124 134 234 For each choice, there are **two** ways to make a cycle. (Why?) The following is the list of all cycles of length 3 in S_4 : (123), (132), (124), (142), (134), (143), (234), (243)
- two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4 $\binom{4}{2} = \text{Six choices:} 12 13 14 23 24 34$

Each pair of two numbers listed above gives rise to a transposition.

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:
 - $\binom{4}{3} = \text{Four choices:} \quad 123 \quad 124 \quad 134 \quad 234$ For each choice, there are **two** ways to make a cycle. (Why?) The following is the list of all cycles of length 3 in S₄:
- (123), (132), (124), (142), (134), (143), (234), (243) • two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4 $\binom{4}{2}$ = Six choices: 12 13 14 23 24 34

Each pair of two numbers listed above gives rise to a transposition. The other two numbers form another transposition, which is disjoint from the first one.

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:
 - $\binom{4}{3} = \text{Four choices:} \quad 123 \quad 124 \quad 134 \quad 234$ For each choice, there are **two** ways to make a cycle. (Why?) The following is the list of all cycles of length 3 in S₄:
- (123), (132), (124), (142), (134), (143), (234), (243) • two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4 $\binom{4}{2}$ = Six choices: 12 13 14 23 24 34 Fach pair of two numbers listed above gives rise to a transposition

Each pair of two numbers listed above gives rise to a transposition. The other two numbers form another transposition, which is disjoint from the first one. The order doesn't matter.(Why?)

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:
 - $\binom{4}{3}$ = Four choices: 123 124 134 234 For each choice, there are **two** ways to make a cycle. (Why?) The following is the list of all cycles of length 3 in *S*₄:
- (123), (132), (124), (142), (134), (143), (234), (243) • two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4 (4) Simplify the second s

 $\binom{4}{2}$ = Six choices: 12 13 14 23 24 34 Each pair of two numbers listed above gives rise to a transposition. The other two numbers form another transposition, which is disjoint from the first one. The order doesn't matter.(Why?) This implies that there are three different products of two disjoint transpositions:

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:
 - $\binom{4}{3}$ = Four choices: 123 124 134 234 For each choice, there are **two** ways to make a cycle. (Why?) The following is the list of all cycles of length 3 in *S*₄:
- (123), (132), (124), (142), (134), (143), (234), (243)• two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4

 $\binom{4}{2}$ = Six choices: 12 13 14 23 24 34 Each pair of two numbers listed above gives rise to a transposition. The other two numbers form another transposition, which is disjoint from the first one. The order doesn't matter.(Why?) This implies that there are three different products of two disjoint transpositions: Pick any pair of two numbers: 6 choices;

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:
 - $\binom{4}{3}$ = Four choices: 123 124 134 234 For each choice, there are **two** ways to make a cycle. (Why?) The following is the list of all cycles of length 3 in *S*₄:
- (123), (132), (124), (142), (134), (143), (234), (243) • two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4

 $\binom{4}{2}$ = Six choices: 12 13 14 23 24 34

Each pair of two numbers listed above gives rise to a transposition. The other two numbers form another transposition, which is disjoint from the first one. The order doesn't matter.(Why?) *This implies that there are three different products of two disjoint transpositions*: Pick any pair of two numbers: 6 choices; the other pair is determined. (Why?)

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:
 - $\binom{4}{3} = \text{Four choices:} \quad 123 \quad 124 \quad 134 \quad 234$ For each choice, there are **two** ways to make a cycle. (Why?) The following is the list of all cycles of length 3 in S₄:
- (123), (132), (124), (142), (134), (143), (234), (243) • two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4 (4)

 $\binom{4}{2}$ = Six choices: 12 13 14 23 24 34 Each pair of two numbers listed above gives rise to a transposition. The other two numbers form another transposition, which is disjoint from the first one. The order doesn't matter.(Why?) *This implies that there are three different products of two disjoint transpositions*: Pick any pair of two numbers: 6 choices; the other pair is determined. (Why?) The order doesn't matter \Rightarrow 3 different products. (Why?)

