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Review

Group

abelian vs. nonabelian
finite vs. infinite

Subgroup
cyclic: o(a) = |〈a〉|; If o(a) = n <∞, then ak = e ⇔ n|k .
Lagrange’s Theorem: If |G | = n <∞ and H ⊆ G , then |H|

∣∣n.
o(a)|n for any a ∈ G .
Any group of prime order is cyclic (and so abelian).

Constructing (sub)groups
Product of two subgroups: HK is not always a subgroup of G .

If h−1kh ∈ K for all h ∈ H and k ∈ K , then HK is a subgroup of G .
If G is a finite group, then |HK | = |H||K |/|H ∩ K |.

Direct product: G1 × G2 is a group under a new defined operation.
o((a1, a2)) = lcm[o(a1), o(a2)]
If G1,G2 are finite groups, then |G1 × G2| = |G1| · |G2|.
Zn × Zm is cyclic if and only if gcd(n,m) = 1.

Definition of a field & New groups defined over a filed F .
Subgroup generated by S : 〈S〉 is the smallest subgroup that contains S .
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Examples: Motivation

Consider the group tables of the subgroup {±1} of Q× and the group Z2.

Table: Multiplication in {±1}

× 1 −1

1 1 −1
−1 −1 1

Table: Addition in Z2

+ [0] [1]

[0] [0] [1]
[1] [1] [0]

Table: Group table in G with |G | = 2

∗ e a

e e a
a a e

Table: Group table in G with |G | = 3

∗ e a b

e e a b
a a b e
b b e a

Upshot: All groups with two (or three) elements must have exactly the
same algebraic properties.
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Definition

Definition 1

Let (G1, ∗) and (G2, ·) be two groups, and let φ : G1 → G2 be a function.
Then φ is said to be a group isomorphism if

φ is one-to-one and onto, and

φ(a ∗ b) = φ(a) · φ(b) for all elements a, b ∈ G1.

In this case, G1 is said to be isomorphic to G2, and this is denoted by G1
∼= G2.

Important Note: In every problem that requires you to prove that two
groups are isomorphic, you need to

define a function (well-defined) and then
verify that the function you defined is an isomorphism.

Note 1

Sometimes your first guess for what that function is might not work, so
you might need to try several different functions until you find one that
satisfies the requirements.

Yi Isomorphisms May 27-28, 2020 4 / 21
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Properties of isomorphisms

Proposition 1

Let (G1, ∗) and (G2, ·) be groups, and let φ : G1 → G2 be an isomorphism.
Let e1 and e2 be the identity elements of G1 and G2, respectively. Then

(a) φ(e1) = e2.

(b) φ(a−1) = (φ(a))−1 for all a ∈ G1.

(c) φ(an) = (φ(a))n for all a ∈ G1 and all n ∈ Z.

(a):

φ(e1) · φ(e1)=φ(e1 ∗ e1) = φ(e1) = φ(e1) · e2 ⇒φ(e1) = e2. (Why?)

(b): φ(a−1) ·φ(a)=φ(a−1 ∗ a) = φ(e1) = e2 ⇒φ(a−1) = (φ(a))−1. (Why?)

(c): By induction, we have

φ(a1 ∗ a2 ∗ · · · ∗ an) = φ(a1) · φ(a2) · . . . · φ(an),

for a1, a2, . . . , an ∈ G1. In particular, φ(an) = (φ(a))n for all n ∈ Z+.
It follows that φ(an) = (φ(a))n for all n ∈ Z. (Check it!)
If n < 0, then n = −|n|: φ(an) = φ((a−1)|n|)=(φ(a−1))|n|=((φ(a))−1)|n|
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Example

Upshot: Any group isomorphism preserves general products, the identity
element, and inverses of elements.

Example 2

Prove that (R,+) ∼= (R+, ·).

We need a function φ : R→ R+ that has the following properties:

sends real numbers to positive real numbers

sends addition to multiplication

sends the identity e1 = 0 of (R,+) to the identity e2 = 1 of (R+, ·)
Try φ(x) = ex :

(i) φ(x) = ex > 0 for all x ∈ R. That is, φ(x) ∈ R+.

(ii) φ(x) = ex is
one-to-one: ex1 = ex2 ⇒ ex1−x2 = 1⇒ x1− x2 = 0⇒ x1 = x2. (Why?)
onto: For any y ∈ R+, take x = ln y ∈ R and then φ(x) = e ln y = y .

(iii) φ(x1 + x2) = ex1+x2=ex1 · ex2= φ(x1) · φ(x2).

