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Review

(G1, ∗) ∼= (G2, ·): A group isomorphism φ : G1 → G2 satisfies

well-defined
one-to-one and onto

Direct proof
Find its inverse function φ−1: φ−1φ = 1G1 , φφ

−1 = 1G2

If φ preserves the products, then φ is one-to-one if and only if
φ(x) = e2 implies x = e1, for all x ∈ G1.
If |G1| = |G2| <∞, then any one-to-one mapping must be onto.

respects the two operations: φ(a ∗ b) = φ(a) · φ(b)

φ(an) = (φ(a))n for all a ∈ G1 and all n ∈ Z.
n = 0: φ(e1) = e2
n = −1: φ(a−1) = (φ(a))−1

If φ, ψ are two group isomorphisms, then so are φ−1 and ψ ◦ φ.
Several structural properties preserved by group isomorphisms

If o(a) = n in G1, then o(φ(a)) = n in G2.
If G1 is abelian, then so is G2.
If G1 is cyclic, then so is G2.

Zmn
∼= Zm × Zn if gcd(m, n) = 1.
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First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .

• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)

• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)

Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?)

we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0.

Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H.

Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H:

It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [

Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉:

Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)

Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m.

To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak

= amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒

r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉.

In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



First Theorem

Theorem 1

Every subgroup of a cyclic group G is cyclic.

Proof.

Let a be a generator of G . So G = 〈a〉. Let H be any subgroup of G .
• If H is the trivial subgroup consisting only of e, then H = 〈e〉. X(Why?)
• If H is nontrivial, then it contains b 6= e. So b = an for some n. (Why?)
Since a−n = (an)−1 must also belong to H, (Why?) we can assume that H
contains some power ak with k > 0. Let m be the smallest positive integer
such that am ∈ H. Claim: H = 〈am〉.
〈am〉 ⊆ H: It is clear since am ∈ H. (Why?) [Proposition 2 (b) in §3.2]
H ⊆ 〈am〉: Let x ∈ H. Then we have x = ak for some k ∈ Z. (Why?)
Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0. (Why?)

x = ak = amq+r = (am)qar ⇒ ar ∈ H (Why?) ⇒ r = 0 (Why?)

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Yi Cyclic Groups June 1-2, 2020 3 / 21



Second Theorem

Theorem 2 (Let G be a cyclic group)

(a) If G is infinite, then G ∼= Z.

(b) If |G | = n, then G ∼= Zn.

(a) Let G = 〈a〉 be an infinite cyclic group. Define φ : Z→ G by

φ(m) = am, for all m ∈ Z.

well-defined: Trivial
one-to-one: By Proposition 3 (a) in §3.2, φ(m) 6= φ(k) for m 6= k .
onto: Since G = 〈a〉.
respects the two operations: φ(m + k) = am+k = amak = φ(m)φ(k).

Thus, φ is an isomorphism.

(b) Let G = 〈a〉 be a finite cyclic group with n elements. Define

φ : Zn → G by φ([m]) = am, for all [m] ∈ Zn.

Goal: To show φ is an isomorphism.
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Proof of Thm 2 (b) cont.: To show φ is an isomorphism

Define φ : Zn → G by φ([m]) = am, for all [m] ∈ Zn.
• well-defined:

If [k] = [m], i.e., k ≡ m (mod n), then ak = am. (Why?)
• one-to-one: If φ([k]) = φ([m]), then [k] = [m]. (Why?) [Same with ↑]
• onto: Since G = 〈a〉.
• respects the two operations:

φ([m] + [k]) = φ([m + k]) = am+k = amak = φ([m])φ([k]).

Thus, φ is an isomorphism.

Corollary 3

(a) Any two infinite cyclic groups are isomorphic to each other. (Why?)

(b) Two finite cyclic groups are isomorphic ⇔ they have the same order.
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The subgroups of Z

Note 1

The subgroups of Z have the form mZ = 〈m〉, for m ∈ Z.

mZ ⊆ nZ if and only if n|m. (Check it!)

mZ = nZ if and only if m = ±n.