- single cycle of length 1: the identity permutation (1)
- single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:

 $\binom{4}{3}$ = Four choices: 123 124 134 234 For each choice, there are **two** ways to make a cycle. (Why?) The following is the list of all cycles of length 3 in *S*₄:

(123), (132), (124), (142), (134), (143), (234), (243) • two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4

 $\binom{4}{2}$ = Six choices: 12 13 14 23 24 34 Each pair of two numbers listed above gives rise to a transposition. The other two numbers form another transposition, which is disjoint from the first one. The order doesn't matter.(Why?) This implies that there are three different products of two disjoint transpositions: Pick any pair of two numbers: 6 choices; the other pair is determined.

(Why?) The order doesn't matter \Rightarrow 3 different products. (Why?)

Permutation Groups

(12)(34), (13)(24), (14)(23)

June 3-4, 2020

20 / 23

Upshot:

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In *A*₄,

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d.

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d. Proof by contradiction:

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d.

Proof by contradiction: Suppose that *H* is a subgroup of order 6 in A_4 .

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d.

Proof by contradiction: Suppose that *H* is a subgroup of order 6 in A_4 .

• It must contain an element of order 2. (Why?) [

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d.

Proof by contradiction: Suppose that *H* is a subgroup of order 6 in A_4 .

• It must contain an element of order 2. (Why?) [since |H| = 6 is even]

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d.

Proof by contradiction: Suppose that *H* is a subgroup of order 6 in A_4 .

- It must contain an element of order 2. (Why?) [since |H| = 6 is even]
- It must contain an element of order 3. [

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d.

Proof by contradiction: Suppose that *H* is a subgroup of order 6 in A_4 .

- It must contain an element of order 2. (Why?) [since |H| = 6 is even]
- It must contain an element of order 3. [Proof by contradiction:]

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d.

Proof by contradiction: Suppose that *H* is a subgroup of order 6 in A_4 .

- It must contain an element of order 2. (Why?) [since |H| = 6 is even]
- It must contain an element of order 3. [Proof by contradiction:]

Assume every non-identity element of H has order 2.

Let $x, y \in H$ with $x \neq y$ and o(x) = o(y) = 2.

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d.

Proof by contradiction: Suppose that *H* is a subgroup of order 6 in A_4 .

- It must contain an element of order 2. (Why?) [since |H| = 6 is even]
- It must contain an element of order 3. [Proof by contradiction:] Assume every non-identity element of *H* has order 2.

Let $x, y \in H$ with $x \neq y$ and o(x) = o(y) = 2. So o(xy) = 2. (Why?)

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d.

Proof by contradiction: Suppose that *H* is a subgroup of order 6 in A_4 .

- It must contain an element of order 2. (Why?) [since |H| = 6 is even]
- It must contain an element of order 3. [Proof by contradiction:]

Assume every non-identity element of H has order 2.

Let $x, y \in H$ with $x \neq y$ and o(x) = o(y) = 2. So o(xy) = 2. (Why?) And then xy = yx. (Why?) [

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d.

Proof by contradiction: Suppose that *H* is a subgroup of order 6 in A_4 .

- It must contain an element of order 2. (Why?) [since |H| = 6 is even]
- It must contain an element of order 3. [Proof by contradiction:]

Assume every non-identity element of H has order 2.

Let $x, y \in H$ with $x \neq y$ and o(x) = o(y) = 2. So o(xy) = 2. (Why?) And then xy = yx. (Why?) $[xy = (xy)^{-1} = y^{-1}x^{-1} = yx$.]

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d.

Proof by contradiction: Suppose that *H* is a subgroup of order 6 in A_4 .

- It must contain an element of order 2. (Why?) [since |H| = 6 is even]
- It must contain an element of order 3. [Proof by contradiction:]

Assume every non-identity element of H has order 2.

Let $x, y \in H$ with $x \neq y$ and o(x) = o(y) = 2. So o(xy) = 2. (Why?) And then xy = yx. (Why?) $[xy = (xy)^{-1} = y^{-1}x^{-1} = yx$.]

Hence $\{e, x, y, xy\}$ is a subgroup of *H* of order 4, a contradiction. (Why?)

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d.

Proof by contradiction: Suppose that *H* is a subgroup of order 6 in A_4 .

- It must contain an element of order 2. (Why?) [since |H| = 6 is even]
- It must contain an element of order 3. [Proof by contradiction:]

Assume every non-identity element of H has order 2.

