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Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
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Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.

If G is infinite, then G = Z.
@ Let G be a cyclic group. is infinite, then
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@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.

@ Let G be a cyclic group.
YU V17161 = n, then G = Z,.
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Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.
If |G| = n, then G = Z,,.

@ (a) Any two infinite cyclic groups are isomorphic to each other.

@ Let G be a cyclic group.
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Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.
If |G| = n, then G = Z,,.
@ (a) Any two infinite cyclic groups are isomorphic to each other.
(b) Two finite cyclic groups are isomorphic < they have the same order.

@ Subgroups of Z :

@ Let G be a cyclic group.
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Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.
If |G| = n, then G = Z,,.

@ (a) Any two infinite cyclic groups are isomorphic to each other.
(b) Two finite cyclic groups are isomorphic < they have the same order.

@ Subgroups of Z: Forany me Z, mZ = (m) = Z = (1) = (-1).

@ Let G be a cyclic group.

Permutation Groups June 3-4, 2020 2/23



Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.
If |G| = n, then G = Z,,.

@ (a) Any two infinite cyclic groups are isomorphic to each other.
(b) Two finite cyclic groups are isomorphic < they have the same order.

Subgroups of Z : Forany me€ Z, mZ = (m) ¥ Z = (1) = (—1).
e mZ C nZ < n|m. emZ=nZ< m==+n.
Subgroups of Z,, :

@ Let G be a cyclic group.
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Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.
If |G| = n, then G = Z,,.

@ (a) Any two infinite cyclic groups are isomorphic to each other.
(b) Two finite cyclic groups are isomorphic < they have the same order.

Subgroups of Z : Forany me€ Z, mZ = (m) ¥ Z = (1) = (—1).
e mZ C nZ < n|m. emZ=nZ< m==+n.
Subgroups of Z,, : For any d|n, dZ, = ([d],) ~> subgroup diagram

@ Let G be a cyclic group.
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Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.
If |G| = n, then G = Z,,.

@ (a) Any two infinite cyclic groups are isomorphic to each other.
(b) Two finite cyclic groups are isomorphic < they have the same order.
Subgroups of Z: Forany me Z, mZ = (m) = Z = (1) = (—1).

e mZ C nZ < n|m. emZ=nZ< m==+n.
Subgroups of Z,, : For any d|n, dZ, = ([d],) ~> subgroup diagram
(a) Let d = ged(m, n) : ([m],) = ([d]n) & [{[m]s)| = K[d]a)| = n/d.

@ Let G be a cyclic group.

Permutation Groups June 3-4, 2020 2/23



Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.
If |G| = n, then G = Z,,.
@ (a) Any two infinite cyclic groups are isomorphic to each other.
(b) Two finite cyclic groups are isomorphic < they have the same order.
Subgroups of Z: Forany me Z, mZ = (m) = Z = (1) = (—1).
e mZ C nZ < n|m. emZ=nZ< m==+n.
Subgroups of Z,, : For any d|n, dZ, = ([d],) ~> subgroup diagram

(2) Let d = ged(m, n) : ([m],) = ([d]) & [mlu)] = (ll)| = n/d.
(i) {[k]n) =Z, < ged(k,n) =1, i.e., [k]n € Z).

@ Let G be a cyclic group.
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Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.
If |G| = n, then G = Z,,.
@ (a) Any two infinite cyclic groups are isomorphic to each other.
(b) Two finite cyclic groups are isomorphic < they have the same order.
Subgroups of Z: Forany me Z, mZ = (m) = Z = (1) = (—1).
e mZ C nZ < n|m. emZ=nZ< m==+n.
Subgroups of Z,, : For any d|n, dZ, = ([d],) ~> subgroup diagram
(a) Let d = ged(m, n) : ([m],) = ([d]n) & [{[m]s)| = [[d]s)| = n/d.
(i) ([k]n) =2Z, < ged(k,n) =1, ie., [k]n € Z).
(II) |f d1|n and d2|n, then <[d1],,> g <[d2],,> = d2|d1.

@ Let G be a cyclic group.
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Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.
If |G| = n, then G = Z,,.
@ (a) Any two infinite cyclic groups are isomorphic to each other.
(b) Two finite cyclic groups are isomorphic < they have the same order.
Subgroups of Z: Forany me Z, mZ = (m) = Z = (1) = (—1).
e mZ C nZ < n|m. emZ=nZ< m==+n.
Subgroups of Z,, : For any d|n, dZ, = ([d],) ~> subgroup diagram
(a) Let d = ged(m, n) : ([m],) = ([d]n) & [{[m]s)| = [[d]s)| = n/d.
(i) ([k]n) = Zn < ged(k,n) =1, ie., [k]n € Z).
(II) If d1|n and d2|n, then <[d1],,> g <[d2],,> <~ d2|d1.
(i) If di|n and db|n and di # d>, then ([di]n) # ([c2]n)-

@ Let G be a cyclic group.
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Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.
If |G| = n, then G = Z,,.
@ (a) Any two infinite cyclic groups are isomorphic to each other.
(b) Two finite cyclic groups are isomorphic < they have the same order.
Subgroups of Z: Forany me Z, mZ = (m) = Z = (1) = (—1).
e mZ C nZ < n|m. emZ=nZ< m==+n.
Subgroups of Z,, : For any d|n, dZ, = ([d],) ~> subgroup diagram
(a) Let d = ged(m, n) : ([m],) = ([d]n) & [{[m]s)| = [[d]s)| = n/d.
(i) ([k]n) = Zn < ged(k,n) =1, ie., [k]n € Z).
(II) If d1|n and d2|n, then <[d1],,> g <[d2],,> <~ d2|d1.
(i) If di|n and db|n and di # d>, then ([di]n) # ([c2]n)-

Zy = Zyo X Zygo % X Zye > p(n) = n(1— ) (1 - 1)

@ Let G be a cyclic group.
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Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.
If |G| = n, then G = Z,,.
@ (a) Any two infinite cyclic groups are isomorphic to each other.
(b) Two finite cyclic groups are isomorphic < they have the same order.
Subgroups of Z: Forany me Z, mZ = (m) = Z = (1) = (—1).
e mZ C nZ < n|m. emZ=nZ< m==+n.
Subgroups of Z,, : For any d|n, dZ, = ([d],) ~> subgroup diagram
(2) Let d = ged(m, n) : ([m],) = ([d]) & [{Im]a)| = [{[d]n)| = n/d.
(i) ([k]n) = Zn < ged(k,n) =1, ie., [k]n € Z).
(II) |f d1|n and d2|n, then <[d1],,> g <[d2],,> = d2|d1.
(i) If di|n and db|n and di # d>, then ([di]n) # ([c2]n)-
anzpfl ><ZP§2 X oo X Lpom wgp(n):n(l—i)---(l—i)

@ Let G be a cyclic group.

p1 Pm
@ Let G be a finite abelian group. Let N be the exponent of G.
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Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.
If |G| = n, then G = Z,,.
@ (a) Any two infinite cyclic groups are isomorphic to each other.
(b) Two finite cyclic groups are isomorphic < they have the same order.
Subgroups of Z: Forany me Z, mZ = (m) = Z = (1) = (—1).
e mZ C nZ < n|m. emZ=nZ< m==+n.
Subgroups of Z,, : For any d|n, dZ, = ([d],) ~> subgroup diagram
(2) Let d = ged(m, n) : ([m],) = ([d]) & [{Im]a)| = [{[d]n)| = n/d.
(i) ([k]n) = Zn < ged(k,n) =1, ie., [k]n € Z).
(II) |f d1|n and d2|n, then <[d1],,> g <[d2],,> = d2|d1.
(i) If di|n and db|n and di # d>, then ([di]n) # ([c2]n)-
anzpfl ><ZP§2 X oo X Lpom wgp(n):n(l—i)---(l—i)

@ Let G be a cyclic group.

p1 Pm
@ Let G be a finite abelian group. Let N be the exponent of G.

(a) N =max{o(a)|aec G}.
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Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.
If |G| = n, then G = Z,,.
@ (a) Any two infinite cyclic groups are isomorphic to each other.
(b) Two finite cyclic groups are isomorphic < they have the same order.
Subgroups of Z : Forany me€ Z, mZ = (m) ¥ Z = (1) = (—1).
e mZ C nZ < n|m. emZ=nZ< m==+n.
Subgroups of Z,, : For any d|n, dZ, = ([d],) ~> subgroup diagram
(a) Let d =ged(m, n): ([m]n) = ([d]n) & [{[m]n)| = [([d]n)| = n/d.
(i) ([k]n) = Zn < ged(k,n) =1, ie., [k]n € Z).
(II) |f d1|n and d2|n, then <[d1],,> g <[d2],,> = d2|d1.
(i) If di|n and db|n and di # d>, then ([di]n) # ([c2]n)-
anzpfl ><ZP§2 X oo X Lpom wgp(n):n(l—%)---(l—pim)
@ Let G be a finite abelian group. Let N be the exponent of G.
(a) N =max{o(a)|aec G}.
(b) The group G is cyclic & N = |G|.

@ Let G be a cyclic group.
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Review from Section 3.5

@ Every subgroup of a cyclic group G is cyclic.
If G is infinite, then G = Z.
If |G| = n, then G = Z,,.
@ (a) Any two infinite cyclic groups are isomorphic to each other.
(b) Two finite cyclic groups are isomorphic < they have the same order.
Subgroups of Z : Forany me€ Z, mZ = (m) ¥ Z = (1) = (—1).
e mZ C nZ < n|m. emZ=nZ< m==+n.
Subgroups of Z,, : For any d|n, dZ, = ([d],) ~> subgroup diagram
(a) Let d = ged(m, n) : ([m],) = ([d]n) & [{[m]s)| = [[d]s)| = n/d.
(i) ([k]n) =2Z, < ged(k,n) =1, ie., [k]n € Z).
(i) If di|n and dz|n, then ([di]n) C ([d2]n) < do|dh.
(i) If di|n and db|n and di # d>, then ([di]n) # ([c2]n)-
2,2 Z,o0 X Zypo X0 X Zpom () =n(l—2)---(1— %)
@ Let G be a finite abelian group. Let N be the exponent of G.
(a) N =max{o(a)|aec G}.
(b) The group G is cyclic & N = |G|.
For small n, check Z) cyclic or not without using primitive root thm.

@ Let G be a cyclic group.
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Review from Section 2.3

@ A permutation o of a set S is a function from S to S that is both
one-to-one and onto.

o Notation:
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@ A permutation o of a set S is a function from S to S that is both
one-to-one and onto.

e Notation: Sym(S)={o|o:S — S} orwrite S, if S={1,2,...,n}.
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Review from Section 2.3

@ A permutation o of a set S is a function from S to S that is both
one-to-one and onto.

e Notation: Sym(S)={o|o:S — S} orwrite S, if S={1,2,...,n}.
e Sym(S) is a group under o. S, is the symmetric group of degree n.
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Review from Section 2.3

@ A permutation o of a set S is a function from S to S that is both
one-to-one and onto.

e Notation: Sym(S)={o|o:S — S} orwrite S, if S={1,2,...,n}.
e Sym(S) is a group under o. S, is the symmetric group of degree n.
o |5,/ =n!
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Review from Section 2.3

@ A permutation o of a set S is a function from S to S that is both
one-to-one and onto.

Notation: Sym(S) ={o|o:S5 — S} orwrite S, if S ={1,2,...,n}.
Sym(S) is a group under o. S, is the symmetric group of degree n.
|Sn| = n!

Let 0 € Sym(S). Then o = (a1az - - - ax) is a cycle of length k.
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Review from Section 2.3

@ A permutation o of a set S is a function from S to S that is both
one-to-one and onto.

e Notation: Sym(S)={o|o:S — S} orwrite S, if S={1,2,...,n}.
e Sym(S) is a group under o. S, is the symmetric group of degree n.
e |S,|=n!

@ Let 0 € Sym(S). Then o = (ajaz-- - ax) is a cycle of length k.

@ Disjoint cycles are commutative
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Review from Section 2.3

@ A permutation o of a set S is a function from S to S that is both
one-to-one and onto.

Notation: Sym(S) ={o|o:S5 — S} orwrite S, if S ={1,2,...,n}.
Sym(S) is a group under o. S, is the symmetric group of degree n.
|Sn| = n!

