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Review from Section 3.5

Every subgroup of a cyclic group G is cyclic.

Let G be a cyclic group.

{
If G is infinite, then G ∼= Z.

If |G | = n, then G ∼= Zn.
(a) Any two infinite cyclic groups are isomorphic to each other.
(b) Two finite cyclic groups are isomorphic ⇔ they have the same order.

Subgroups of Z : For any m ∈ Z, mZ = 〈m〉 ∼= Z = 〈1〉 = 〈−1〉.
• mZ ⊆ nZ⇔ n|m. • mZ = nZ⇔ m = ±n.

Subgroups of Zn : For any d |n, dZn = 〈[d ]n〉 subgroup diagram
(a) Let d = gcd(m, n) : 〈[m]n〉 = 〈[d ]n〉 & |〈[m]n〉| = |〈[d ]n〉| = n/d .

(i) 〈[k]n〉 = Zn ⇔ gcd(k, n) = 1, i.e., [k]n ∈ Z×
n .

(ii) If d1|n and d2|n, then 〈[d1]n〉 ⊆ 〈[d2]n〉 ⇔ d2|d1.
(iii) If d1|n and d2|n and d1 6= d2, then 〈[d1]n〉 6= 〈[d2]n〉.

Zn
∼= Zp

α1
1
× Zp

α2
2
× · · · × Zpαm

m
 ϕ(n) = n(1− 1

p1
) · · · (1− 1

pm
)

Let G be a finite abelian group. Let N be the exponent of G .
(a) N = max{o(a) | a ∈ G}.
(b) The group G is cyclic ⇔ N = |G |.

For small n, check Z×
n cyclic or not without using primitive root thm.
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Review from Section 2.3

A permutation σ of a set S is a function from S to S that is both
one-to-one and onto.

Notation:

Sym(S) = {σ | σ : S → S} or write Sn if S = {1, 2, . . . , n}.
Sym(S) is a group under ◦. Sn is the symmetric group of degree n.

|Sn| = n!

Let σ ∈ Sym(S). Then σ = (a1a2 · · · ak) is a cycle of length k .

Disjoint cycles are commutative

σ ∈ Sn can be written as a (unique) product of disjoint cycles.

A cycle σ of length m has order m, i.e., o(σ) = m.

The order of σ is the lcm of the lengths (orders) of its disjoint cycles.

A transposition is a cycle (a1a2) of length two.

σ ∈ Sn can be written as a (NOT unique) product of transpositions.

Product of transpositions: Even permutation vs. Odd permutation

A cycle of odd length is even. & A cycle of even length is odd.
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Definition

Definition 1

Any subgroup of the symmetric group Sym(S) on a set S is called a
permutation group.

Note 1 (Let G be a finite group.)

As we have observed, each row in the multiplication table represents a
permutation of the group elements. Furthermore, each row corresponds to
multiplication by a given element, and so there is a natural way to assign a
permutation to each element a ∈ G .
In fact, this natural way will be important in the proof of Cayley’s theorem.
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Cayley’s Theorem

Theorem 2 (Cayley’s Theorem)

Every group G is isomorphic to a permutation group.

Given a ∈ G , define λa : G → G by λa(x) = ax , for all x ∈ G .

λa is one-to-one: if λa(x1) = λa(x2)⇒ ax1 = ax2 ⇒ x1 = x2. (Why?)

λa is onto: For any x ∈ G , we have λa(a−1x) = a(a−1x) = x . (Why?)

Thus, λa is a permutation of G . This shows that φ : G → Sym(G ) defined
by φ(a) = λa is well-defined. Claim: Gλ = φ(G ) is a subgroup of Sym(G ).

(i) Closure: For any λa, λb ∈ Gλ with a, b ∈ G , to show λaλb ∈ Gλ.

λaλb(x) = λa(λb(x)) = λa(bx) = a(bx) = (ab)x = λab(x),

for all x ∈ G . This implies that λaλb = λab ∈ Gλ. (Why?)

(ii) Identity: λe . For any λa ∈ Gλ, λaλe = λae = λa & λeλa = λea = λa.

(iii) Inverses: λa−1 . It is easy to see that (λa)−1 = λa−1 . (Check it!)

Thus, Gλ = φ(G ) is a subgroup of Sym(G ).
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Proof of Cayley’s Theorem cont.: To show G ∼= Gλ.

Define φ : G → Gλ by φ(a) = λa.