Let $x, y \in H$ with $x \neq y$ and o(x) = o(y) = 2. So o(xy) = 2. (Why?) And then xy = yx. (Why?) $[xy = (xy)^{-1} = y^{-1}x^{-1} = yx$.]

Hence $\{e, x, y, xy\}$ is a subgroup of H of order 4, a contradiction. (Why?)

This implies that H must contain an element of the form (abc) and an element of the form (ab)(cd).

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d.

Proof by contradiction: Suppose that *H* is a subgroup of order 6 in A_4 .

- It must contain an element of order 2. (Why?) [since |H| = 6 is even]
- It must contain an element of order 3. [Proof by contradiction:]

Assume every non-identity element of H has order 2.

Let $x, y \in H$ with $x \neq y$ and o(x) = o(y) = 2. So o(xy) = 2. (Why?) And then xy = yx. (Why?) $[xy = (xy)^{-1} = y^{-1}x^{-1} = yx$.]

Hence $\{e, x, y, xy\}$ is a subgroup of H of order 4, a contradiction. (Why?)

This implies that H must contain an element of the form (abc) and an element of the form (ab)(cd). Then H contains (abc)(ab)(cd) = (acd) and

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (abc) or (ab)(cd) for distinct a, b, c, d.

Proof by contradiction: Suppose that *H* is a subgroup of order 6 in A_4 .

- It must contain an element of order 2. (Why?) [since |H| = 6 is even]
- It must contain an element of order 3. [Proof by contradiction:]

Assume every non-identity element of H has order 2.

Let $x, y \in H$ with $x \neq y$ and o(x) = o(y) = 2. So o(xy) = 2. (Why?) And then xy = yx. (Why?) $[xy = (xy)^{-1} = y^{-1}x^{-1} = yx$.]

Hence $\{e, x, y, xy\}$ is a subgroup of H of order 4, a contradiction. (Why?)

This implies that H must contain an element of the form (abc) and an element of the form (ab)(cd). Then H contains (abc)(ab)(cd) = (acd) and (ab)(cd)(abc) = (bdc).

Upshot: The following is the list of elements in A_4 : (1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of $|A_4| = 12$, A_4 has no subgroup of order 6.

In A_4 , all elements different from the identity have the form (*abc*) or (ab)(cd) for distinct a, b, c, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A_4 .

- It must contain an element of order 2. (Why?) [since |H| = 6 is even]
- It must contain an element of order 3. [Proof by contradiction:]

Assume every non-identity element of H has order 2.

Let $x, y \in H$ with $x \neq y$ and o(x) = o(y) = 2. So o(xy) = 2. (Why?) And then xy = yx. (Why?) $[xy = (xy)^{-1} = y^{-1}x^{-1} = yx$.]

Hence $\{e, x, y, xy\}$ is a subgroup of H of order 4, a contradiction. (Why?)

This implies that H must contain an element of the form (abc) and an element of the form (ab)(cd). Then H contains (abc)(ab)(cd) = (acd)and (ab)(cd)(abc) = (bdc). \rightsquigarrow *H* has six elements of order 3. (Why?) Yi June 3-4, 2020 21 / 23

Definition 8

Definition 8

Let Δ_n be the polynomial in *n* variables x_1, x_2, \ldots, x_n defined by

$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Definition 8

Let Δ_n be the polynomial in *n* variables x_1, x_2, \ldots, x_n defined by

$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Any permutation $\sigma \in S_n$ acts on Δ_n by permuting the subscripts, and we write

$$\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

Definition 8

Let Δ_n be the polynomial in *n* variables x_1, x_2, \ldots, x_n defined by

$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Any permutation $\sigma \in S_n$ acts on Δ_n by permuting the subscripts, and we write

$$\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

If i < j and $\sigma(i) < \sigma(j)$, then the factors $x_i - x_j$ and $x_{\sigma(i)} - x_{\sigma(j)}$ have the same sign, but

Definition 8

Let Δ_n be the polynomial in *n* variables x_1, x_2, \ldots, x_n defined by

$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Any permutation $\sigma \in S_n$ acts on Δ_n by permuting the subscripts, and we write

$$\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

If i < j and $\sigma(i) < \sigma(j)$, then the factors $x_i - x_j$ and $x_{\sigma(i)} - x_{\sigma(j)}$ have the same sign, but if $\sigma(i) > \sigma(j)$ then $x_{\sigma(i)} - x_{\sigma(j)} = -(x_{\sigma(j)} - x_{\sigma(i)})$.