Corollary 4

mZ ∼= Z. (Why?) [mZ is an infinite cyclic group & Theorem 2 (a).]

Remark 1

In the case of infinite groups, it is possible to have a proper subgroup that
is isomorphic to the entire group.

Question 1

What are all the subgroups of Zn?
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The subgroups of Zn

[b] = k[m] for some k ∈ Z

⇔ mx ≡ b (mod n) has a solution.⇔ (m, n)|b.
By Theorem 10 in Chapter 1, there are (m, n) distinct solutions modulo n.
We also know that every subgroup of Zn is cyclic. (Why?)
For each [k]n ∈ Zn, we obtain the cyclic subgroup 〈[k]n〉 generated by [k]n.

Note 2

It is possible to have 〈[k]n〉 = 〈[l ]n〉 for certain choices of [k]n, [l ]n ∈ Zn,
so these subgroups are not all distinct. In Z3, we have 〈[1]3〉 = 〈[2]3〉 = Z3

Proposition 1 (In additive notation: G = Zn)

Let d = gcd(m, n). Then 〈[m]n〉 = 〈[d ]n〉. And |〈[m]n〉| = |〈[d ]n〉| = n/d.

〈[m]n〉 ⊆ 〈[d ]n〉: d |m⇒ [m]n ∈ 〈[d ]n〉 (Why?) ⇒ 〈[m]n〉 ⊆ 〈[d ]n〉 (Why?)
〈[d ]n〉 ⊆ 〈[m]n〉: d = sm + tn for some s, t ∈ Z. (Why?) ⇒ [d ]n ∈ 〈[m]n〉.
|〈[m]n〉| = n/d : The order of [d ]n is n/d , and so [m]n has order n/d .

In multiplicative notation: Let G = 〈a〉 be a finite cyclic group of order n.
d = gcd(m, n): Then 〈am〉 = 〈ad〉. And o(am) = |〈am〉| = |〈ad〉| = n/d .
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The subgroups of Zn cont.

Corollary 5 (In additive notation: G = Zn)

(a) The element [k]n generates Zn if and only if gcd(k , n) = 1.

(b) If H is any subgroup of Zn, then H = 〈[d ]n〉 for some divisor d of n.

(c) If d1|n and d2|n, then 〈[d1]n〉 ⊆ 〈[d2]n〉 if and only if d2|d1.

(c)’ If d1|n and d2|n and d1 6= d2, then 〈[d1]n〉 6= 〈[d2]n〉.

(a) 〈[k]n〉=〈[d ]n〉
!

=〈[1]n〉 ⇔ d= gcd(k , n)
!

=1 (Why?) (see Eg. 15 in §3.2)
(b) Every subgroup of Zn is cyclic & 〈[k]n〉=〈[d ]n〉 with d = gcd(k, n).X

(c)⇐ : d2|d1 ⇒ d1 = d2q ⇒ [d1]n ∈ 〈[d2]n〉 ⇒ 〈[d1]n〉 ⊆ 〈[d2]n〉 (Why?)
(c)⇒ : [d1]n ∈ 〈[d2]n〉 ⇒ [d1]n = q[d2]n ⇒ d1 ≡ qd2 (mod n) for q ∈ Z.

It follows that d1 = qd2 + nt for some t ∈ Z, and so d2|d1. (Why?)

In multiplicative notation: Let G = 〈a〉 be a finite cyclic group of order n.
(a) The element ak generates G if and only if gcd(k , n) = 1.
(b) If H is any subgroup of G , then H = 〈ad〉 for some divisor d of n.
(c) If d1|n and d2|n, then 〈ad1〉 ⊆ 〈ad2〉 if and only if d2|d1.
(c)’ If d1|n and d2|n and d1 6= d2, then 〈ad1〉 6= 〈ad2〉.
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Examples

Example 6

Let G = Z24. List all possible choices of [k]24 such that 〈[k]24〉 = 〈[4]24〉.