Let 0 € Sym(S). Then o = (a1az - - - ax) is a cycle of length k.
Disjoint cycles are commutative

o € S, can be written as a (unique) product of disjoint cycles.
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Review from Section 2.3

@ A permutation o of a set S is a function from S to S that is both
one-to-one and onto.

Notation: Sym(S) ={o|o:S5 — S} orwrite S, if S ={1,2,...,n}.
Sym(S) is a group under o. S, is the symmetric group of degree n.
|Sn| = n!

Let 0 € Sym(S). Then o = (a1az - - - ax) is a cycle of length k.
Disjoint cycles are commutative

o € S, can be written as a (unique) product of disjoint cycles.

A cycle o of length m has order m, i.e., o(c) = m.
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Review from Section 2.3

@ A permutation o of a set S is a function from S to S that is both
one-to-one and onto.

Notation: Sym(S) ={o|o:S5 — S} orwrite S, if S ={1,2,...,n}.
Sym(S) is a group under o. S, is the symmetric group of degree n.
|Sn| = n!

Let 0 € Sym(S). Then o = (a1az - - - ax) is a cycle of length k.
Disjoint cycles are commutative

o € S, can be written as a (unique) product of disjoint cycles.

A cycle o of length m has order m, i.e., o(c) = m.

The order of o is the lcm of the lengths (orders) of its disjoint cycles.
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Review from Section 2.3

@ A permutation o of a set S is a function from S to S that is both
one-to-one and onto.

Notation: Sym(S) ={o|o:S5 — S} orwrite S, if S ={1,2,...,n}.
Sym(S) is a group under o. S, is the symmetric group of degree n.
|Sn| = n!

Let 0 € Sym(S). Then o = (a1az - - - ax) is a cycle of length k.
Disjoint cycles are commutative

o € S, can be written as a (unique) product of disjoint cycles.

A cycle o of length m has order m, i.e., o(c) = m.

The order of o is the lcm of the lengths (orders) of its disjoint cycles.

A transposition is a cycle (a1az) of length two.
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Review from Section 2.3

@ A permutation o of a set S is a function from S to S that is both
one-to-one and onto.

Notation: Sym(S) ={o|o:S5 — S} orwrite S, if S ={1,2,...,n}.
Sym(S) is a group under o. S, is the symmetric group of degree n.
|Sn| = n!

Let 0 € Sym(S). Then o = (a1az - - - ax) is a cycle of length k.
Disjoint cycles are commutative

o € S, can be written as a (unique) product of disjoint cycles.

A cycle o of length m has order m, i.e., o(c) = m.

The order of o is the lcm of the lengths (orders) of its disjoint cycles.
A transposition is a cycle (a1az) of length two.

o € S, can be written as a (NOT unique) product of transpositions.
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Review from Section 2.3

@ A permutation o of a set S is a function from S to S that is both
one-to-one and onto.

Notation: Sym(S) ={o|o:S5 — S} orwrite S, if S ={1,2,...,n}.
Sym(S) is a group under o. S, is the symmetric group of degree n.
|Sn| = n!

Let 0 € Sym(S). Then o = (a1az - - - ax) is a cycle of length k.
Disjoint cycles are commutative

°
°
°
°
°
@ 0 € 5, can be written as a (unique) product of disjoint cycles.
@ A cycle o of length m has order m, i.e., o(0) = m.

@ The order of o is the lcm of the lengths (orders) of its disjoint cycles.
@ A transposition is a cycle (a1a;) of length two.

@ 0 €5, can be written as a (NOT unique) product of transpositions.
°

Product of transpositions: Even permutation vs. Odd permutation
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Review from Section 2.3

@ A permutation o of a set S is a function from S to S that is both
one-to-one and onto.

Notation: Sym(S) ={o|o:S5 — S} orwrite S, if S ={1,2,...,n}.
Sym(S) is a group under o. S, is the symmetric group of degree n.
|Sn| = n!

Let 0 € Sym(S). Then o = (a1az - - - ax) is a cycle of length k.
Disjoint cycles are commutative

o € S, can be written as a (unique) product of disjoint cycles.

A cycle o of length m has order m, i.e., o(c) = m.

The order of o is the lcm of the lengths (orders) of its disjoint cycles.
A transposition is a cycle (a1az) of length two.

o € S, can be written as a (NOT unique) product of transpositions.
Product of transpositions: Even permutation vs. Odd permutation

A cycle of odd length is even. & A cycle of even length is odd.
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Definition 1

Any subgroup of the symmetric group Sym(S) on a set S is called a
permutation group.

Note 1 (Let G be a finite group.)
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Definition 1

Any subgroup of the symmetric group Sym(S) on a set S is called a
permutation group.

Note 1 (Let G be a finite group.)

As we have observed, each row in the multiplication table represents a
permutation of the group elements.
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Definition 1

Any subgroup of the symmetric group Sym(S) on a set S is called a
permutation group.

Note 1 (Let G be a finite group.)

As we have observed, each row in the multiplication table represents a
permutation of the group elements. Furthermore, each row corresponds to
multiplication by a given element,
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Definition 1

Any subgroup of the symmetric group Sym(S) on a set S is called a
permutation group.

Note 1 (Let G be a finite group.)

As we have observed, each row in the multiplication table represents a
permutation of the group elements. Furthermore, each row corresponds to
multiplication by a given element, and so there is a natural way to assign a
permutation to each element a € G.
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Definition 1

Any subgroup of the symmetric group Sym(S) on a set S is called a
permutation group.

Note 1 (Let G be a finite group.)

As we have observed, each row in the multiplication table represents a
permutation of the group elements. Furthermore, each row corresponds to
multiplication by a given element, and so there is a natural way to assign a
permutation to each element a € G.

In fact, this natural way will be important in the proof of Cayley’s theorem.
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Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.
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Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given a € G, define A\, : G — G by \;(x) = ax, for all x € G.
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Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given a € G, define A\, : G — G by \;(x) = ax, for all x € G.
@ )\, is one-to-one:
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Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given a € G, define A\, : G — G by \;(x) = ax, for all x € G.

@ ), is one-to-one: if A\;(x1) = Aa(x2) = axy = axo = x1 = xp. (Why?)
@ )\, is onto:
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Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given a € G, define A\, : G — G by \;(x) = ax, for all x € G.

@ ), is one-to-one: if A\;(x1) = Aa(x2) = axy = axo = x1 = xp. (Why?)
@ )\, is onto: Forany x € G, we have \;(a~1x) = a(a~!x) = x. (Why?)
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Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given a € G, define A\, : G — G by \;(x) = ax, for all x € G.

@ ), is one-to-one: if A\;(x1) = Aa(x2) = axy = axo = x1 = xp. (Why?)

@ )\, is onto: Forany x € G, we have \;(a~1x) = a(a~!x) = x. (Why?)
Thus, A, is a permutation of G.
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Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given a € G, define A\, : G — G by \;(x) = ax, for all x € G.
@ ), is one-to-one: if A\;(x1) = Aa(x2) = axy = axo = x1 = xp. (Why?)
@ )\, is onto: Forany x € G, we have \;(a~1x) = a(a~!x) = x. (Why?)

Thus, A, is a permutation of G. This shows that ¢ : G — Sym(G) defined
by ¢(a) = A, is well-defined.
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Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given a € G, define A\, : G — G by \;(x) = ax, for all x € G.
@ ), is one-to-one: if A\;(x1) = Aa(x2) = axy = axo = x1 = xp. (Why?)
@ )\, is onto: Forany x € G, we have \;(a~1x) = a(a~!x) = x. (Why?)

Thus, A, is a permutation of G. This shows that ¢ : G — Sym(G) defined
by ¢(a) = A, is well-defined. Claim: G\ = ¢(G) is a subgroup of Sym(G).
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Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given a € G, define A\, : G — G by \;(x) = ax, for all x € G.
@ ), is one-to-one: if A\;(x1) = Aa(x2) = axy = axo = x1 = xp. (Why?)
@ )\, is onto: Forany x € G, we have \;(a~1x) = a(a~!x) = x. (Why?)
Thus, A, is a permutation of G. This shows that ¢ : G — Sym(G) defined

by ¢(a) = A, is well-defined. Claim: G\ = ¢(G) is a subgroup of Sym(G).
(i) Closure:
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Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given a € G, define A\, : G — G by \;(x) = ax, for all x € G.
@ ), is one-to-one: if A\;(x1) = Aa(x2) = axy = axo = x1 = xp. (Why?)
@ )\, is onto: Forany x € G, we have \;(a~1x) = a(a~!x) = x. (Why?)

Thus, A, is a permutation of G. This shows that ¢ : G — Sym(G) defined
by ¢(a) = A, is well-defined. Claim: G\ = ¢(G) is a subgroup of Sym(G).

(i) Closure: For any A,, Ap € Gy with a,b € G, to show A\, )\, € G).
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Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given a € G, define A\, : G — G by \;(x) = ax, for all x € G.
@ ), is one-to-one: if A\;(x1) = Aa(x2) = axy = axo = x1 = xp. (Why?)
@ )\, is onto: Forany x € G, we have \;(a~1x) = a(a~!x) = x. (Why?)
Thus, A, is a permutation of G. This shows that ¢ : G — Sym(G) defined
by ¢(a) = A, is well-defined. Claim: G\ = ¢(G) is a subgroup of Sym(G).
(i) Closure: For any A,, Ap € Gy with a,b € G, to show A\, )\, € G).

AaAb(x) = Aa(Ap(x)) = Aa(bx) = a(bx) = (ab)x = Asp(x),
for all x € G.
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Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given a € G, define A\, : G — G by \;(x) = ax, for all x € G.
@ ), is one-to-one: if A\;(x1) = Aa(x2) = axy = axo = x1 = xp. (Why?)
@ )\, is onto: Forany x € G, we have \;(a~1x) = a(a~!x) = x. (Why?)
Thus, A, is a permutation of G. This shows that ¢ : G — Sym(G) defined
by ¢(a) = A, is well-defined. Claim: G\ = ¢(G) is a subgroup of Sym(G).
(i) Closure: For any A,, Ap € Gy with a,b € G, to show A\, )\, € G).
AaAb(x) = Aa(Ap(x)) = Aa(bx) = a(bx) = (ab)x = Asp(x),

for all x € G. This implies that A;\p = Ap € Gy. (Why?)
(i) Identity:
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Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given a € G, define A\, : G — G by \;(x) = ax, for all x € G.
@ ), is one-to-one: if A\;(x1) = Aa(x2) = axy = axo = x1 = xp. (Why?)
@ )\, is onto: Forany x € G, we have \;(a~1x) = a(a~!x) = x. (Why?)
Thus, A, is a permutation of G. This shows that ¢ : G — Sym(G) defined
by ¢(a) = A, is well-defined. Claim: G\ = ¢(G) is a subgroup of Sym(G).
(i) Closure: For any A,, Ap € Gy with a,b € G, to show A\, )\, € G).
AaAb(x) = Aa(Ap(x)) = Aa(bx) = a(bx) = (ab)x = Asp(x),
for all x € G. This implies that A;\p = Ap € Gy. (Why?)

(ii) Identity: Ae. For any A; € Gy, Aade = Aae = A3 & Aeds = Aea = Aa.
(i) Inverses:
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Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given a € G, define A\, : G — G by \;(x) = ax, for all x € G.
@ ), is one-to-one: if A\;(x1) = Aa(x2) = axy = axo = x1 = xp. (Why?)
@ )\, is onto: Forany x € G, we have \;(a~1x) = a(a~!x) = x. (Why?)
Thus, A, is a permutation of G. This shows that ¢ : G — Sym(G) defined
by ¢(a) = A, is well-defined. Claim: G\ = ¢(G) is a subgroup of Sym(G).
(i) Closure: For any A,, Ap € Gy with a,b € G, to show A\, )\, € G).
AaAb(x) = Aa(Ap(x)) = Aa(bx) = a(bx) = (ab)x = Asp(x),
for all x € G. This implies that A;\p = Ap € Gy. (Why?)
(ii) Identity: Ae. For any A; € Gy, Aade = Aae = A3 & Aeds = Aea = Aa.
(iii) Inverses: \,-1. It is easy to see that (\;)~1 = A\,-1. (Check it!)