Definition 8

Let Δ_n be the polynomial in *n* variables x_1, x_2, \ldots, x_n defined by

$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Any permutation $\sigma \in S_n$ acts on Δ_n by permuting the subscripts, and we write

$$\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

If i < j and $\sigma(i) < \sigma(j)$, then the factors $x_i - x_j$ and $x_{\sigma(i)} - x_{\sigma(j)}$ have the same sign, but if $\sigma(i) > \sigma(j)$ then $x_{\sigma(i)} - x_{\sigma(j)} = -(x_{\sigma(j)} - x_{\sigma(i)})$. Because of such sign changes, we either have $\sigma(\Delta_n) = \Delta_n$ or $\sigma(\Delta_n) = -\Delta_n$.

Example 9 $(\Delta_3 = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3))$

Definition 8

Let Δ_n be the polynomial in *n* variables x_1, x_2, \ldots, x_n defined by

$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Any permutation $\sigma \in S_n$ acts on Δ_n by permuting the subscripts, and we write

$$\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

If i < j and $\sigma(i) < \sigma(j)$, then the factors $x_i - x_j$ and $x_{\sigma(i)} - x_{\sigma(j)}$ have the same sign, but if $\sigma(i) > \sigma(j)$ then $x_{\sigma(i)} - x_{\sigma(j)} = -(x_{\sigma(j)} - x_{\sigma(i)})$. Because of such sign changes, we either have $\sigma(\Delta_n) = \Delta_n$ or $\sigma(\Delta_n) = -\Delta_n$.

Example 9
$$(\Delta_3 = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3))$$

Let $\sigma = (123)$ acts on Δ_3 :

Definition 8

Let Δ_n be the polynomial in *n* variables x_1, x_2, \ldots, x_n defined by

$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Any permutation $\sigma \in S_n$ acts on Δ_n by permuting the subscripts, and we write

$$\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

If i < j and $\sigma(i) < \sigma(j)$, then the factors $x_i - x_j$ and $x_{\sigma(i)} - x_{\sigma(j)}$ have the same sign, but if $\sigma(i) > \sigma(j)$ then $x_{\sigma(i)} - x_{\sigma(j)} = -(x_{\sigma(j)} - x_{\sigma(i)})$. Because of such sign changes, we either have $\sigma(\Delta_n) = \Delta_n$ or $\sigma(\Delta_n) = -\Delta_n$.

Example 9 (
$$\Delta_3 = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3)$$
)

Let $\sigma = (123)$ acts on Δ_3 : $\sigma(\Delta_3) = (x_2 - x_3)(x_2 - x_1)(x_3 - x_1) =$

Definition 8

Let Δ_n be the polynomial in *n* variables x_1, x_2, \ldots, x_n defined by

$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Any permutation $\sigma \in S_n$ acts on Δ_n by permuting the subscripts, and we write

$$\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

If i < j and $\sigma(i) < \sigma(j)$, then the factors $x_i - x_j$ and $x_{\sigma(i)} - x_{\sigma(j)}$ have the same sign, but if $\sigma(i) > \sigma(j)$ then $x_{\sigma(i)} - x_{\sigma(j)} = -(x_{\sigma(j)} - x_{\sigma(i)})$. Because of such sign changes, we either have $\sigma(\Delta_n) = \Delta_n$ or $\sigma(\Delta_n) = -\Delta_n$.

Example 9
$$(\Delta_3 = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3))$$

Let $\sigma = (123)$ acts on Δ_3 : $\sigma(\Delta_3) = (x_2 - x_3)(x_2 - x_1)(x_3 - x_1) = \Delta_3$.

Definition 8

Let Δ_n be the polynomial in *n* variables x_1, x_2, \ldots, x_n defined by

$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Any permutation $\sigma \in S_n$ acts on Δ_n by permuting the subscripts, and we write

$$\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

If i < j and $\sigma(i) < \sigma(j)$, then the factors $x_i - x_j$ and $x_{\sigma(i)} - x_{\sigma(j)}$ have the same sign, but if $\sigma(i) > \sigma(j)$ then $x_{\sigma(i)} - x_{\sigma(j)} = -(x_{\sigma(j)} - x_{\sigma(i)})$. Because of such sign changes, we either have $\sigma(\Delta_n) = \Delta_n$ or $\sigma(\Delta_n) = -\Delta_n$.