4|24 : So 〈[k]24〉 = 〈[4]24〉 if and only if gcd(k , 24) = 4. This means that

4|k but gcd(
k

4
, 6) = 1. The possible choices are k = 4, 20.

Example 7

Let G = Z18. List all possible choices of [k]18 such that 〈[k]18〉 = 〈[4]18〉.
4 - 18, but gcd(4, 18) = 2, so 〈[k]18〉 = 〈[4]18〉 ⇔ gcd(k , 18) = 2. (Why?)

It follows that 2|k but gcd(
k

2
, 9) = 1. The possible choices are

k = 2, 4, 8, 10, 14, 16.

Question 2

List all the subgroups of Z18?
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List all the subgroups of Z18

Note 3 (Corollary 5)

〈[k]n〉 = Zn ⇔ gcd(k , n) = 1, i.e., [k]n ∈ Z×n .

Every subgroup of Zn is of the form 〈[d ]n〉 where d |n.

If d1|n and d2|n, then 〈[d1]n〉 ⊆ 〈[d2]n〉 ⇔ d2|d1.

If d1|n and d2|n and d1 6= d2, then 〈[d1]n〉 6= 〈[d2]n〉.

So, the subgroups of Zn are in one to one correspondence with the divisors of n.

The divisors of 18 are: 1, 2, 3, 6, 9, 18. So the subgroups of Z18 are:

[d ]18 〈[d ]18〉 |〈[d ]18〉|
[1] Z18 18
[2] {[0], [2], [4], [6], [8], [10], [12], [14], [16]} 9
[3] {[0], [3], [6], [9], [12], [15]} 6
[6] {[0], [6], [12]} 3
[9] {[0], [9]} 2

[18] {[0]} 1
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Subgroup diagram

Notation: mZn = 〈[m]n〉 consisting of all multiples of [m]n in Zn.

Definition 8

For small n, we can easily give a diagram showing all subgroups of Zn and
the inclusion relations between them. This is called a subgroup diagram.

In particular, larger subgroups on top, smaller subgroups on the bottom,
a line connecting two subgroups indicates that the subgroup on the
bottom is contained in the subgroup on the top.

Example 9 (The subgroup diagram of Z20)

The subgroups are obtained from the divisors of 20: 1, 2, 4, 5, 10, 20.
20 = 22 · 51: Think about any divisor d = 2i5j , i = 0, 1, 2 and j = 0, 1.
Each of these divisors generates a subgroup.

Note: 1Z20 = 〈[1]20〉 = Z20 (entire group) and 20Z20 = 〈[0]20〉 = {[0]20}.
Corollary 5 (c): If d1|n and d2|n, then 〈[d1]n〉 ⊆ 〈[d2]n〉 if and only if d2|d1.
That is, smaller divisors of n correspond to larger subgroups.
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Example 9 cont.: The subgroup diagram of Z20

Z20 = 1Z20

5Z202Z20

10Z204Z20

20Z20 = 〈[0]20〉 = {[0]20}
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Example: The subgroup diagram of Z27

27 = 33: Think about any divisor d = 3i , i = 0, 1, 2, 3.

Z27

3Z27

9Z27

〈[0]27〉 = {[0]27}
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Direct product of cyclic groups

Recall that we introduced the direct product of two groups in §3.3. In fact,
this definition can be extended to the direct product of n groups. (How?)

Definition 10

The direct product G1 × · · · × Gn of n groups G1, . . . ,Gn is defined as follows:

The elements are n-tuples (g1, . . . , gn), where gi ∈ Gi for each i .

The operation is componentwise multiplication:

(g1, . . . , gn)(g ′1, . . . , g
′
n) = (g1g

′
1, . . . , gng

′
n).

The order of an element is the least common multiple of the orders of
each component.