Permutation Groups

June 3-4, 2020 5/23



Cayley's Theorem

Theorem 2 (Cayley's Theorem)

Every group G is isomorphic to a permutation group.

Given a € G, define A\, : G — G by \;(x) = ax, for all x € G.
@ ), is one-to-one: if A\;(x1) = Aa(x2) = axy = axo = x1 = xp. (Why?)
@ )\, is onto: Forany x € G, we have \;(a~1x) = a(a~!x) = x. (Why?)
Thus, A, is a permutation of G. This shows that ¢ : G — Sym(G) defined
by ¢(a) = A, is well-defined. Claim: G\ = ¢(G) is a subgroup of Sym(G).
(i) Closure: For any A,, Ap € Gy with a,b € G, to show A\, )\, € G).
AaAb(x) = Aa(Ap(x)) = Aa(bx) = a(bx) = (ab)x = Asp(x),
for all x € G. This implies that A;\p = Ap € Gy. (Why?)
(ii) Identity: Ae. For any A; € Gy, Aade = Aae = A3 & Aeds = Aea = Aa.

(iii) Inverses: \,-1. It is easy to see that (\;)~1 = A\,-1. (Check it!)
Thus, G)\ =

Yi

¢(G) is a subgroup of Sym(G).
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Proof of Cayley's Theorem cont.: To show G = G,.

Define ¢ : G — Gy by ¢(a) = ..
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Proof of Cayley's Theorem cont.: To show G = G,.

Define ¢ : G — Gy by ¢(a) = A,. To show ¢ is a group isomorphism.
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Proof of Cayley's Theorem cont.: To show G = G,.

Define ¢ : G — Gy by ¢(a) = A,. To show ¢ is a group isomorphism.
o well-defined:
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Proof of Cayley's Theorem cont.: To show G = G,.

Define ¢ : G — Gy by ¢(a) = A,. To show ¢ is a group isomorphism.
o well-defined: Trivial. v/

@ ¢ preserves products:
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Proof of Cayley's Theorem cont.: To show G = G,.

Define ¢ : G — Gy by ¢(a) = A,. To show ¢ is a group isomorphism.
o well-defined: Trivial. v/

@ ¢ preserves products: For any a,b € G, to show ¢(ab) = ¢(a)p(b).
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Proof of Cayley's Theorem cont.: To show G = G,.

Define ¢ : G — Gy by ¢(a) = A,. To show ¢ is a group isomorphism.
o well-defined: Trivial. v/
@ ¢ preserves products: For any a,b € G, to show ¢(ab) = ¢(a)p(b).
¢(ab) = Aap = AaAp = ¢(a)@(b).

@ ¢ is one-to-one:
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Proof of Cayley's Theorem cont.: To show G = G,.

Define ¢ : G — Gy by ¢(a) = A,. To show ¢ is a group isomorphism.
o well-defined: Trivial. v/
@ ¢ preserves products: For any a,b € G, to show ¢(ab) = ¢(a)p(b).
¢(ab) = Aap = AaAp = ¢(a)@(b).

@ ¢ is one-to-one: If ¢p(a) = ¢(b) for a,b € G, then it is to show a = b.
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Proof of Cayley's Theorem cont.: To show G = G,.

Define ¢ : G — Gy by ¢(a) = A,. To show ¢ is a group isomorphism.
o well-defined: Trivial. v/
@ ¢ preserves products: For any a,b € G, to show ¢(ab) = ¢(a)p(b).
d(ab) = Xap = AaAp = B(a)B(b).
@ ¢ is one-to-one: If ¢p(a) = ¢(b) for a,b € G, then it is to show a = b.
For all x € G, ¢(a) = ¢(b) =
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Proof of Cayley's Theorem cont.: To show G = G,.

Define ¢ : G — Gy by ¢(a) = A,. To show ¢ is a group isomorphism.
o well-defined: Trivial. v/
@ ¢ preserves products: For any a,b € G, to show ¢(ab) = ¢(a)p(b).
d(ab) = Xap = AaAp = B(a)B(b).
@ ¢ is one-to-one: If ¢p(a) = ¢(b) for a,b € G, then it is to show a = b.
For all x € G, ¢(a) = ¢(b) = Aa(x) = Ap(x) =
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Proof of Cayley's Theorem cont.: To show G = G,.

Define ¢ : G — Gy by ¢(a) = A,. To show ¢ is a group isomorphism.
o well-defined: Trivial. v/
@ ¢ preserves products: For any a,b € G, to show ¢(ab) = ¢(a)p(b).
d(ab) = Xap = AaAp = B(a)B(b).
@ ¢ is one-to-one: If ¢p(a) = ¢(b) for a,b € G, then it is to show a = b.
For all x € G, ¢(a) = ¢(b) = Aa(x) = Ap(x) = ax = bx =
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Proof of Cayley's Theorem cont.: To show G = G,.

Define ¢ : G — Gy by ¢(a) = A,. To show ¢ is a group isomorphism.
o well-defined: Trivial. v/
@ ¢ preserves products: For any a,b € G, to show ¢(ab) = ¢(a)p(b).
d(ab) = Xap = AaAp = B(a)B(b).
@ ¢ is one-to-one: If ¢p(a) = ¢(b) for a,b € G, then it is to show a = b.
For all x € G, ¢(a) = ¢(b) = Aa(x) = Ap(x) = ax = bx = a = b.

@ ¢ is onto:
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Proof of Cayley's Theorem cont.: To show G = G,.

Define ¢ : G — Gy by ¢(a) = A,. To show ¢ is a group isomorphism.
o well-defined: Trivial. v/
@ ¢ preserves products: For any a,b € G, to show ¢(ab) = ¢(a)p(b).
¢(ab) = Aap = AaAp = ¢(a)@(b).
@ ¢ is one-to-one: If ¢p(a) = ¢(b) for a,b € G, then it is to show a = b.
For all x € G, ¢(a) = ¢(b) = Aa(x) = Ap(x) = ax = bx = a = b.
@ ¢ is onto: Trivial. By the definition of Gy = ¢(G).
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Proof of Cayley's Theorem cont.: To show G = G,.

Define ¢ : G — Gy by ¢(a) = A,. To show ¢ is a group isomorphism.
o well-defined: Trivial. v/
@ ¢ preserves products: For any a,b € G, to show ¢(ab) = ¢(a)p(b).
¢(ab) = Aap = AaAp = ¢(a)@(b).
@ ¢ is one-to-one: If ¢p(a) = ¢(b) for a,b € G, then it is to show a = b.
For all x € G, ¢(a) = ¢(b) = Aa(x) = Ap(x) = ax = bx = a = b.
@ ¢ is onto: Trivial. By the definition of Gy = ¢(G).

Thus, ¢ is a group isomorphism.
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Proof of Cayley's Theorem cont.: To show G = G,.

Define ¢ : G — Gy by ¢(a) = A,. To show ¢ is a group isomorphism.
o well-defined: Trivial. v/
@ ¢ preserves products: For any a,b € G, to show ¢(ab) = ¢(a)p(b).
¢(ab) = Aap = AaAp = ¢(a)@(b).

@ ¢ is one-to-one: If ¢p(a) = ¢(b) for a,b € G, then it is to show a = b.

For all x € G, ¢(a) = ¢(b) = Aa(x) = Ap(x) = ax = bx = a = b.
@ ¢ is onto: Trivial. By the definition of Gy = ¢(G).

Thus, ¢ is a group isomorphism.

So, G = G, where G, is a subgroup of Sym(G), i.e., a permutation group.
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Example: Rigid motions of a square

Definition 3 (Rigid Motion:)
a change in position where the distance between points is preserved and
figures remain congruent (having the same size and shape). It may be
@ a translation (slide)
@ a reflection (flip)
@ a rotation (turn)

@ or a combination of these.

Yi Permutation Groups June 3-4, 2020 7/23



Example: Rigid motions of a square

Definition 3 (Rigid Motion:)

a change in position where the distance between points is preserved and
figures remain congruent (having the same size and shape). It may be

@ a translation (slide)
@ a reflection (flip)
@ a rotation (turn)

@ or a combination of these.

Each of the rigid motions determines a permutation of the vertices of the square,
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Example: Rigid motions of a square

Definition 3 (Rigid Motion:)
a change in position where the distance between points is preserved and
figures remain congruent (having the same size and shape). It may be
@ a translation (slide)
a reflection (flip)

(]
@ a rotation (turn)
o

or a combination of these.

Each of the rigid motions determines a permutation of the vertices of the square,
and the permutation notation gives a convenient way to describe these motions.
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Example: Rigid motions of a square

Definition 3 (Rigid Motion:)

a change in position where the distance between points is preserved and

figures remain congruent (having the same size and shape). It may be
@ a translation (slide)

a reflection (flip)

(]
@ a rotation (turn)
o

or a combination of these.

Each of the rigid motions determines a permutation of the vertices of the square,
and the permutation notation gives a convenient way to describe these motions.

There are a total of eight rigid motions of a square. (Why?)
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Example: Rigid motions of a square

Definition 3 (Rigid Motion:)

a change in position where the distance between points is preserved and

figures remain congruent (having the same size and shape). It may be
@ a translation (slide)

a reflection (flip)

(]
@ a rotation (turn)
o

or a combination of these.

Each of the rigid motions determines a permutation of the vertices of the square,
and the permutation notation gives a convenient way to describe these motions.

There are a total of eight rigid motions of a square. (Why?)

@ There are four choices of a position in which to place first vertex A,
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Example: Rigid motions of a square

Definition 3 (Rigid Motion:)

a change in position where the distance between points is preserved and

figures remain congruent (having the same size and shape). It may be
@ a translation (slide)

a reflection (flip)

(]
@ a rotation (turn)
o

or a combination of these.

Each of the rigid motions determines a permutation of the vertices of the square,
and the permutation notation gives a convenient way to describe these motions.

There are a total of eight rigid motions of a square. (Why?)
@ There are four choices of a position in which to place first vertex A,

@ and then two choices for second vertex since it must be adjacent to A.

Yi Permutation Groups June 3-4, 2020 7/23



Example cont.: Rigid motions of a square
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Example cont.: Rigid motions of a square
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Example cont.: Rigid motions of a square

(1234) counterclockwise rotation through 90°
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Example cont.: Rigid motions of a square

(1234) counterclockwise rotation through 90°
3 (13)(24) counterclockwise rotation through 180°
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Example cont.: Rigid motions of a square

(1234) counterclockwise rotation through 90°
3 (13)(24) counterclockwise rotation through 180°
(1432) counterclockwise rotation through 270°
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Example cont.: Rigid motions of a square

(1234) counterclockwise rotation through 90°

3 (13)(2

4)
(1432) counterclockwise rotation through 270°
)

(1

counterclockwise rotation through 180°

counterclockwise rotation through 360°
4 2
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Example cont.: Rigid motions of a square

(1234) counterclockwise rotation through 90°

3 (13)(2

4)
(1432) counterclockwise rotation through 270°
)

(1

counterclockwise rotation through 180°

counterclockwise rotation through 360°
4 2

(24) flip about vertical axis
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Example cont.: Rigid motions of a square

(1234) counterclockwise rotation through 90°

3 (13)(2

4)
(1432) counterclockwise rotation through 270°
)

(1

counterclockwise rotation through 180°

counterclockwise rotation through 360°
4 2

(24) flip about vertical axis

(13) flip about horizontal axis
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Example cont.: Rigid motions of a square

(1234) counterclockwise rotation through 90°

3 (13)(2

4)
(1432) counterclockwise rotation through 270°
)

(1

counterclockwise rotation through 180°

counterclockwise rotation through 360°
4 2

(24) flip about vertical axis

(13) flip about horizontal axis

(12)(34) flip about diagonal
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Example cont.:

Rigid motions of a square

(1234) counterclockwise rotation through 90°

3 (13)(2

4)
(1432) counterclockwise rotation through 270°
)

(1

counterclockwise rotation through 180°

counterclockwise rotation through 360°
2

(24)
(13)

) (12)(34)
(14)(23) flip about diagonal

flip about vertical axis

flip about horizontal axis

flip about diagonal
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Example cont.:

Rigid motions of a square

(1234) counterclockwise rotation through 90°

3 (13)(2

4)
(1432) counterclockwise rotation through 270°
)

(1

counterclockwise rotation through 180°

counterclockwise rotation through 360°
2

24
13

flip about vertical axis

flip about horizontal axis

flip about diagonal

)
)
)
)

(14)(23) flip about diagonal

(
(

1 (12)(34
(

Note that we do not obtain all elements of Sy as rigid motion, since,

for example,
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Example cont.: Rigid motions of a square

(1234) counterclockwise rotation through 90°

3 (13)(2

4)
(1432) counterclockwise rotation through 270°
)

(1

counterclockwise rotation through 180°

counterclockwise rotation through 360°
4 2

24
13

flip about vertical axis

flip about horizontal axis

flip about diagonal

)
)
)
)

(14)(23) flip about diagonal

(
(

1 (12)(34
(

Note that we do not obtain all elements of Sy as rigid motion, since,
for example, (12) would represent an impossible configuration.
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Example cont.: Rigid motions of a square

(1234) counterclockwise rotation through 90°

3 (13)(2

4)
(1432) counterclockwise rotation through 270°
)

(1

counterclockwise rotation through 180°

counterclockwise rotation through 360°
4 2

24
13

flip about vertical axis

flip about horizontal axis

flip about diagonal

)
)
)
)

(14)(23) flip about diagonal

(
(

1 (12)(34
(

Note that we do not obtain all elements of Sy as rigid motion, since,
for example, (12) would represent an impossible configuration.