Example 9 ($\Delta_3 = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3)$)

Let $\sigma = (123)$ acts on Δ_3 : $\sigma(\Delta_3) = (x_2 - x_3)(x_2 - x_1)(x_3 - x_1) = \Delta_3$. Let $\tau = (12)$ acts on Δ_3 :

Definition 8

Let Δ_n be the polynomial in *n* variables x_1, x_2, \ldots, x_n defined by

$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Any permutation $\sigma \in S_n$ acts on Δ_n by permuting the subscripts, and we write

$$\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

If i < j and $\sigma(i) < \sigma(j)$, then the factors $x_i - x_j$ and $x_{\sigma(i)} - x_{\sigma(j)}$ have the same sign, but if $\sigma(i) > \sigma(j)$ then $x_{\sigma(i)} - x_{\sigma(j)} = -(x_{\sigma(j)} - x_{\sigma(i)})$. Because of such sign changes, we either have $\sigma(\Delta_n) = \Delta_n$ or $\sigma(\Delta_n) = -\Delta_n$.

Example 9 $(\Delta_3 = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3))$

Let $\sigma = (123)$ acts on Δ_3 : $\sigma(\Delta_3) = (x_2 - x_3)(x_2 - x_1)(x_3 - x_1) = \Delta_3$. Let $\tau = (12)$ acts on Δ_3 : $\tau(\Delta_3) = (x_2 - x_1)(x_2 - x_3)(x_1 - x_3) =$

Definition 8

Let Δ_n be the polynomial in *n* variables x_1, x_2, \ldots, x_n defined by

$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Any permutation $\sigma \in S_n$ acts on Δ_n by permuting the subscripts, and we write

$$\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

If i < j and $\sigma(i) < \sigma(j)$, then the factors $x_i - x_j$ and $x_{\sigma(i)} - x_{\sigma(j)}$ have the same sign, but if $\sigma(i) > \sigma(j)$ then $x_{\sigma(i)} - x_{\sigma(j)} = -(x_{\sigma(j)} - x_{\sigma(i)})$. Because of such sign changes, we either have $\sigma(\Delta_n) = \Delta_n$ or $\sigma(\Delta_n) = -\Delta_n$.

Example 9 $(\Delta_3 = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3))$

Let $\sigma = (123)$ acts on Δ_3 : $\sigma(\Delta_3) = (x_2 - x_3)(x_2 - x_1)(x_3 - x_1) = \Delta_3$. Let $\tau = (12)$ acts on Δ_3 : $\tau(\Delta_3) = (x_2 - x_1)(x_2 - x_3)(x_1 - x_3) = -\Delta_3$.

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set $X = \{\Delta_n, -\Delta_n\}$.

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set
$$X = \{\Delta_n, -\Delta_n\}$$
. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by
 $\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set
$$X = {\Delta_n, -\Delta_n}$$
. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by

$$\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

It is easy to check that $\widehat{\sigma\tau}(\Delta_n) = \widehat{\sigma}(\widehat{\tau}(\Delta_n))$ for any two $\sigma, \tau \in S_n$.

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set
$$X = \{\Delta_n, -\Delta_n\}$$
. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by

$$\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

It is easy to check that $\widehat{\sigma\tau}(\Delta_n) = \widehat{\sigma}(\widehat{\tau}(\Delta_n))$ for any two $\sigma, \tau \in S_n$. Let $\rho = (rs)$ be any transposition. Claim:

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set
$$X = \{\Delta_n, -\Delta_n\}$$
. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by

$$\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

It is easy to check that $\widehat{\sigma\tau}(\Delta_n) = \widehat{\sigma}(\widehat{\tau}(\Delta_n))$ for any two $\sigma, \tau \in S_n$. Let $\rho = (rs)$ be any transposition. Claim: $\widehat{\rho}(\Delta_n) = -\Delta_n$.