Theorem 11

Let n ∈ Z+ which has the prime decomposition n = pα1
1 pα2

2 · · · pαm
m . Then

Zn
∼= Zp

α1
1
× Zp

α2
2
× · · · × Zpαm

m
, where p1 < p2 < . . . < pm.

RHS: The element ([1], [1], . . . , [1]) has order n. (Why?) & Thm 2 (b)
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Revisit Euler’s totient function ϕ(n), for n ∈ Z+

ϕ(n) := #{a | (a, n) = 1 and 0 < a ≤ n} = |Z×n | = # of generators of Zn

Corollary 12 (Proposition 8 in Chapter 1)

Let n ∈ Z+ which has the prime decomposition n = pα1
1 pα2

2 · · · pαm
m . Then

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pm

)
, where p1 < p2 < . . . < pm.

Use Zp
α1
1
×Zp

α2
2
×· · ·×Zpαm

m
∼= Zn to count the generators of Zn. (Easier)

Since an isomorphism preserves generators. An element g of this direct
product is a generator ⇔ it has order n. So lcm[o(g1), . . . , o(gm)] = n.
It implies that o(gi ) = pαi

i for each i . (Why?) Thus gi is a generator in
Zpi

αi for each i . The total number of possible generators is equal to the
product of the number of generators in each component.
For any prime p, the elements that are not generators are the multiples of
p in Zpα , (Why?) and there are pα−1 such multiples in Zpα . (Why?) Thus

ϕ(pα) = pα − pα−1 = pα
(

1− 1

p

)
.
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Examples

Lemma 13

If G1
∼= H1 and G2

∼= H2, then G1 × G2
∼= H1 × H2. (What is φ?)

Let θ1 : G1 → H1 and θ2 : G2 → H2. Define φ : G1 × G2 → H1 × H2 by

φ((x1, x2)) = (θ1(x1), θ2(x2)), for all (x1, x2) ∈ G1 × G2.

Claim: φ is a group isomorphism. (Check it!)

Example 14 (Is Z4 × Z10 isomorphic to Z2 × Z20? Yes!)

By Theorem 11, we have Z10
∼= Z2 × Z5 and Z20

∼= Z4 × Z5. By Lemma
13, we then have Z4 ×Z10

∼= Z4 ×Z2 ×Z5 and Z2 ×Z20
∼= Z2 ×Z4 ×Z5.

Finally, it is easy to see that Z4 × Z2 × Z5
∼= Z2 × Z4 × Z5. (What is φ?)

Example 15 (Is Z4 × Z15 isomorphic to Z6 × Z10? No!)

Similarly, Z4 × Z15
∼= Z4 × Z3 × Z5 and Z6 × Z10

∼= Z2 × Z3 × Z2 × Z5.
The first has an element of order 4, while the second has none.
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Exponent of group G

If G is a finite group, then each element of G must have finite order.

If N is the least common multiple of the integers o(a), for all a ∈ G , then

aN = e for all a ∈ G .

Since o(a) is a divisor of |G | for any a ∈ G , and so N is a divisor of |G |.

Definition 16

Let G be a group. If there exists a N ∈ Z+ such that aN = e for all a ∈ G ,
then the smallest such positive integer is called the exponent of G .

Example 17

The exponent of any finite group is the least common multiple of the
orders of its elements. Thus the exponent of S3 is 6. (Why?)
The exponent of Z2 × Z2 is 2. (Why?)
The exponent of Z2 × Z3 is 6. (Why?)
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Characterize cyclic groups among all finite abelian groups

Lemma 18 (Question (12) in Homework 3)

Let G be a group, and let a, b ∈ G be elements such that ab = ba.
If the orders of a and b are relatively prime, then o(ab) = o(a)o(b).

Let o(a) = n and o(b) = m. Then (ab)mn = e. (Why?) Say o(ab) = k ,
then k |mn. On the other hand, (ab)k = e ⇒ ak = b−k . (Why?) Therefore

akm = (ak)m = (b−k)m = (bm)−k = e ⇒ n|km⇒ n|k (Why?)