What is the order of each rigid motion? \
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Rigid motions of a square: Multiplication table
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Rigid motions of a square: Multiplication table

(1) (1234) (13)(24) (1432)  (24) (12)(38) (13)  (14)(23)
(1) (1) (1234) (13)(24) (1432)  (24) (12)(38) (13)  (14)(23)
(1234) (1234) (13)(24) (1432) (1) (12)(34) (13) (14)(23) (24)
(13)(24) | (13)(24) (1432) (1)  (1234)  (13) (14)(23) (24) (12)(34)
(1432) | (1432) (1)  (1234) (13)(24) (14)(23) (24) (12)(38)  (13)
(24) (24)  (14)(23) (13) (12)(34) (1)  (1432) (13)(24) (1234)
(12)(34) | (12)(34)  (24) (14)(23) (13)  (1234) (1)  (1432) (13)(24)
(13) (13) (12)(34) (24) (14)(23) (13)(24) (1234) (1) (1432)
(14)(23) | (18)(23)  (13)  (12)(34)  (24)  (1432) (13)(24) (1234) (1)
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June 3-4, 2020

9/

23



Example: Rigid motions of an equilateral triangle
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Example: Rigid motions of an equilateral triangle

Proposition 1
The rigid motions of an equilateral triangle yield the group S3.

3 2

Yi Permutation Groups June 3-4, 2020 10 / 23



Example: Rigid motions of an equilateral triangle

Proposition 1
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Example: Rigid motions of an equilateral triangle

Proposition 1
The rigid motions of an equilateral triangle yield the group S3.

3 2 (123) counterclockwise rotation through 120°

Yi Permutation Groups June 3-4, 2020 10 / 23



Example: Rigid motions of an equilateral triangle

Proposition 1
The rigid motions of an equilateral triangle yield the group S3.

3 2 (123) counterclockwise rotation through 120°

(132) counterclockwise rotation through 240°
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Example: Rigid motions of an equilateral triangle

Proposition 1
The rigid motions of an equilateral triangle yield the group S3.

3 2 (123) counterclockwise rotation through 120°

(132) counterclockwise rotation through 240°

(1) counterclockwise rotation through 360°
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Example: Rigid motions of an equilateral triangle

Proposition 1
The rigid motions of an equilateral triangle yield the group S3.

3 2 (123) counterclockwise rotation through 120°

(132) counterclockwise rotation through 240°

)
(1) counterclockwise rotation through 360°
)

(23) flip about vertical axis
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Example: Rigid motions of an equilateral triangle

Proposition 1
The rigid motions of an equilateral triangle yield the group S3.

3 2 (123) counterclockwise rotation through 120°

(132) counterclockwise rotation through 240°

)
(1) counterclockwise rotation through 360°
(23) flip about vertical axis

)

(13) flip about angle bisector
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Example: Rigid motions of an equilateral triangle

Proposition 1
The rigid motions of an equilateral triangle yield the group S3.

3 2 (123) counterclockwise rotation through 120°

(132) counterclockwise rotation through 240°

)
(1) counterclockwise rotation through 360°
(23) flip about vertical axis

)

(13) flip about angle bisector

1 (12) flip about angle bisector
Note 3 (Another notion for describing Sz in §3.3)
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Example: Rigid motions of an equilateral triangle

Proposition 1
The rigid motions of an equilateral triangle yield the group S3.

3

2 (123) counterclockwise rotation through 120°
(132) counterclockwise rotation through 240°

)
(1) counterclockwise rotation through 360°
(23) flip about vertical axis

)

(13) flip about angle bisector
1 (12) flip about angle bisector

Note 3 (Another notion for describing Ss in §3.3)

S3 = {e,a, a%, b, ab, a’b}, where a*> = e, b> = e, ba = a°b = a~'b.

Note 4 (Another notion for describing Rigid Motions of a Square)
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Example: Rigid motions of an equilateral triangle

Proposition 1
The rigid motions of an equilateral triangle yield the group S3.

3

2 (123) counterclockwise rotation through 120°
(132) counterclockwise rotation through 240°

)
(1) counterclockwise rotation through 360°
(23) flip about vertical axis

)

(13) flip about angle bisector
1 (12) flip about angle bisector

Note 3 (Another notion for describing Ss in §3.3)

S3 = {e,a, a%, b, ab, a’b}, where a*> = e, b> = e, ba = a°b = a~'b.

Note 4 (Another notion for describing Rigid Motions of a Square)
Let a = (1234) and b = (24). It can be shown that ba = a*b.
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Example: Rigid motions of an equilateral triangle

Proposition 1
The rigid motions of an equilateral triangle yield the group S3.

3 2 (123) counterclockwise rotation through 120°

(132) counterclockwise rotation through 240°
(1

)

) counterclockwise rotation through 360°
(23) flip about vertical axis

)

(13) flip about angle bisector
1 (12) flip about angle bisector
Note 3 (Another notion for describing Ss in §3.3)
S3 = {e,a, a%, b, ab, a’b}, where a*> = e, b> = e, ba = a°b = a~'b.
Note 4 (Another notion for describing Rigid Motions of a Square)

Let a = (1234) and b = (24). It can be shown that ba = a>b. The group
G ={e, a,a° a3 b, ab,a’b, a3b}, where a* = e, b> = e,ba = a°b = a~'b.
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Example: Rigid motions of a regular polygon (n-gon)
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Example: Rigid motions of a regular polygon (n-gon)

Proposition 2

There are 2n rigid motions of a regular n-gon.
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Example: Rigid motions of a regular polygon (n-gon)

Proposition 2

There are 2n rigid motions of a regular n-gon.

i) There are n choices of a position in which to place first vertex A,
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Proposition 2
There are 2n rigid motions of a regular n-gon.

i) There are n choices of a position in which to place first vertex A,
i) and then two choices for second vertex since it must be adjacent to A.
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Example: Rigid motions of a regular polygon (n-gon)

Proposition 2

There are 2n rigid motions of a regular n-gon.

i) There are n choices of a position in which to place first vertex A,
i) and then two choices for second vertex since it must be adjacent to A.

n—1

————————y
(%)

—_

i) Let a be a counterclockwise rotation about the center, through 360/n degrees.

Yi Permutation Groups June 3-4, 2020 11 /23



Example: Rigid motions of a regular polygon (n-gon)

Proposition 2

There are 2n rigid motions of a regular n-gon.

i) There are n choices of a position in which to place first vertex A,
i) and then two choices for second vertex since it must be adjacent to A.

n—1

————————y
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i) Let a be a counterclockwise rotation about the center, through 360/n degrees.
Thus a is a the cycle (123-- - n) of length n and has order n.
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Example: Rigid motions of a regular polygon (n-gon)

Proposition 2

There are 2n rigid motions of a regular n-gon.

i) There are n choices of a position in which to place first vertex A,
i) and then two choices for second vertex since it must be adjacent to A.

n—1

————————y
(%)
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i) Let a be a counterclockwise rotation about the center, through 360/n degrees.
Thus a is a the cycle (123-- - n) of length n and has order n.
ii) Let b be a flip about the line of symmetry through position number 1.
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Example: Rigid motions of a regular polygon (n-gon)

Proposition 2

There are 2n rigid motions of a regular n-gon.

i) There are n choices of a position in which to place first vertex A,
i) and then two choices for second vertex since it must be adjacent to A.

n—1

————————y
(%)

—_

i) Let a be a counterclockwise rotation about the center, through 360/n degrees.
Thus a is a the cycle (123-- - n) of length n and has order n.
ii) Let b be a flip about the line of symmetry through position number 1.

Thus b has order 2 and is given by the product of transpositions (2n)(3 n —1)---.



Example cont.: Rigid motions of a regular polygon (n-gon)

Consider the set S = {a,a"b | 0 < k < n} of rigid motions.
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Example cont.: Rigid motions of a regular polygon (n-gon)

Consider the set S = {a,a"b | 0 < k < n} of rigid motions.
@ The elements a* for 0 < k < n are all distinct. (Why?) [o(a) = n]
o The elements a¥b for 0 < k < n are all distinct. (Why?) [o(a) = n]
@ ak# albforall 0 < k,j < n. (Why?) [a¥ does NOT flip the n-gon]
Thus, |S| =2n,and so G = S.

Note 5 (Notion for describing Rigid Motions of a regular n-gon)
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Consider the set S = {a,a"b | 0 < k < n} of rigid motions.
@ The elements a* for 0 < k < n are all distinct. (Why?) [o(a) = n]
o The elements a¥b for 0 < k < n are all distinct. (Why?) [o(a) = n]
@ ak# albforall 0 < k,j < n. (Why?) [a¥ does NOT flip the n-gon]
Thus, |S| =2n,and so G = S.

Note 5 (Notion for describing Rigid Motions of a regular n-gon)
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Example cont.: Rigid motions of a regular polygon (n-gon)

Consider the set S = {a,a"b | 0 < k < n} of rigid motions.
@ The elements a* for 0 < k < n are all distinct. (Why?) [o(a) = n]
o The elements a¥b for 0 < k < n are all distinct. (Why?) [o(a) = n]

@ ak# albforall 0 < k,j < n. (Why?) [a¥ does NOT flip the n-gon]
Thus, |S| =2n,and so G = S.

Note 5 (Notion for describing Rigid Motions of a regular n-gon)

G={a"a"b|0< k< n}, wherea"=e, b>=e ba=a""1b=alb.

Goal: To show ba = a 'b. Note: a—! = a"~! (Why?)& b~! = b (Why?)
That is, to show bab = a~ 1.
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Dihedral group D,

Definition 4

Yi Permutation Groups June 3-4, 2020 13 /23



Dihedral group D,

Definition 4

Let n >3 be an integer. The group of rigid motions of a regular n-gon is
called the nth dihedral group, denoted by D,. Note that |D,| = 2n.

Proposition 3 (Note 5)
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Dihedral group D,

Definition 4

Let n >3 be an integer. The group of rigid motions of a regular n-gon is
called the nth dihedral group, denoted by D,. Note that |D,| = 2n.

Proposition 3 (Note 5)

D,={a*,akb| 0 < k < n}, wherea” =e, b?> = e ba=alb.

Remark 1 (Let n > 4.)
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Dihedral group D,

Definition 4

Let n >3 be an integer. The group of rigid motions of a regular n-gon is
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Proposition 3 (Note 5)

D,={a*,akb| 0 < k < n}, wherea” =e, b?> = e ba=alb.
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o We will not list all the subgroups of S,. (Why?) [
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Dihedral group D,

Definition 4

Let n >3 be an integer. The group of rigid motions of a regular n-gon is
called the nth dihedral group, denoted by D,. Note that |D,| = 2n.