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set
$$X = \{\Delta_n, -\Delta_n\}$$
. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by

$$\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

It is easy to check that $\widehat{\sigma\tau}(\Delta_n) = \widehat{\sigma}(\widehat{\tau}(\Delta_n))$ for any two $\sigma, \tau \in S_n$. Let $\rho = (rs)$ be any transposition. Claim: $\widehat{\rho}(\Delta_n) = -\Delta_n$. Assume that r < s.

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set
$$X = \{\Delta_n, -\Delta_n\}$$
. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by

$$\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

It is easy to check that $\widehat{\sigma\tau}(\Delta_n) = \widehat{\sigma}(\widehat{\tau}(\Delta_n))$ for any two $\sigma, \tau \in S_n$. Let $\rho = (rs)$ be any transposition. Claim: $\widehat{\rho}(\Delta_n) = -\Delta_n$. Assume that r < s. By definition, $\widehat{\rho}(\Delta_n) = \prod_{1 \le i \le j \le n} (x_{\rho(i)} - x_{\rho(j)})$. We have

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set
$$X = \{\Delta_n, -\Delta_n\}$$
. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by

$$\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

It is easy to check that $\widehat{\sigma\tau}(\Delta_n) = \widehat{\sigma}(\widehat{\tau}(\Delta_n))$ for any two $\sigma, \tau \in S_n$. Let $\rho = (rs)$ be any transposition. Claim: $\widehat{\rho}(\Delta_n) = -\Delta_n$. Assume that r < s. By definition, $\widehat{\rho}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\rho(i)} - x_{\rho(j)})$. We have

 $x_{\rho(r)} - x_{\rho(s)} = x_s - x_r = -(x_r - x_s)$ and

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set
$$X = \{\Delta_n, -\Delta_n\}$$
. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by

$$\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

It is easy to check that $\widehat{\sigma\tau}(\Delta_n) = \widehat{\sigma}(\widehat{\tau}(\Delta_n))$ for any two $\sigma, \tau \in S_n$. Let $\rho = (rs)$ be any transposition. Claim: $\widehat{\rho}(\Delta_n) = -\Delta_n$. Assume that r < s. By definition, $\widehat{\rho}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\rho(i)} - x_{\rho(j)})$. We have

 $x_{\rho(r)} - x_{\rho(s)} = x_s - x_r = -(x_r - x_s)$ and $x_{\rho(i)} - x_{\rho(j)} = x_i - x_j$ for $i, j \neq r, s$.

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set $X = \{\Delta_n, -\Delta_n\}$. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by

$$\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

It is easy to check that $\widehat{\sigma\tau}(\Delta_n) = \widehat{\sigma}(\widehat{\tau}(\Delta_n))$ for any two $\sigma, \tau \in S_n$. Let $\rho = (rs)$ be any transposition. Claim: $\widehat{\rho}(\Delta_n) = -\Delta_n$. Assume that r < s. By definition, $\widehat{\rho}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\rho(i)} - x_{\rho(j)})$. We have

 $x_{\rho(r)} - x_{\rho(s)} = x_s - x_r = -(x_r - x_s) \text{ and } x_{\rho(i)} - x_{\rho(j)} = x_i - x_j \text{ for } i, j \neq r, s.$

(1) if
$$i > s : (x_{\rho(r)} - x_i)(x_{\rho(s)} - x_i) = (x_s - x_i)(x_r - x_i) = (x_r - x_i)(x_s - x_i).$$

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set $X = \{\Delta_n, -\Delta_n\}$. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by

$$\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

It is easy to check that $\widehat{\sigma\tau}(\Delta_n) = \widehat{\sigma}(\widehat{\tau}(\Delta_n))$ for any two $\sigma, \tau \in S_n$. Let $\rho = (rs)$ be any transposition. Claim: $\widehat{\rho}(\Delta_n) = -\Delta_n$. Assume that r < s. By definition, $\widehat{\rho}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\rho(i)} - x_{\rho(j)})$. We have

 $x_{\rho(r)} - x_{\rho(s)} = x_s - x_r = -(x_r - x_s) \text{ and } x_{\rho(i)} - x_{\rho(j)} = x_i - x_j \text{ for } i, j \neq r, s.$

(1) if
$$i > s : (x_{\rho(r)} - x_i)(x_{\rho(s)} - x_i) = (x_s - x_i)(x_r - x_i) = (x_r - x_i)(x_s - x_i).$$