A similar argument shows that m|k , and then mn|k (Why?). So k = mn.

Proposition 2 (Let G be a finite abelian group.)

(a) The exponent of G is equal to the order of any element of G of largest order.

(b) The group G is cyclic if and only if its exponent is equal to its order.

Using this concept of the “exponent” of a group, we just characterize
cyclic groups among all finite abelian groups in Proposition 2 (b).
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Proof of Proposition 2

(a) Assume o(a) has the largest order. To show o(a) =the exponent of G .
Proof by contradiction: Let b ∈ G and suppose that o(b) is not a
divisor of o(a). Then there exists a prime p with o(a) = pαn and
o(b) = pβm, where (p, n) = (p,m) = 1 and β > α ≥ 0. (Why?)
Then o(ap

α
) = n and o(bm) = pβ, so these orders are relatively prime.

It follows from Lemma 18 that o(ap
α
bm) = npβ> o(a) : contradiction.

Thus o(b)|o(a) for all b ∈ G , and o(a) is therefore the exponent of G .
(b) Part (b) follows immediately from part (a). (Why?)

G is cyclic if and only if there exists an element of order |G |.

Question 3

When is Z×n cyclic?

Theorem 19 (The Primitive Root Theorem)

Z×n is cyclic if and only if n = 1, 2, 4, pk or 2pk where p is any odd prime.

However, we won’t prove or use this theorem in this course.
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Example: Z×15 is not cyclic.

Z×15 = {[1], [2], [4], [7], [8], [11], [13], [14]} = {±[1],±[2],±[4],±[7]}.

Since |Z×15| = 8, we need to check if there is an element of order 8 or not.

Note 4

If o([2]) = 8, then it means that the group is cyclic.

If o([2]) 6= 8, then we need to try other elements, until we either find
one that has order 8, or exhaust all the possible elements and show
that neither one of them has order 8, i.e., the group is not cyclic.

(i) [2]2 = [4], [2]3 = [8], [2]4 = [16] = [1], so o([2]) = 4.
(ii) There is no need to try [4], [8]. (Why?) [∵ [4], [8] ∈ 〈[2]〉]
(iii) [7]2 = [49] = [4], [7]3 = [28] = [13], [7]4 = [91] = [1], so o([7]) = 4.
(iv) [11]2 = [121] = [1] (or [11]2 = ([−4])2 = [16] = [1]), so o([11]) = 2.
(v) [13] = −[2], [13]4 = ([−2])4 = [16] = [1], so o([13])≤4 ∵ o([13])|4.
(vi) [14] = [−1], [14]2 = [1], so o([14]) = 2.

In conclusion, there is no element of order 8, thus the group is not cyclic.
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Example: Z×7
∼= Z×14

I. |Z×7 | = |Z×14| = 6. In fact, we can list the elements of each group.

Z×7 = {[1], [2], [3], [4], [5], [6]} Z×14 = {[1], [3], [5], [9], [11], [13]}
II. (a) If both of them are cyclic, then they are isomorphic. (Why?)

(b) If one is cyclic and the other is not, then they are not isomorphic.

III. Check Z×7 :
(i) [2]2 = [4], [2]3 = [1], so o([2]) = 3.
(ii) o([4]) = 3. (Why?) • [4] ∈ 〈[2]〉 & • Lagrange’s Theorem.
(iii) [3]2 = [9] = [2], [3]3 = [6], so o([3]) = 6. (Why?) [Lagrange’s Thm]

Therefore Z×7 is cyclic (and [3]7 is a generator).

IV. Check Z×14: [3]2 = [9], [3]3 = [27] = [13], so o([3]) = 6. (Why?)
Therefore Z×14 is cyclic (and [3]14 is a generator).

V. By II. (a), we conclude that Z×7
∼= Z×14.

Remark 2

Z×7 and Z×14 are both cyclic with order 6. They are both isomorphic to Z6,
and therefore they are isomorphic to each other.
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