Proposition 3 (Note 5)

D,={a*,akb| 0 < k < n}, wherea” =e, b?> = e ba=alb.
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o We will not list all the subgroups of S,,. (Why?) [there are too many!!]
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Dihedral group D,

Definition 4

Let n >3 be an integer. The group of rigid motions of a regular n-gon is
called the nth dihedral group, denoted by D,. Note that |D,| = 2n.

Proposition 3 (Note 5)

D,={a*,akb| 0 < k < n}, wherea” =e, b?> = e ba=alb.

Remark 1 (Let n > 4.)

o We will not list all the subgroups of S,,. (Why?) [there are too many!!]

@ The "simple” subgroups of S,,: cyclic subgroup generated by o € S,,.

@ The dihedral group D, is one important example of subgroups of S,,.
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Dihedral group D,

Definition 4

Let n >3 be an integer. The group of rigid motions of a regular n-gon is
called the nth dihedral group, denoted by D,. Note that |D,| = 2n.

Proposition 3 (Note 5)

D,={a*,akb| 0 < k < n}, wherea” =e, b?> = e ba=alb.

Remark 1 (Let n > 4.)

o We will not list all the subgroups of S,. (Why?) [there are too many!!]

@ The "simple” subgroups of S,,: cyclic subgroup generated by o € S,,.
@ The dihedral group D, is one important example of subgroups of S,,.

o The alternating group A, is another one important example. (soon!)
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Example: Subgroups of D; = S3
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Example: Subgroups of D; = S3

Proposition 4
If G = S3, then every proper subgroup of S3 is cyclic. (Why?)
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If G = S3, then every proper subgroup of S3 is cyclic. (Why?)

By Lagrange's theorem, a proper subgroup of S3 must have order 1,2, or 3.
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Example: Subgroups of D; = S3

Proposition 4
If G = S3, then every proper subgroup of S3 is cyclic. (Why?)

By Lagrange's theorem, a proper subgroup of S3 must have order 1,2, or 3.
And subgroups of order 2 or 3 must be cyclic. (Why?) & {e} is trivial.v’
The subgroup diagram of S3 :
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Example: Subgroups of D; = S3

Proposition 4
If G = S3, then every proper subgroup of S3 is cyclic. (Why?)

By Lagrange's theorem, a proper subgroup of S3 must have order 1,2, or 3.
And subgroups of order 2 or 3 must be cyclic. (Why?) & {e} is trivial.v’
The subgroup diagram of S3 :

S3

IR

{e,b} {e,ab} {e,a’b} {e, a,a°}

NP~

{e}
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Example: Subgroups of D; = S3

Proposition 4
If G = S3, then every proper subgroup of S3 is cyclic. (Why?)

By Lagrange's theorem, a proper subgroup of S3 must have order 1,2, or 3.
And subgroups of order 2 or 3 must be cyclic. (Why?) & {e} is trivial.v’
The subgroup diagram of S3 :

S3

IR

{e,b} {e,ab} {e,a’b} {e, a,a°}

NP~

{e}

Note that D3 = S3 = {e, a, a°, b, ab, a’b}, where a®> = e, b> = e, ba = a°b.
Yi Permutation Groups June 3-4, 2020 14 /23
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)
|. The trivial subgroups: {e}, Ds.
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)

|. The trivial subgroups: {e}, Ds.

[I. The cyclic (proper) subgroups:
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)
|. The trivial subgroups: {e}, Ds.
[I. The cyclic (proper) subgroups:
(a) a has order 4. In fact,
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)
|. The trivial subgroups: {e}, Da.
[I. The cyclic (proper) subgroups:
(a) ahas order 4. In fact, (a) = (a%) = {e, a,a%, a%}. (Why?)
(b) Each of the elements a2, b, ab, a?b, a®b has order 2. (Check it!)
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)

The trivial subgroups: {e}, Da.
The cyclic (proper) subgroups:

(a) ahas order 4. In fact, (a) = (a%) = {e, a,a%, a%}. (Why?)
(b) Each of the elements a2, b, ab, a?b, a®b has order 2. (Check it!)

Are there (proper) subgroups of Dy that are not cyclic?
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)

The trivial subgroups: {e}, Da.
The cyclic (proper) subgroups:

(a) ahas order 4. In fact, (a) = (a%) = {e, a,a%, a%}. (Why?)
(b) Each of the elements a2, b, ab, a?b, a®b has order 2. (Check it!)

Are there (proper) subgroups of Dy that are not cyclic? Yes! (How?)
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)

The trivial subgroups: {e}, Da.

The cyclic (proper) subgroups:

(a) ahas order 4. In fact, (a) = (a%) = {e, a,a%, a%}. (Why?)

(b) Each of the elements a2, b, ab, a?b, a®b has order 2. (Check it!)
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(i) If His a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)

The trivial subgroups: {e}, Da.

The cyclic (proper) subgroups:

(a) ahas order 4. In fact, (a) = (a%) = {e, a,a%, a%}. (Why?)

(b) Each of the elements a2, b, ab, a?b, a®b has order 2. (Check it!)

Are there (proper) subgroups of Dy that are not cyclic? Yes! (How?)

(i) If His a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
(i) Any non-identity element of H has order 2. (Why?)
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)
|. The trivial subgroups: {e}, Ds.
[I. The cyclic (proper) subgroups:
(a) ahas order 4. In fact, (a) = (a%) = {e, a,a%, a%}. (Why?)
(b) Each of the elements a2, b, ab, a?b, a®b has order 2. (Check it!)
[1I. Are there (proper) subgroups of D4 that are not cyclic? Yes! (How?)

(i) If His a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
(i) Any non-identity element of H has order 2. (Why?)
(i) H=2Z, x Zy: Say, H={e,x,y,xy}, and so yx = xy. (Why?)
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)
|. The trivial subgroups: {e}, Ds.
[I. The cyclic (proper) subgroups:
(a) ahas order 4. In fact, (a) = (a%) = {e, a,a%, a%}. (Why?)
(b) Each of the elements a2, b, ab, a?b, a®b has order 2. (Check it!)
[1I. Are there (proper) subgroups of D4 that are not cyclic? Yes! (How?)
) If H is a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
) Any non-identity element of H has order 2. (Why?)
i) H>Z; x Zy: Say, H={e,x,y,xy}, and so yx = xy. (Why?)
)
)

Consider all possible pairs of elements of order 2 to find all such H's.
In fact,
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)
|. The trivial subgroups: {e}, Ds.
[I. The cyclic (proper) subgroups:
(a) ahas order 4. In fact, (a) = (a%) = {e, a,a%, a%}. (Why?)
(b) Each of the elements a2, b, ab, a?b, a®b has order 2. (Check it!)
[1I. Are there (proper) subgroups of D4 that are not cyclic? Yes! (How?)
) If H is a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
) Any non-identity element of H has order 2. (Why?)
i) H>Z; x Zy: Say, H={e,x,y,xy}, and so yx = xy. (Why?)
)
)

Consider all possible pairs of elements of order 2 to find all such H's.
In fact, there are two such groups. (Check it!)
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)

|. The trivial subgroups: {e}, Ds.

[I. The cyclic (proper) subgroups:

(a) ahas order 4. In fact, (a) = (a%) = {e, a,a%, a%}. (Why?)
(b) Each of the elements a2, b, ab, a?b, a®b has order 2. (Check it!)

[1I. Are there (proper) subgroups of D4 that are not cyclic? Yes! (How?)

(i) If His a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
(i) Any non-identity element of H has order 2. (Why?)
(i) H=2Z, x Zy: Say, H={e,x,y,xy}, and so yx = xy. (Why?)
(iv) Consider all possible pairs of elements of order 2 to find all such H's.
)

In fact, there are two such groups. (Check it!)
(1) Hi = {e,a° b,a’b}:
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)

|. The trivial subgroups: {e}, Ds.

[I. The cyclic (proper) subgroups:

(a) ahas order 4. In fact, (a) = (a%) = {e, a,a%, a%}. (Why?)
(b) Each of the elements a2, b, ab, a?b, a®b has order 2. (Check it!)

[1I. Are there (proper) subgroups of D4 that are not cyclic? Yes! (How?)

(i) If His a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
(i) Any non-identity element of H has order 2. (Why?)
(i) H=2Z, x Zy: Say, H={e,x,y,xy}, and so yx = xy. (Why?)
(iv) Consider all possible pairs of elements of order 2 to find all such H's.
)

In fact, there are two such groups. (Check it!)
(1) Hi = {e, &% b,a’b}: ba®> = (ba)a = a*(ba) = a*(a’b) = a°b v/

Yi Permutation Groups June 3-4, 2020 15 / 23



Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)

|. The trivial subgroups: {e}, Ds.

[I. The cyclic (proper) subgroups:

(a) ahas order 4. In fact, (a) = (a%) = {e, a,a%, a%}. (Why?)
(b) Each of the elements a2, b, ab, a?b, a®b has order 2. (Check it!)

[1I. Are there (proper) subgroups of D4 that are not cyclic? Yes! (How?)

(i) If His a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
(i) Any non-identity element of H has order 2. (Why?)
(i) H=2Z, x Zy: Say, H={e,x,y,xy}, and so yx = xy. (Why?)
(iv) Consider all possible pairs of elements of order 2 to find all such H's.
)

In fact, there are two such groups. (Check it!)

(1) Hi = {e, &% b,a’b}: ba®> = (ba)a = a*(ba) = a*(a’b) = a°b v/
(2) Ha={e, a% ab,a’b}:
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)

|. The trivial subgroups: {e}, Ds.

[I. The cyclic (proper) subgroups:

(a) ahas order 4. In fact, (a) = (a%) = {e, a,a%, a%}. (Why?)
(b) Each of the elements a2, b, ab, a?b, a®b has order 2. (Check it!)

[1I. Are there (proper) subgroups of D4 that are not cyclic? Yes! (How?)

(i) If His a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
(i) Any non-identity element of H has order 2. (Why?)
(i) H=2Z, x Zy: Say, H={e,x,y,xy}, and so yx = xy. (Why?)
(iv) Consider all possible pairs of elements of order 2 to find all such H's.
(v) In fact, there are two such groups. (Check it!)
(1) Hi = {e, &% b,a’b}: ba®> = (ba)a = a*(ba) = a*(a’b) = a°b v
(2) H. = {e,a* ab,a’b}: (ab)a® = a(ba)a = a(a’b)a = ba = a°b v’
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)
|. The trivial subgroups: {e}, Ds.
[I. The cyclic (proper) subgroups:
(a) ahas order 4. In fact, (a) = (a%) = {e, a,a%, a%}. (Why?)
(b) Each of the elements a2, b, ab, a?b, a®b has order 2. (Check it!)
[1I. Are there (proper) subgroups of D4 that are not cyclic? Yes! (How?)
) If H is a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
) Any non-identity element of H has order 2. (Why?)
i) H>Z; x Zy: Say, H={e,x,y,xy}, and so yx = xy. (Why?)
)
)

Consider all possible pairs of elements of order 2 to find all such H's.
In fact, there are two such groups. (Check it!)

(1) Hi = {e, &% b,a’b}: ba®> = (ba)a = a*(ba) = a*(a’b) = a°b v
(2) H. = {e,a* ab,a’b}: (ab)a® = a(ba)a = a(a’b)a = ba = a°b v’
(vi) A cyclic subgroup is the smallest subgroup containing the generator;
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Subgroups of D,

Note: D, = {e,a,a°, a3 b, ab,a’b, a°b}, where a* = e, b*> = e, ba = a°b.
The possible orders of proper subgroups of Dy are 1, 2, or 4. (Why?)
|. The trivial subgroups: {e}, Ds.
[I. The cyclic (proper) subgroups:
(a) ahas order 4. In fact, (a) = (a%) = {e, a,a%, a%}. (Why?)
(b) Each of the elements a2, b, ab, a?b, a®b has order 2. (Check it!)
[1I. Are there (proper) subgroups of D4 that are not cyclic? Yes! (How?)
) If H is a non-cyclic (proper) subgroup, then |H| = 4. (Why?)
) Any non-identity element of H has order 2. (Why?)
i) HXZ; x Zy: Say, H={e, x,y,xy}, and so yx = xy. (Why?)
) Consider all possible pairs of elements of order 2 to find all such H's.
) In fact, there are two such groups. (Check it!)