(2) if $r < i < s : (x_{\rho(r)} - x_i)(x_i - x_{\rho(s)}) = (x_s - x_i)(x_i - x_r) = (x_r - x_i)(x_i - x_s).$

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set
$$X = \{\Delta_n, -\Delta_n\}$$
. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by

$$\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

It is easy to check that $\widehat{\sigma\tau}(\Delta_n) = \widehat{\sigma}(\widehat{\tau}(\Delta_n))$ for any two $\sigma, \tau \in S_n$. Let $\rho = (rs)$ be any transposition. Claim: $\widehat{\rho}(\Delta_n) = -\Delta_n$. Assume that r < s. By definition, $\widehat{\rho}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\rho(i)} - x_{\rho(j)})$. We have

 $x_{\rho(r)} - x_{\rho(s)} = x_s - x_r = -(x_r - x_s) \text{ and } x_{\rho(i)} - x_{\rho(j)} = x_i - x_j \text{ for } i, j \neq r, s.$

(1) if $i > s : (x_{\rho(r)} - x_i)(x_{\rho(s)} - x_i) = (x_s - x_i)(x_r - x_i) = (x_r - x_i)(x_s - x_i).$ (2) if $r < i < s : (x_{\rho(r)} - x_i)(x_i - x_{\rho(s)}) = (x_s - x_i)(x_i - x_r) = (x_r - x_i)(x_i - x_s).$ (3) if $i < r : (x_i - x_{\rho(r)})(x_i - x_{\rho(s)}) = (x_i - x_s)(x_i - x_r) = (x_i - x_r)(x_i - x_s).$

Thus

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set
$$X = \{\Delta_n, -\Delta_n\}$$
. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by

$$\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

It is easy to check that $\widehat{\sigma\tau}(\Delta_n) = \widehat{\sigma}(\widehat{\tau}(\Delta_n))$ for any two $\sigma, \tau \in S_n$. Let $\rho = (rs)$ be any transposition. Claim: $\widehat{\rho}(\Delta_n) = -\Delta_n$. Assume that r < s. By definition, $\widehat{\rho}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\rho(i)} - x_{\rho(j)})$. We have

 $x_{\rho(r)} - x_{\rho(s)} = x_s - x_r = -(x_r - x_s) \text{ and } x_{\rho(i)} - x_{\rho(j)} = x_i - x_j \text{ for } i, j \neq r, s.$

(1) if $i > s : (x_{\rho(r)} - x_i)(x_{\rho(s)} - x_i) = (x_s - x_i)(x_r - x_i) = (x_r - x_i)(x_s - x_i).$ (2) if $r < i < s : (x_{\rho(r)} - x_i)(x_i - x_{\rho(s)}) = (x_s - x_i)(x_i - x_r) = (x_r - x_i)(x_i - x_s).$ (3) if $i < r : (x_i - x_{\rho(r)})(x_i - x_{\rho(s)}) = (x_i - x_s)(x_i - x_r) = (x_i - x_r)(x_i - x_s).$ Thus $\widehat{\rho}(\Delta_n) = -\Delta_n.$

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set
$$X = \{\Delta_n, -\Delta_n\}$$
. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by

$$\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

It is easy to check that $\widehat{\sigma\tau}(\Delta_n) = \widehat{\sigma}(\widehat{\tau}(\Delta_n))$ for any two $\sigma, \tau \in S_n$. Let $\rho = (rs)$ be any transposition. Claim: $\widehat{\rho}(\Delta_n) = -\Delta_n$. Assume that r < s. By definition, $\widehat{\rho}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\rho(i)} - x_{\rho(j)})$. We have

 $x_{\rho(r)} - x_{\rho(s)} = x_s - x_r = -(x_r - x_s) \text{ and } x_{\rho(i)} - x_{\rho(j)} = x_i - x_j \text{ for } i, j \neq r, s.$