To show φ is a group isomorphism.

well-defined: Trivial. X

φ preserves products: For any a, b ∈ G , to show φ(ab) = φ(a)φ(b).

φ(ab) = λab = λaλb = φ(a)φ(b).

φ is one-to-one: If φ(a) = φ(b) for a, b ∈ G , then it is to show a = b.

For all x ∈ G , φ(a) = φ(b)⇒ λa(x) = λb(x)⇒ ax = bx ⇒ a = b.

φ is onto: Trivial. By the definition of Gλ = φ(G ).

Thus, φ is a group isomorphism.

So, G ∼= Gλ, where Gλ is a subgroup of Sym(G ), i.e., a permutation group.
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Example: Rigid motions of a square

Definition 3 (Rigid Motion:)

a change in position where the distance between points is preserved and
figures remain congruent (having the same size and shape). It may be

a translation (slide)

a reflection (flip)

a rotation (turn)

or a combination of these.

Each of the rigid motions determines a permutation of the vertices of the square,

and the permutation notation gives a convenient way to describe these motions.

There are a total of eight rigid motions of a square. (Why?)

There are four choices of a position in which to place first vertex A,

and then two choices for second vertex since it must be adjacent to A.
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Example cont.: Rigid motions of a square

(1234) counterclockwise rotation through 90◦

(13)(24) counterclockwise rotation through 180◦

(1432) counterclockwise rotation through 270◦

(1) counterclockwise rotation through 360◦

(24) flip about vertical axis

(13) flip about horizontal axis

(12)(34) flip about diagonal

(14)(23) flip about diagonal

Note 2

Note that we do not obtain all elements of S4 as rigid motion, since,
for example, (12) would represent an impossible configuration.

Question 1

What is the order of each rigid motion?
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Rigid motions of a square: Multiplication table

(1) (1234) (13)(24) (1432) (24) (12)(34) (13) (14)(23)

(1) (1) (1234) (13)(24) (1432) (24) (12)(34) (13) (14)(23)

(1234) (1234) (13)(24) (1432) (1) (12)(34) (13) (14)(23) (24)

(13)(24) (13)(24) (1432) (1) (1234) (13) (14)(23) (24) (12)(34)

(1432) (1432) (1) (1234) (13)(24) (14)(23) (24) (12)(34) (13)

(24) (24) (14)(23) (13) (12)(34) (1) (1432) (13)(24) (1234)

(12)(34) (12)(34) (24) (14)(23) (13) (1234) (1) (1432) (13)(24)

(13) (13) (12)(34) (24) (14)(23) (13)(24) (1234) (1) (1432)

(14)(23) (14)(23) (13) (12)(34) (24) (1432) (13)(24) (1234) (1)
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Example: Rigid motions of an equilateral triangle

Proposition 1

The rigid motions of an equilateral triangle yield the group S3.

(123) counterclockwise rotation through 120◦

(132) counterclockwise rotation through 240◦

(1) counterclockwise rotation through 360◦

(23) flip about vertical axis

(13) flip about angle bisector

(12) flip about angle bisector

Note 3 (Another notion for describing S3 in §3.3)

S3 = {e, a, a2, b, ab, a2b}, where a3 = e, b2 = e, ba = a2b = a−1b.

Note 4 (Another notion for describing Rigid Motions of a Square)

Let a = (1234) and b = (24). It can be shown that ba = a3b. The group
G = {e, a, a2, a3, b, ab, a2b, a3b}, where a4 = e, b2 = e, ba = a3b = a−1b.
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Example: Rigid motions of a regular polygon (n-gon)

Proposition 2

There are 2n rigid motions of a regular n-gon.

i) There are n choices of a position in which to place first vertex A,
ii) and then two choices for second vertex since it must be adjacent to A.

i) Let a be a counterclockwise rotation about the center, through 360/n degrees.

Thus a is a the cycle (123 · · · n) of length n and has order n.

ii) Let b be a flip about the line of symmetry through position number 1.

Thus b has order 2 and is given by the product of transpositions (2n)(3 n − 1) · · · .
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Example cont.: Rigid motions of a regular polygon (n-gon)

Consider the set S = {ak , akb | 0 ≤ k < n} of rigid motions.

The elements ak for 0 ≤ k < n are all distinct. (Why?) [o(a) = n]
The elements akb for 0 ≤ k < n are all distinct. (Why?) [o(a) = n]
ak 6= ajb for all 0 ≤ k , j < n. (Why?) [ak does NOT flip the n-gon]

Thus, |S | = 2n, and so G = S .