(1) Hi = {e, &% b,a’b}: ba®> = (ba)a = a*(ba) = a*(a’b) = a°b v
(2) H. = {e,a* ab,a’b}: (ab)a® = a(ba)a = a(a’b)a = ba = a°b v’

(vi) A cyclic subgroup is the smallest subgroup containing the generator;
these subgroups H's are the smallest ones containing the two elements
used to construct it.
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Subgroups of D, cont.: Subgroup diagram
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Subgroups of D, cont.: Subgroup diagram

{e,a b,a’b} {e,a,a° a3} {e, a® ab,ab}

/1N,

{e,b}  {e, a%b} {e, a? {e, ab} {e,a®
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Alternating group A,

Recall that a permutation is called even if it can be expressed as an even
number of transpositions, and odd otherwise.

Proposition 5
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Alternating group A,

Recall that a permutation is called even if it can be expressed as an even
number of transpositions, and odd otherwise.

Proposition 5

The set of all even permutations of S,, is a subgroup of S,,.
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Alternating group A,

Recall that a permutation is called even if it can be expressed as an even
number of transpositions, and odd otherwise.

Proposition 5

—

The set of all even permutations of S,, is a subgroup of S,,.

Since S, is a finite set, we can apply Corollary 8 in §3.2. In particular,
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Alternating group A,

Recall that a permutation is called even if it can be expressed as an even
number of transpositions, and odd otherwise.

Proposition 5

—

The set of all even permutations of S,, is a subgroup of S,,.

Since S, is a finite set, we can apply Corollary 8 in §3.2. In particular,
(i) Nonempty:
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Alternating group A,

Recall that a permutation is called even if it can be expressed as an even
number of transpositions, and odd otherwise.

Proposition 5

—

The set of all even permutations of S,, is a subgroup of S,,.

Since S, is a finite set, we can apply Corollary 8 in §3.2. In particular,
(i) Nonempty: The identity permutation is even. (Why?) [
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Alternating group A,

Recall that a permutation is called even if it can be expressed as an even
number of transpositions, and odd otherwise.

Proposition 5

—

The set of all even permutations of S,, is a subgroup of S,,.

Since S, is a finite set, we can apply Corollary 8 in §3.2. In particular,
(i) Nonempty: The identity permutation is even. (Why?) [(1) = (12)(21)]
(ii) Closure:
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Alternating group A,

Recall that a permutation is called even if it can be expressed as an even
number of transpositions, and odd otherwise.

Proposition 5

—

The set of all even permutations of S,, is a subgroup of S,,.

Since S, is a finite set, we can apply Corollary 8 in §3.2. In particular,
(i) Nonempty: The identity permutation is even. (Why?) [(1) = (12)(21)]
(ii) Closure: If o and 7 are even permutations, so is 0. (Why?) O

Definition 5
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Alternating group A,

Recall that a permutation is called even if it can be expressed as an even
number of transpositions, and odd otherwise.

Proposition 5

The set of all even permutations of S,, is a subgroup of S,,.

Since S, is a finite set, we can apply Corollary 8 in §3.2. In particular,
(i) Nonempty: The identity permutation is even. (Why?) [(1) = (12)(21)]
(ii) Closure: If o and 7 are even permutations, so is 0. (Why?) O

The set of all even permutations of S, is called the alternating group on
n elements, and will be denoted by A,.

\

Theorem 6 (Let n > 1.)

v
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Alternating group A,

Recall that a permutation is called even if it can be expressed as an even
number of transpositions, and odd otherwise.

Proposition 5

The set of all even permutations of S,, is a subgroup of S,,.

Since S, is a finite set, we can apply Corollary 8 in §3.2. In particular,
(i) Nonempty: The identity permutation is even. (Why?) [(1) = (12)(21)]
(ii) Closure: If o and 7 are even permutations, so is 0. (Why?) O

Definition

|

The set of all even permutations of S, is called the alternating group on
n elements, and will be denoted by A,.

\

Theorem 6 (Let n > 1.)
IS _ !
2 2"

|An| =

v
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Alternating group A,

Recall that a permutation is called even if it can be expressed as an even
number of transpositions, and odd otherwise.

Proposition 5

The set of all even permutations of S,, is a subgroup of S,,.

Since S, is a finite set, we can apply Corollary 8 in §3.2. In particular,
(i) Nonempty: The identity permutation is even. (Why?) [(1) = (12)(21)]
(ii) Closure: If o and 7 are even permutations, so is 0. (Why?) O

The set of all even permutations of S, is called the alternating group on
n elements, and will be denoted by A,.

\

Theorem 6 (Let n > 1.)

S n!
| 2"' = > This is the largest possible cardinality for a proper subgroup.

|An’ =

v
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[Sn|

Proof of Theorem 6: |A,| =

2
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[Sn|

Proof of Theorem 6: |A,| =

2

Let O, be the set of odd permutations in S,,. Note:
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[Sn|

Proof of Theorem 6: |A,| =

2

Let O, be the set of odd permutations in S,. Note: O, is not a subgroup. (Why?)
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[Sn|

Proof of Theorem 6: |A,| =

2

Let O, be the set of odd permutations in S,. Note: O, is not a subgroup. (Why?)

We have S, = A, | | O, (Why?),
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[Sn|

Proof of Theorem 6: |A,| =

2

Let O, be the set of odd permutations in S,. Note: O, is not a subgroup. (Why?)

We have S, = A, || Op (Why?), 50 |Sa| = |An| + |04l
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[Sn|

Proof of Theorem 6: |A,| =

2

Let O, be the set of odd permutations in S,. Note: O, is not a subgroup. (Why?)

We have S, = A, || Op (Why?), 50 |Sa| = |An| + |04l

I. For each odd permutation o, the permutation (12)o is even. (Why?)
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[Sn|

Proof of Theorem 6: |A,| = >

Let O, be the set of odd permutations in S,. Note: O, is not a subgroup. (Why?)
We have S, = A, | | On (Why?), so |S,| = |An| + |Onl.

I. For each odd permutation o, the permutation (12)o is even. (Why?)
If o and 7 are two distinct odd permutations, then (12)o # (12)7.

Proof by contradiction:
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[Sn|

Proof of Theorem 6: |A,| =

2

Let O, be the set of odd permutations in S,. Note: O, is not a subgroup. (Why?)

We have S, = A, || Op (Why?), 50 |Sa| = |An| + |04l

I. For each odd permutation o, the permutation (12)o is even. (Why?)
If o and 7 are two distinct odd permutations, then (12)o # (12)7.

Proof by contradiction: Suppose (12)o = (12)7, then o=T. (Why?)
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[Sn|

Proof of Theorem 6: |A,| =

2

Let O, be the set of odd permutations in S,. Note: O, is not a subgroup. (Why?)
We have S, = A, || O, (Why?), so |S,| = |An| + |Onl.
I. For each odd permutation o, the permutation (12)o is even. (Why?)
If o and 7 are two distinct odd permutations, then (12)o # (12)7.

Proof by contradiction: Suppose (12)o = (12)7, then o=T. (Why?)
Thus, |An| > |Onl. (Why?)
[1. Similarly,
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[Sn|

Proof of Theorem 6: |A,| =

2

Let O, be the set of odd permutations in S,. Note: O, is not a subgroup. (Why?)
We have S, = A, || O, (Why?), so |S,| = |An| + |Onl.
I. For each odd permutation o, the permutation (12)o is even. (Why?)
If o and 7 are two distinct odd permutations, then (12)o # (12)7.

Proof by contradiction: Suppose (12)o = (12)7, then o=T. (Why?)
Thus, |An| > |Onl. (Why?)
[I. Similarly, we can show that |O,| > |A,|.
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Proof of Theorem 6: |A,| =

S|
2

Let O, be the set of odd permutations in S,. Note: O, is not a subgroup. (Why?)

We have S, = A, || Op (Why?), 50 |Sa| = |An| + |04l

For each odd permutation o, the permutation (12)o is even. (Why?)
If o and 7 are two distinct odd permutations, then (12)o # (12)7.

Proof by contradiction: Suppose (12)o = (12)7, then o=T. (Why?)
Thus, |An| > |Onl. (Why?)

. Similarly, we can show that |O,| > |A|.

|
5ol _ 7 (why2)

Therefore, |Ay| = |Op] = 5 5
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Example: List all the elements of A3 and As.

@ Recall that
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Example: List all the elements of A3 and As.

@ Recall that S3 = {(1),(12),(13),(23), (123), (132)}, then
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Example: List all the elements of A3 and As.

@ Recall that S3 = {(1),(12),(13),(23),(123),(132)}, then we have
As = {(1), (123), (132)}. (Why?)
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Example: List all the elements of A3 and As.

@ Recall that S3 = {(1),(12),(13),(23),(123),(132)}, then we have
As = {(1), (123), (132)}. (Why?)
o |54 = 4! =24
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Example: List all the elements of A3 and As.

@ Recall that S3 = {(1),(12),(13),(23),(123),(132)}, then we have
Az ={(1),(123),(132)}. (Why?)
o |S4] = 4! = 24: List all the possible decomposition types of elements.

Definition 7
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Example: List all the elements of A3 and As.

@ Recall that S3 = {(1),(12),(13),(23),(123),(132)}, then we have
Az ={(1),(123),(132)}. (Why?)
o |S4] = 4! = 24: List all the possible decomposition types of elements.

Definition 7
The decomposition type of a permutation ¢ in S, is the list of all the
cycle lengths involved in a decomposition of ¢ into disjoint cycles.

Upshot: Possible decomposition types of permutations of Ss: (Check it!)
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Example: List all the elements of A3 and As.

@ Recall that S3 = {(1),(12),(13),(23),(123),(132)}, then we have
Az ={(1),(123),(132)}. (Why?)
o |S4] = 4! = 24: List all the possible decomposition types of elements.

Definition 7
The decomposition type of a permutation ¢ in S, is the list of all the
cycle lengths involved in a decomposition of ¢ into disjoint cycles.

Upshot: Possible decomposition types of permutations of Ss: (Check it!)
(i) a single cycle of length 1,2,3 or 4
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Example: List all the elements of A3 and As.

@ Recall that S3 = {(1),(12),(13),(23),(123),(132)}, then we have
Az ={(1),(123),(132)}. (Why?)
o |S4] = 4! = 24: List all the possible decomposition types of elements.

Definition 7
The decomposition type of a permutation ¢ in S, is the list of all the
cycle lengths involved in a decomposition of ¢ into disjoint cycles.

Upshot: Possible decomposition types of permutations of Ss: (Check it!)
(i) a single cycle of length 1,2,3 or 4
(i) two disjoint cycles of length 2

_
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Example: List all the elements of A3 and As.

@ Recall that S3 = {(1),(12),(13),(23),(123),(132)}, then we have
Az ={(1),(123),(132)}. (Why?)
o |S4] = 4! = 24: List all the possible decomposition types of elements.

Definition 7
The decomposition type of a permutation ¢ in S, is the list of all the
cycle lengths involved in a decomposition of ¢ into disjoint cycles.

Upshot: Possible decomposition types of permutations of Ss: (Check it!)
(i) a single cycle of length 1,2,3 or 4
(i) two disjoint cycles of length 2

Which of these are even permutations?
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Example: List all the elements of A3 and As.

@ Recall that S3 = {(1),(12),(13),(23),(123),(132)}, then we have
Az ={(1),(123),(132)}. (Why?)
o |S4] = 4! = 24: List all the possible decomposition types of elements.

Definition 7

The decomposition type of a permutation ¢ in S, is the list of all the
cycle lengths involved in a decomposition of ¢ into disjoint cycles.

Upshot: Possible decomposition types of permutations of Ss: (Check it!)
(i) a single cycle of length 1,2,3 or 4
(i) two disjoint cycles of length 2

Which of these are even permutations?

(a) single cycles of length 1 and 3
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Example: List all the elements of A3 and As.

@ Recall that S3 = {(1),(12),(13),(23),(123),(132)}, then we have
Az ={(1),(123),(132)}. (Why?)
o |S4] = 4! = 24: List all the possible decomposition types of elements.

Definition 7
The decomposition type of a permutation ¢ in S, is the list of all the
cycle lengths involved in a decomposition of ¢ into disjoint cycles.