Yi Isomorphisms May 27-28, 2020 6 / 21
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Try φ(x) = ex :

(i) φ(x) = ex > 0 for all x ∈ R. That is, φ(x) ∈ R+.

(ii) φ(x) = ex is
one-to-one: ex1 = ex2 ⇒ ex1−x2 = 1⇒ x1− x2 = 0⇒ x1 = x2. (Why?)
onto: For any y ∈ R+, take x = ln y ∈ R and then φ(x) = e ln y = y .

(iii) φ(x1 + x2) = ex1+x2=ex1 · ex2= φ(x1) · φ(x2).
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More properties of isomorphisms

Proposition 2

(a) The inverse of a group isomorphism is a group isomorphism.

(b) The composite of two group isomorphisms is a group isomorphism.

(a): Let φ : G1 → G2 be a group isomorphism. Then there is an inverse
function θ : G2 → G1. (Why?) [φ is one-to-one and onto]

For each g2 ∈ G2 there exists a unique g1 ∈ G1 such that φ(g1) = g2,
and then θ(g2) = g1.
By definition of θ, we have θφ = 1G1 and φθ = 1G2 .
The definition also implies that θ is one-to-one and onto.

To show θ preserves products. Let a2, b2 ∈ G2. Let θ(a2) = a1 and θ(b2) = b1.

Then φ(a1) = a2 and φ(b1) = b2, so φ(a1 ∗ b1) = φ(a1) · φ(b1) = a2 · b2.

θ(a2 · b2) = a1 ∗ b1= θ(a2) ∗ θ(b2).

(b): Let φ : G1 → G2 and ψ : G2 → G3 be group isomorphisms. Then ψφ
is one-to-one and onto. (Why?) To show ψφ preserves products. If a, b ∈ G1,

⇒ ψφ(a ∗ b) = ψ(φ(a ∗ b))=ψ(φ(a) · φ(b))=ψ(φ(a)) ? ψ(φ(b))= ψφ(a) ? ψφ(b).
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Example

Upshot: The isomorphism ∼= is an equivalence relation.

(i) Reflexive:

G ∼= G [φ =the identity mapping 1G ]

(ii) Symmetric: G1
∼= G2 ⇒ G2

∼= G1 [Take the inverse θ = φ−1]

(iii) Transitive: G1
∼= G2 and G2

∼= G3 ⇒ G1
∼= G3 [The composite ψφ]

Example 3

(〈i〉, ·) ∼= (Z4,+[ ]4). Here, 〈i〉 = {1, i ,−1,−i} and Z4 = {[0], [1], [2], [3]}.

Table: Multiplication in 〈i〉

· 1 i −1 −i
1 1 i −1 −i
i i −1 −i 1
−1 −1 −i 1 i
−i −i 1 i −1

Table: Multiplication in 〈i〉

· i0 i1 i2 i3

i0 i0 i1 i2 i3

i1 i1 i2 i3 i0

i2 i2 i3 i0 i1

i3 i3 i0 i1 i2
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Example cont.: (〈i〉, ·) ∼= (Z4,+[ ]4)
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i0 i0 i1 i2 i3
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i2 i2 i3 i0 i1
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Table: Addition in Z4

+[ ]4 [0] [1] [2] [3]

[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

The elements of Z4 appear in the addition table in Z4 precisely the same
positions as the exponents of i did in the multiplication table in 〈i〉.

Define a function φ : Z4 → 〈i〉 by φ([n]) = in.

Well-defined:If [n] = [m], i.e., n ≡ m (mod 4), then in = im. (Why?)

The function φ defines a one-to-one correspondence. (Check it!)

φ preserves the respective operations:

φ([n] + [m]) = φ([n + m]) = in+m = in · im = φ([n]) · φ([m]).

We conclude that φ is a group isomorphism.
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Example: aHa−1 ∼= H

Let G be a group, and let H be a subgroup of G . If a is any element of G ,
then the subgroup aHa−1 is isomorphic to H.

(i) The identity element e = aea−1 ∈ aHa−1. So aHa−1 is nonempty.X

(ii) For x , y ∈ aHa−1, we have xy−1 ∈ aHa−1. (Check it!)

Define φ : H → aHa−1 by letting φ(h) = aha−1, for all h ∈ H.

It is easy to see that φ(h) ∈ aHa−1.

one-to-one: φ(h1) = φ(h2)⇒ ah1a
−1 = ah2a

−1 ⇒ h1 = h2. (Why?)

onto: If y ∈ aHa−1, then y = aha−1 for some h ∈ H, so φ(h) = y .