(1) if $i > s : (x_{\rho(r)} - x_i)(x_{\rho(s)} - x_i) = (x_s - x_i)(x_r - x_i) = (x_r - x_i)(x_s - x_i).$ (2) if $r < i < s : (x_{\rho(r)} - x_i)(x_i - x_{\rho(s)}) = (x_s - x_i)(x_i - x_r) = (x_r - x_i)(x_i - x_s).$ (3) if $i < r : (x_i - x_{\rho(r)})(x_i - x_{\rho(s)}) = (x_i - x_s)(x_i - x_r) = (x_i - x_r)(x_i - x_s).$ Thus $\hat{\rho}(\Delta_n) = -\Delta_n$. Given any $\sigma \in S_n$, we can write $\sigma = \rho_1 \rho_2 \cdots \rho_k$. Then

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set
$$X = \{\Delta_n, -\Delta_n\}$$
. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by

$$\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

It is easy to check that $\widehat{\sigma\tau}(\Delta_n) = \widehat{\sigma}(\widehat{\tau}(\Delta_n))$ for any two $\sigma, \tau \in S_n$. Let $\rho = (rs)$ be any transposition. Claim: $\widehat{\rho}(\Delta_n) = -\Delta_n$. Assume that r < s. By definition, $\widehat{\rho}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\rho(i)} - x_{\rho(j)})$. We have

 $x_{\rho(r)} - x_{\rho(s)} = x_s - x_r = -(x_r - x_s) \text{ and } x_{\rho(i)} - x_{\rho(j)} = x_i - x_j \text{ for } i, j \neq r, s.$

(1) if $i > s : (x_{\rho(r)} - x_i)(x_{\rho(s)} - x_i) = (x_s - x_i)(x_r - x_i) = (x_r - x_i)(x_s - x_i).$ (2) if $r < i < s : (x_{\rho(r)} - x_i)(x_i - x_{\rho(s)}) = (x_s - x_i)(x_i - x_r) = (x_r - x_i)(x_i - x_s).$ (3) if $i < r : (x_i - x_{\rho(r)})(x_i - x_{\rho(s)}) = (x_i - x_s)(x_i - x_r) = (x_i - x_r)(x_i - x_s).$ Thus $\widehat{\rho}(\Delta_n) = -\Delta_n$. Given any $\sigma \in S_n$, we can write $\sigma = \rho_1 \rho_2 \cdots \rho_k$. Then $\widehat{\sigma}(\Delta_n) = (-1)^k \Delta_n$. (Why?)

A permutation σ in S_n is even (i.e., $\sigma \in A_n$) if and only if $\sigma(\Delta_n) = \Delta_n$.

Set $X = \{\Delta_n, -\Delta_n\}$. For $\sigma \in S_n$, we define $\widehat{\sigma} : X \to X$ by

$$\widehat{\sigma}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}) \text{ and } \widehat{\sigma}(-\Delta_n) = -\prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

It is easy to check that $\widehat{\sigma\tau}(\Delta_n) = \widehat{\sigma}(\widehat{\tau}(\Delta_n))$ for any two $\sigma, \tau \in S_n$. Let $\rho = (rs)$ be any transposition. Claim: $\widehat{\rho}(\Delta_n) = -\Delta_n$. Assume that r < s. By definition, $\widehat{\rho}(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\rho(i)} - x_{\rho(j)})$. We have

 $x_{\rho(r)} - x_{\rho(s)} = x_s - x_r = -(x_r - x_s) \text{ and } x_{\rho(i)} - x_{\rho(j)} = x_i - x_j \text{ for } i, j \neq r, s.$

(1) if $i > s : (x_{\rho(r)} - x_i)(x_{\rho(s)} - x_i) = (x_s - x_i)(x_r - x_i) = (x_r - x_i)(x_s - x_i).$ (2) if $r < i < s : (x_{\rho(r)} - x_i)(x_i - x_{\rho(s)}) = (x_s - x_i)(x_i - x_r) = (x_r - x_i)(x_i - x_s).$ (3) if $i < r : (x_i - x_{\rho(r)})(x_i - x_{\rho(s)}) = (x_i - x_s)(x_i - x_r) = (x_i - x_r)(x_i - x_s).$ Thus $\hat{\rho}(\Delta_n) = -\Delta_n$. Given any $\sigma \in S_n$, we can write $\sigma = \rho_1 \rho_2 \cdots \rho_k$. Then $\hat{\sigma}(\Delta_n) = (-1)^k \Delta_n$. (Why?) This completes the proof. (Why?)