Upshot: Possible decomposition types of permutations of Ss: (Check it!)
(i) a single cycle of length 1,2,3 or 4
(i) two disjoint cycles of length 2

Which of these are even permutations?

(a) single cycles of length 1 and 3
(b) two disjoint cycles of length 2
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Example cont.: List all the elements of A4, |A4| = 12
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1:
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3:
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:

4
<3> = Four choices:
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:

<:> = Four choices: 123 124 134 234
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:

<:> = Four choices: 123 124 134 234

For each choice, there are two ways to make a cycle. (Why?)
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:

<:> = Four choices: 123 124 134 234

For each choice, there are two ways to make a cycle. (Why?)
The following is the list of all cycles of length 3 in S4:
(123), (132), (124), (142), (134), (143), (234), (243)
@ two disjoint cycles of length 2:
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:

<:> = Four choices: 123 124 134 234

For each choice, there are two ways to make a cycle. (Why?)
The following is the list of all cycles of length 3 in S4:
(123),(132), (124), (142), (134), (143), (234), (243)
@ two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:

<:> = Four choices: 123 124 134 234

For each choice, there are two ways to make a cycle. (Why?)
The following is the list of all cycles of length 3 in S4:
(123),(132), (124), (142), (134), (143), (234), (243)
@ two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4

4
(2> = Six choices:
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:

<:> = Four choices: 123 124 134 234

For each choice, there are two ways to make a cycle. (Why?)
The following is the list of all cycles of length 3 in S4:
(123),(132), (124), (142), (134), (143), (234), (243)
@ two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4

(;) = Six choices: 12 13 14 23 24 34
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:

<:> = Four choices: 123 124 134 234
For each choice, there are two ways to make a cycle. (Why?)
The following is the list of all cycles of length 3 in S4:
(123),(132), (124), (142), (134), (143), (234), (243)
@ two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4
4
(2> = Six choices: 12 13 14 23 24 34
Each pair of two numbers listed above gives rise to a transposition.
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:

<:> = Four choices: 123 124 134 234

For each choice, there are two ways to make a cycle. (Why?)
The following is the list of all cycles of length 3 in S4:
(123),(132), (124), (142), (134), (143), (234), (243)
@ two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4

(;) = Six choices: 12 13 14 23 24 34

Each pair of two numbers listed above gives rise to a transposition.
The other two numbers form another transposition, which is disjoint
from the first one.
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:

<:> = Four choices: 123 124 134 234

For each choice, there are two ways to make a cycle. (Why?)
The following is the list of all cycles of length 3 in S4:
(123),(132), (124), (142), (134), (143), (234), (243)
@ two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4

(;) = Six choices: 12 13 14 23 24 34

Each pair of two numbers listed above gives rise to a transposition.
The other two numbers form another transposition, which is disjoint
from the first one. The order doesn't matter.(\Why?)
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Example cont.: List all the elements of A4, |A4| = 12

single cycle of length 1: the identity permutation (1)
single cycles of length 3: Choose any 3 of the numbers 1,2,3, 4:
4
<3> = Four choices: 123 124 134 234

For each choice, there are two ways to make a cycle. (Why?)
The following is the list of all cycles of length 3 in S4:

(123),(132), (124), (142), (134), (143), (234), (243)
two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4

(;) = Six choices: 12 13 14 23 24 34

Each pair of two numbers listed above gives rise to a transposition.
The other two numbers form another transposition, which is disjoint
from the first one. The order doesn't matter.(Why?) This implies
that there are three different products of two disjoint transpositions:
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:

<:> = Four choices: 123 124 134 234

For each choice, there are two ways to make a cycle. (Why?)
The following is the list of all cycles of length 3 in S4:
(123),(132), (124), (142), (134), (143), (234), (243)
@ two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4

(;) = Six choices: 12 13 14 23 24 34

Each pair of two numbers listed above gives rise to a transposition.
The other two numbers form another transposition, which is disjoint
from the first one. The order doesn't matter.(Why?) This implies
that there are three different products of two disjoint transpositions:
Pick any pair of two numbers: 6 choices;
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:
4

<3> = Four choices: 123 124 134 234
For each choice, there are two ways to make a cycle. (Why?)
The following is the list of all cycles of length 3 in S4:

(123),(132), (124), (142), (134), (143), (234), (243)
two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4

(;) = Six choices: 12 13 14 23 24 34

Each pair of two numbers listed above gives rise to a transposition.
The other two numbers form another transposition, which is disjoint
from the first one. The order doesn't matter.(Why?) This implies
that there are three different products of two disjoint transpositions:

Pick any pair of two numbers: 6 choices; the other pair is determined.
(Why?)
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:

<:> = Four choices: 123 124 134 234
For each choice, there are two ways to make a cycle. (Why?)
The following is the list of all cycles of length 3 in S4:

(123), (132), (124), (142), (134), (143), (234), (243)

two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4
(;) = Six choices: 12 13 14 23 24 34

Each pair of two numbers listed above gives rise to a transposition.
The other two numbers form another transposition, which is disjoint
from the first one. The order doesn't matter.(Why?) This implies
that there are three different products of two disjoint transpositions:
Pick any pair of two numbers: 6 choices; the other pair is determined.
(Why?) The order doesn’'t matter = 3 different products. (Why?)
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Example cont.: List all the elements of A4, |A4| = 12

@ single cycle of length 1: the identity permutation (1)
@ single cycles of length 3: Choose any 3 of the numbers 1,2, 3,4:

<:> = Four choices: 123 124 134 234
For each choice, there are two ways to make a cycle. (Why?)
The following is the list of all cycles of length 3 in S4:

(123), (132), (124), (142), (134), (143), (234), (243)

@ two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4
(;) = Six choices: 12 13 14 23 24 34

Each pair of two numbers listed above gives rise to a transposition.

The other two numbers form another transposition, which is disjoint

from the first one. The order doesn't matter.(Why?) This implies

that there are three different products of two disjoint transpositions:

Pick any pair of two numbers: 6 choices; the other pair is determined.

(Why?) The order doesn’'t matter = 3 different products. (Why?)
12)(34 13)(24 14)(23
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Example: The converse of Lagrange's theorem is false

Upshot:
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.
In A4,
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.
Proof by contradiction:
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A,.
[ ]
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A,.
e It must contain an element of order 2. (Why?) [
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A,.
e It must contain an element of order 2. (Why?) [since |H| = 6 is even]
[ ]
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A,.
e It must contain an element of order 2. (Why?) [since |H| = 6 is even]
e It must contain an element of order 3. |
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A,.
e It must contain an element of order 2. (Why?) [since |H| = 6 is even]
e |t must contain an element of order 3. [Proof by contradiction:]
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A,.
e It must contain an element of order 2. (Why?) [since |H| = 6 is even]
e It must contain an element of order 3. [Proof by contradiction:]
Assume every non-identity element of H has order 2.

Let x,y € H with x # y and o(x) = o(y) = 2.
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A,.
e It must contain an element of order 2. (Why?) [since |H| = 6 is even]
e It must contain an element of order 3. [Proof by contradiction:]
Assume every non-identity element of H has order 2.

Let x,y € H with x # y and o(x) = o(y) = 2. So o(xy) = 2. (Why?)
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A,.
e It must contain an element of order 2. (Why?) [since |H| = 6 is even]
e It must contain an element of order 3. [Proof by contradiction:]
Assume every non-identity element of H has order 2.

Let x,y € H with x # y and o(x) = o(y) = 2. So o(xy) = 2. (Why?)
And then xy = yx. (Why?) [
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A,.
e It must contain an element of order 2. (Why?) [since |H| = 6 is even]
e It must contain an element of order 3. [Proof by contradiction:]
Assume every non-identity element of H has order 2.

Let x,y € H with x # y and o(x) = o(y) = 2. So o(xy) = 2. (Why?)
And then xy = yx. (Why?) [xy = (xy) ™! =y~ Ix71 = yx]
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A,.

e It must contain an element of order 2. (Why?) [since |H| = 6 is even]

e It must contain an element of order 3. [Proof by contradiction:]

Assume every non-identity element of H has order 2.

Let x,y € H with x # y and o(x) = o(y) = 2. So o(xy) = 2. (Why?)
And then xy = yx. (Why?) [xy = (xy) ™! =y~ Ix71 = yx]

Hence {e, x,y, xy} is a subgroup of H of order 4, a contradiction. (Why?)
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A,.

e It must contain an element of order 2. (Why?) [since |H| = 6 is even]

e It must contain an element of order 3. [Proof by contradiction:]

Assume every non-identity element of H has order 2.

Let x,y € H with x # y and o(x) = o(y) = 2. So o(xy) = 2. (Why?)
And then xy = yx. (Why?) [xy = (xy) ™! =y~ Ix71 = yx]

Hence {e, x,y, xy} is a subgroup of H of order 4, a contradiction. (Why?)

This implies that H must contain an element of the form (abc) and an
element of the form (ab)(cd).
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A,.

e It must contain an element of order 2. (Why?) [since |H| = 6 is even]

e It must contain an element of order 3. [Proof by contradiction:]

Assume every non-identity element of H has order 2.

Let x,y € H with x # y and o(x) = o(y) = 2. So o(xy) = 2. (Why?)
And then xy = yx. (Why?) [xy = (xy) ™! =y~ Ix71 = yx]

Hence {e, x,y, xy} is a subgroup of H of order 4, a contradiction. (Why?)

This implies that H must contain an element of the form (abc) and an
element of the form (ab)(cd). Then H contains (abc)(ab)(cd) = (acd)

and
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A,.

e It must contain an element of order 2. (Why?) [since |H| = 6 is even]

e It must contain an element of order 3. [Proof by contradiction:]

Assume every non-identity element of H has order 2.

Let x,y € H with x # y and o(x) = o(y) = 2. So o(xy) = 2. (Why?)
And then xy = yx. (Why?) [xy = (xy) ™! =y~ Ix71 = yx]

Hence {e, x,y, xy} is a subgroup of H of order 4, a contradiction. (Why?)

This implies that H must contain an element of the form (abc) and an
element of the form (ab)(cd). Then H contains (abc)(ab)(cd) = (acd)
and (ab)(cd)(abc) = (bdc). ~
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Example: The converse of Lagrange's theorem is false

Upshot: The following is the list of elements in As: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |As| = 12, A4 has no subgroup of order 6.

In Ag, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, ¢, d.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A,.

e It must contain an element of order 2. (Why?) [since |H| = 6 is even]

e It must contain an element of order 3. [Proof by contradiction:]

Assume every non-identity element of H has order 2.

Let x,y € H with x # y and o(x) = o(y) = 2. So o(xy) = 2. (Why?)
And then xy = yx. (Why?) [xy = (xy) ™! =y~ Ix71 = yx]

Hence {e, x,y, xy} is a subgroup of H of order 4, a contradiction. (Why?)

This implies that H must contain an element of the form (abc) and an
element of the form (ab)(cd). Then H contains (abc)(ab)(cd) = (acd)
and (ab)(cd)(abc) = (bdc). ~~ H has six elements of order 3. (Why?) [
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Standard approach to the definition of even and odd permutations

Definition 8
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Standard approach to the definition of even and odd permutations

Definition 8
Let A, be the polynomial in n variables xi, x2, . .., x, defined by
A, = H =g
1<i<j<n
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Standard approach to the definition of even and odd permutations

Definition 8
Let A, be the polynomial in n variables xi, x2, . .., x, defined by
A, = H =g
1<i<j<n

Any permutation o € 5, acts on A, by permuting the subscripts, and we write

o) = [ Com—x0)

1<i<j<n
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Standard approach to the definition of even and odd permutations

Definition 8
Let A, be the polynomial in n variables xi, x2, . .., x, defined by
A, = H =g
1<i<j<n

Any permutation o € 5, acts on A, by permuting the subscripts, and we write
U(An) = H (Xa(i) - Xa(j))'
1<i<j<n
If i <j and o(i) < o(j), then the factors x; — x; and x,(j) — x,(j) have the
same sign, but
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Standard approach to the definition of even and odd permutations

Definition 8
Let A, be the polynomial in n variables xi, x2, . .., x, defined by
A, = H =g
1<i<j<n

Any permutation o € 5, acts on A, by permuting the subscripts, and we write
U(An) = H (Xa(i) - Xa(j))'
1<i<j<n
If i <j and o(i) < o(j), then the factors x; — x; and x,(j) — x,(j) have the
same sign, but if J(I) > U(_/) then Xo(i) — Xo(j) = —( o(j) —XJ(,-)).
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Standard approach to the definition of even and odd permutations

Definition 8
Let A, be the polynomial in n variables xi, x2, . .., x, defined by
A, = H =g
1<i<j<n

Any permutation o € 5, acts on A, by permuting the subscripts, and we write
U(An) = H (Xa(i) - Xa(j))'
1<i<j<n
If i <j and o(i) < o(j), then the factors x; — x; and x,(j) — x,(j) have the
same sign, but if (i) > o(j) then x;(j) — Xy(jy = —(x(j) — X»(i)). Because
of such sign changes, we either have o(A,) = A, or o(A,) = —A,,.