Note 5 (Notion for describing Rigid Motions of a regular n-gon)

G = {ak , akb | 0 ≤ k < n}, where an = e, b2 = e, ba = an−1b = a−1b.

Goal: To show ba = a−1b. Note: a−1 = an−1 (Why?)& b−1 = b (Why?)

That is, to show bab = a−1.
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Dihedral group Dn

Definition 4

Let n ≥3 be an integer. The group of rigid motions of a regular n-gon is
called the nth dihedral group, denoted by Dn. Note that |Dn| = 2n.

Proposition 3 (Note 5)

Dn = {ak , akb | 0 ≤ k < n}, where an = e, b2 = e, ba = a−1b.

Remark 1 (Let n ≥ 4.)

We will not list all the subgroups of Sn. (Why?) [there are too many!!]

The “simple” subgroups of Sn: cyclic subgroup generated by σ ∈ Sn.

The dihedral group Dn is one important example of subgroups of Sn.

The alternating group An is another one important example. (soon!)
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Example: Subgroups of D3 = S3

Proposition 4

If G = S3, then every proper subgroup of S3 is cyclic. (Why?)

By Lagrange’s theorem, a proper subgroup of S3 must have order 1, 2, or 3.
And subgroups of order 2 or 3 must be cyclic. (Why?) & {e} is trivial.X
The subgroup diagram of S3 :

S3

{e, a2b}{e, ab}{e, b} {e, a, a2}

{e}

Note that D3 = S3 = {e, a, a2, b, ab, a2b}, where a3 = e, b2 = e, ba = a2b.
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Subgroups of D4 cont.: Subgroup diagram

D4

{e, a2, b, a2b} {e, a, a2, a3} {e, a2, ab, a3b}

{e, a2}{e, b} {e, a2b} {e, ab} {e, a3b}

{e}
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Alternating group An

Recall that a permutation is called even if it can be expressed as an even
number of transpositions, and odd otherwise.

Proposition 5

The set of all even permutations of Sn is a subgroup of Sn.

Since Sn is a finite set, we can apply Corollary 8 in §3.2. In particular,

(i) Nonempty: The identity permutation is even. (Why?) [(1) = (12)(21)]

(ii) Closure: If σ and τ are even permutations, so is τσ. (Why?)

Definition 5

The set of all even permutations of Sn is called the alternating group on
n elements, and will be denoted by An.

Theorem 6 (Let n > 1.)

|An| =
|Sn|

2
=

n!

2
. This is the largest possible cardinality for a proper subgroup.
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Proof of Theorem 6: |An| =
|Sn|

2
=

n!

2
for n > 1.

Let On be the set of odd permutations in Sn. Note: On is not a subgroup. (Why?)

We have Sn = An
⊔
On (Why?), so |Sn| = |An|+ |On|.

I. For each odd permutation σ, the permutation (12)σ is even. (Why?)
If σ and τ are two distinct odd permutations, then (12)σ 6= (12)τ .

Proof by contradiction: Suppose (12)σ = (12)τ , then σ
!

=τ . (Why?)

Thus, |An| ≥ |On|. (Why?)

II. Similarly, we can show that |On| ≥ |An|.

III. Therefore, |An| = |On| =
|Sn|

2
=

n!

2
. (Why?)
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Example: List all the elements of A3 and A4.

Recall that

S3 = {(1), (12), (13), (23), (123), (132)}, then we have

A3 = {(1), (123), (132)}. (Why?)

|S4| = 4! = 24: List all the possible decomposition types of elements.

Definition 7

The decomposition type of a permutation σ in Sn is the list of all the
cycle lengths involved in a decomposition of σ into disjoint cycles.

Upshot: Possible decomposition types of permutations of S4: (Check it!)

(i) a single cycle of length 1, 2, 3 or 4

(ii) two disjoint cycles of length 2

Question 2

Which of these are even permutations?