Example 9 (A3 = (x1 — x2)(x1 — x3)(>%2 — X3))
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Standard approach to the definition of even and odd permutations

Definition 8
Let A, be the polynomial in n variables xi, x2, . .., x, defined by
A, = H =g
1<i<j<n

Any permutation o € 5, acts on A, by permuting the subscripts, and we write
U(An) = H (Xa(i) - Xa(j))'
1<i<j<n
If i <j and o(i) < o(j), then the factors x; — x; and x,(j) — x,(j) have the
same sign, but if (i) > o(j) then x;(j) — Xy(jy = —(x(j) — X»(i)). Because
of such sign changes, we either have o(A,) = A, or o(A,) = —A,,.

Example 9 (A3 = (Xl — X2)(X1 — X3)(X2 — X3))
Let o = (123) acts on Ags:
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Standard approach to the definition of even and odd permutations

Definition 8
Let A, be the polynomial in n variables xi, x2, . .., x, defined by
A, = H =g
1<i<j<n

Any permutation o € 5, acts on A, by permuting the subscripts, and we write
U(An) = H (Xa(i) - Xa(j))'
1<i<j<n
If i <j and o(i) < o(j), then the factors x; — x; and x,(j) — x,(j) have the
same sign, but if (i) > o(j) then x;(j) — Xy(jy = —(x(j) — X»(i)). Because
of such sign changes, we either have o(A,) = A, or o(A,) = —A,,.

Example 9 (A3 = (x1 — x2)(x1 — x3)(>%2 — X3))
Let 0 = (123) acts on As: U(A3) = (X2 = X3)(X2 = X1)(X3 = X1):
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Standard approach to the definition of even and odd permutations

Definition 8
Let A, be the polynomial in n variables xi, x2, . .., x, defined by
A, = H =g
1<i<j<n

Any permutation o € 5, acts on A, by permuting the subscripts, and we write
U(An) = H (Xa(i) - Xa(j))'
1<i<j<n
If i <j and o(i) < o(j), then the factors x; — x; and x,(j) — x,(j) have the
same sign, but if (i) > o(j) then x;(j) — Xy(jy = —(x(j) — X»(i)). Because
of such sign changes, we either have o(A,) = A, or o(A,) = —A,,.

Example 9 (A3 = (x1 — x2)(x1 — x3)(>%2 — X3))
Let 0 = (123) acts on As: U(A3) = (X2 = X3)(X2 = X1)(X3 = X1): As.
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Standard approach to the definition of even and odd permutations

Definition 8
Let A, be the polynomial in n variables xi, x2, . .., x, defined by
A, = H =g
1<i<j<n

Any permutation o € 5, acts on A, by permuting the subscripts, and we write
U(An) = H (Xa(i) - Xa(j))'
1<i<j<n
If i <j and o(i) < o(j), then the factors x; — x; and x,(j) — x,(j) have the
same sign, but if (i) > o(j) then x;(j) — Xy(jy = —(x(j) — X»(i)). Because
of such sign changes, we either have o(A,) = A, or o(A,) = —A,,.

Example 9 (A3 = (x1 — x2)(x1 — x3)(>%2 — X3))

Let 0 = (123) acts on As: U(A3) = (X2 = X3)(X2 = X1)(X3 = X1): As.
Let 7 = (12) acts on As:
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Standard approach to the definition of even and odd permutations

Definition 8
Let A, be the polynomial in n variables xi, x2, . .., x, defined by
A, = H =g
1<i<j<n

Any permutation o € 5, acts on A, by permuting the subscripts, and we write
U(An) = H (Xa(i) - Xa(j))'
1<i<j<n
If i <j and o(i) < o(j), then the factors x; — x; and x,(j) — x,(j) have the
same sign, but if (i) > o(j) then x;(j) — Xy(jy = —(x(j) — X»(i)). Because
of such sign changes, we either have o(A,) = A, or o(A,) = —A,,.

Example 9 (A3 = (x1 — x2)(x1 — x3)(>%2 — X3))

Let 0 = (123) acts on As: U(A3) = (X2 = X3)(X2 = X1)(X3 = X1): As.
Let 7 = (12) acts on Az: 7(A3) = (x2 — x1)(x2 — x3)(x1 — x3)=
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Standard approach to the definition of even and odd permutations

Definition 8
Let A, be the polynomial in n variables xi, x2, . .., x, defined by
A, = H =g
1<i<j<n

Any permutation o € 5, acts on A, by permuting the subscripts, and we write
U(An) = H (Xa(i) - Xa(j))'
1<i<j<n
If i <j and o(i) < o(j), then the factors x; — x; and x,(j) — x,(j) have the
same sign, but if (i) > o(j) then x;(j) — Xy(jy = —(x(j) — X»(i)). Because
of such sign changes, we either have o(A,) = A, or o(A,) = —A,,.

Example 9 (A3 = (x1 — x2)(x1 — x3)(>%2 — X3))

Let 0 = (123) acts on As: U(A3) = (X2 = X3)(X2 = X1)(X3 = X1): As.
Let 7 = (12) acts on Az: 7(A3) = (x2 — x1)(x2 — x3)(x1 — x3)= — As.
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Set X = {A,, —A,}.
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Theorem 10

A permutation o in S, is even (i.e., o € A,) if and only if o(Ap) = A,

Set X = {A,,—A,}. Foro € S,, we define 5 : X — X by

(00 = [ Com—x@) andd(-an)=- ] om—X0):

1<i<j<n 1<i<j<n
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A permutation o in S, is even (i.e., o € A,) if and only if o(Ap) = A,

Set X = {A,,—A,}. Foro € S,, we define 5 : X — X by

(00 = [ Com—x@) andd(-an)=- ] om—X0):

1<i<j<n 1<i<j<n

It is easy to check that 67 (A,) = 5(7(A,)) for any two 0,7 € S,,.
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A permutation o in S, is even (i.e., o € A,) if and only if o(Ap) = A,

Set X = {A,,—A,}. Foro € S,, we define 5 : X — X by

(00 = [ Com—x@) andd(-an)=- ] om—X0):

1<i<j<n 1<i<j<n

It is easy to check that 67 (A,) = 5(7(A,)) for any two 0,7 € S,,.
Let p = (rs) be any transposition. Claim:
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Theorem 10

A permutation o in S, is even (i.e., o € A,) if and only if o(Ap) = A,

Set X = {A,,—A,}. Foro € S,, we define 5 : X — X by
a'\(An) = H (Xa(i) - Xa(j)) and a'\(_An) = - H (Xo(i) - Xa(j))'
1<i<j<n 1<i<j<n

It is easy to check that 67 (A,) = 5(7(A,)) for any two 0,7 € S,,.
Let p = (rs) be any transposition. Claim: p(A,) = —A,.
Assume that r < s.
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Theorem 10

A permutation o in S, is even (i.e., o € A,) if and only if o(Ap) = A,

Set X = {A,,—A,}. Foro € S,, we define 5 : X — X by
a'\(An) = H (Xa(i) - Xa(j)) and a'\(_An) = - H (Xo(i) - Xa(j))'
1<i<j<n 1<i<j<n
It is easy to check that 67 (A,) = 5(7(A,)) for any two 0,7 € S,,.
Let p = (rs) be any transposition. Claim: p(A,) = —A,.

Assume that r < s. By definition, p(A,) = H (Xo(iy — Xp(j))- We have
1<i<j<n
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1<i<j<n 1<i<j<n
It is easy to check that 67 (A,) = 5(7(A,)) for any two 0,7 € S,,.
Let p = (rs) be any transposition. Claim: p(A,) = —A,.

Assume that r < s. By definition, p(A,) = H (Xo(iy — Xp(j))- We have
1<i<j<n

Xo(r) = Xp(s) = Xs — Xr = —(x, — xs) and
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Assume that r < s. By definition, p(A,) = H (Xo(iy — Xp(j))- We have
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Xo(r) = Xp(s) = Xs — Xr = —(x, — xs) and Xo(iy = Xp(j) = Xi — Xj for i,j # r,s.
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Set X = {A,,—A,}. Foro € S,, we define 5 : X — X by
a'\(An) = H (Xa(i) - Xa(j)) and a'\(_An) = - H (Xo(i) - Xa(j))'
1<i<j<n 1<i<j<n

It is easy to check that 67 (A,) = 5(7(A,)) for any two 0,7 € S,,.
Let p = (rs) be any transposition. Claim: p(A,) = —A,.
Assume that r < s. By definition, p(A,) = H (Xo(iy — Xp(j))- We have

1<i<j<n

Xo(r) = Xp(s) = Xs — Xr = —(x, — xs) and Xo(iy = Xp(j) = Xi — Xj for i,j # r,s.

(1) ifi>s: (Xo(r) = X)) (Xp(s) — Xi) = (x5 = x3) (% — x1) = (X — x;)(xs — x;).
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a'\(An) = H (Xa(i) - Xa(j)) and a'\(_An) = - H (Xo(i) - Xa(j))'
1<i<j<n 1<i<j<n
It is easy to check that 67 (A,) = 5(7(A,)) for any two 0,7 € S,,.
Let p = (rs) be any transposition. Claim: p(A,) = —A,.
Assume that r < s. By definition, p(A,) = H (Xo(iy — Xp(j))- We have

1<i<j<n
Xo(r) = Xp(s) = Xs — Xr = —(x, — xs) and Xo(iy = Xp(j) = Xi — Xj for i,j # r,s.

(1) ifi>s: (Xo(r) = X)) (Xp(s) — Xi) = (x5 = x3) (% — x1) = (X — x;)(xs — x;).
(2) ifr<i<s:(xpr) = X)(Xi — Xp(s)) = (Xs = xi)(Xi — %) = (X — Xi)(x; — x5).
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Xo(r) = Xp(s) = Xs — Xr = —(x, — xs) and Xo(iy = Xp(j) = Xi — Xj for i,j # r,s.

(1) ifi>s: (Xo(r) = X)) (Xp(s) — Xi) = (x5 = x3) (% — x1) = (X — x;)(xs — x;).

(2) ifr<i<s:(xpr) = X)(Xi — Xp(s)) = (Xs = xi)(Xi — %) = (X — Xi)(x; — x5).

(3) ifi<r:(x— Xo(r))(Xi = Xp(s)) = (Xi = x5)(xi — xr) = (xi — X )(X; — xs).

Thus
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(2) ifr<i<s:(xpr) = X)(Xi — Xp(s)) = (Xs = xi)(Xi — %) = (X — Xi)(x; — x5).
(3) ifi<r:(x— Xo(r))(Xi = Xp(s)) = (Xi = x5)(xi — xr) = (xi — X )(X; — xs).
Thus p(A,) = —A,. Given any o € S,,, we can write o = p1p2 - - pk.
Then
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A permutation o in S, is even (i.e., o € A,) if and only if o(Ap) = A,
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(3) ifi<r:(x— Xo(r))(Xi = Xp(s)) = (Xi = x5)(xi — xr) = (xi — X )(X; — xs).
Thus p(A,) = —A,. Given any o € S,,, we can write o = p1p2 - - pk.
Then (A,) = (fl)kA,,. (Why?)

Yi Permutation Groups June 3-4, 2020 23 /23



Theorem 10

A permutation o in S, is even (i.e., o € A,) if and only if o(Ap) = A,
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Then 5(A,) = (=1)kA,. (Why?) This completes the proof. (Why?)  [J
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