(a) single cycles of length 1 and 3

(b) two disjoint cycles of length 2
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Example cont.: List all the elements of A4, |A4| = 12

single cycle of length 1: the identity permutation (1)
single cycles of length 3: Choose any 3 of the numbers 1, 2, 3, 4:(

4

3

)
= Four choices: 123 124 134 234

For each choice, there are two ways to make a cycle. (Why?)
The following is the list of all cycles of length 3 in S4:

(123), (132), (124), (142), (134), (143), (234), (243)

two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4(
4

2

)
= Six choices: 12 13 14 23 24 34

Each pair of two numbers listed above gives rise to a transposition.
The other two numbers form another transposition, which is disjoint
from the first one. The order doesn’t matter.(Why?) This implies
that there are three different products of two disjoint transpositions:
Pick any pair of two numbers: 6 choices; the other pair is determined.
(Why?) The order doesn’t matter ⇒ 3 different products. (Why?)

(12)(34), (13)(24), (14)(23)
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Example: The converse of Lagrange’s theorem is false

Upshot:

The following is the list of elements in A4: (1), (123), (132),
(124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Proposition 6

Although 6 is a divisor of |A4| = 12, A4 has no subgroup of order 6.

In A4, all elements different from the identity have the form (abc) or
(ab)(cd) for distinct a, b, c , d .
Proof by contradiction: Suppose that H is a subgroup of order 6 in A4.
• It must contain an element of order 2. (Why?) [since |H| = 6 is even]
• It must contain an element of order 3. [Proof by contradiction:]
Assume every non-identity element of H has order 2.
Let x , y ∈ H with x 6= y and o(x) = o(y) = 2. So o(xy) = 2. (Why?)
And then xy = yx . (Why?) [xy = (xy)−1 = y−1x−1 = yx .]
Hence {e, x , y , xy} is a subgroup of H of order 4, a contradiction. (Why?)

This implies that H must contain an element of the form (abc) and an
element of the form (ab)(cd). Then H contains (abc)(ab)(cd) = (acd)
and (ab)(cd)(abc) = (bdc).  H has six elements of order 3. (Why?)
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Standard approach to the definition of even and odd permutations

Definition 8

Let ∆n be the polynomial in n variables x1, x2, . . . , xn defined by

∆n =
∏

1≤i<j≤n

(xi − xj).

Any permutation σ ∈ Sn acts on ∆n by permuting the subscripts, and we write

σ(∆n) =
∏

1≤i<j≤n

(xσ(i) − xσ(j)).

If i < j and σ(i) < σ(j), then the factors xi − xj and xσ(i) − xσ(j) have the
same sign, but if σ(i) > σ(j) then xσ(i) − xσ(j) = −(xσ(j) − xσ(i)). Because
of such sign changes, we either have σ(∆n) = ∆n or σ(∆n) = −∆n.

Example 9 (∆3 = (x1 − x2)(x1 − x3)(x2 − x3))

Let σ = (123) acts on ∆3: σ(∆3) = (x2 − x3)(x2 − x1)(x3 − x1)= ∆3.
Let τ = (12) acts on ∆3: τ(∆3) = (x2 − x1)(x2 − x3)(x1 − x3)= −∆3.
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Theorem 10

A permutation σ in Sn is even (i.e., σ ∈ An) if and only if σ(∆n) = ∆n.

Set X = {∆n,−∆n}. For σ ∈ Sn, we define σ̂ : X → X by

σ̂(∆n) =
∏

1≤i<j≤n

(xσ(i) − xσ(j)) and σ̂(−∆n) = −
∏

1≤i<j≤n

(xσ(i) − xσ(j)).

It is easy to check that σ̂τ(∆n) = σ̂(τ̂(∆n)) for any two σ, τ ∈ Sn.
Let ρ = (rs) be any transposition. Claim: ρ̂(∆n) = −∆n.

Assume that r < s. By definition, ρ̂(∆n) =
∏

1≤i<j≤n

(xρ(i) − xρ(j)). We have

xρ(r)− xρ(s) = xs − xr = −(xr − xs) and xρ(i)− xρ(j) = xi − xj for i , j 6= r , s.

(1) if i > s : (xρ(r) − xi )(xρ(s) − xi ) = (xs − xi )(xr − xi ) = (xr − xi )(xs − xi ).

(2) if r < i < s : (xρ(r) − xi )(xi − xρ(s)) = (xs − xi )(xi − xr ) = (xr − xi )(xi − xs).

(3) if i < r : (xi − xρ(r))(xi − xρ(s)) = (xi − xs)(xi − xr ) = (xi − xr )(xi − xs).

Thus ρ̂(∆n) = −∆n. Given any σ ∈ Sn, we can write σ = ρ1ρ2 · · · ρk .
Then σ̂(∆n) = (−1)k∆n. (Why?) This completes the proof. (Why?)
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