φ respects multiplication in H: Let h, k ∈ H.

φ(hk) = ahka−1 = ah(a−1a)ka−1 = (aha−1)(aka−1)= φ(h)φ(k).

Thus, φ is an isomorphism.

Yi Isomorphisms May 27-28, 2020 10 / 21
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Another way to show that φ is one-to-one and onto

Define a function φ−1 : G2 → G1, and verify that φ−1 is the inverse of φ.

Example 4

We prove (R,+) ∼= (R+, ·) by showing that φ : R→ R+ is an isomorphism.
In particular, we define φ(x) = ex . To show that φ is one-to-one and onto,
we define φ−1 : R+ → R by φ−1(y) = ln y for all y ∈ R+. Well-defined X
Verify that this is the inverse function of φ:

φ(φ−1(y)) = φ(ln y) = e ln y= y , φ−1(φ(x)) = φ−1(ex) = ln ex= x .

Example 5
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Define φ(h) = aha−1 for all h ∈ H. To show that φ is one-to-one and onto,
we define φ−1 : aHa−1 → H by φ−1(b) = a−1ba for all b ∈ aHa−1. X
Verify that this is the inverse function of φ:

φ(φ−1(b)) = φ(a−1ba) = a(a−1ba)a−1= b
φ−1(φ(h)) = φ−1(aha−1) = a−1(aha−1)a= h
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Several structural properties preserved by group isomorphisms

Proposition 3

Let φ : G1 → G2 be an isomorphism of groups.

(a) If a has order n in G1, then φ(a) has order n in G2.

(b) If G1 is abelian, then so is G2.

(c) If G1 is cyclic, then so is G2.

(a): Assume that a ∈ G1 with an = e1. So (φ(a))n = φ(an) = φ(e1) = e2.
This shows that o(φ(a))|n. Since φ is an isomorphism, there exists φ−1

such that φ−1(φ(a)) = a, and a similar argument shows that n|o(φ(a)).
(b): Let φ(a1) = a2 and φ(b1) = b2 for a1, b1 ∈ G1 and a2, b2 ∈ G2. Then

a2 · b2 = φ(a1) · φ(b1) = φ(a1 ∗ b1)
!

=φ(b1 ∗ a1) = φ(b1) · φ(a1)= b2 · a2.

(c): Suppose that G1 is cyclic, with G1 = 〈a〉. For any element y ∈ G2, we
have y = φ(x) for some x ∈ G1. (Why?) We write x = an for some n ∈ Z.
Then y = φ(x) = φ(an)= (φ(a))n. Thus G2 is cyclic, generated by φ(a).
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Examples

Note 2

The previous proposition gives us a technique for proving that two groups
are not isomorphic.

Example 6 ((R,+) 6∼= (R×, ·))

In (R×, ·), there is an element of order 2, namely, −1.
In (R,+), there is no element of order 2. (Why?) [If so, 2x = 0⇒ x = 0.]
Thus there cannot be an isomorphism between the two groups. (Why?)

Example 7 ((R×, ·) 6∼= (C×, ·))

In (R×, ·), only 1 and −1 have finite orders, i.e., o(1) = 1 and o(−1) = 2.
In (C×, ·), there are other elements of finite orders. For example, o(i) = 4.
Thus there cannot be an isomorphism between the two groups. (Why?)
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More examples

Example 8 (Z4 6∼= Z2 × Z2)

Z4 is cyclic. That is, there is an element ([1]4 or [3]4) of order 4 in Z4.
Z2×Z2 is not cyclic. Any non-identity element must have order 2. (Why?)

Example 9 (Z4 × Z4 6∼= Z2 × Z2 × Z2 × Z2)

In the second group, any non-identity element must have order 2. (Why?)
In the first group, there are elements of order 4. For example, ([1]4, [1]4)
has order 4. (Why?) [If (x , y) ∈ G1 × G2, so o((x , y)) = lcm[o(x), o(y)].]

Question 1 (Groups of order 6)

Which of the groups S3,GL2(Z2),Z6 and Z2 × Z3 are isomorphic?

The first two groups (S3 and GL2(Z2)) we know to be nonabelian.

Any cyclic group is abelian. So Z6 and Z2 × Z3 (Why?) are abelian.
In fact, the element ([1]2, [1]3) of Z2 × Z3 has order 6. (Why?)

Yi Isomorphisms May 27-28, 2020 14 / 21
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Example: GL2(Z2) ∼= S3

In §3.3 we described S3 by letting e = (1), a = (123) and b = (12), which
allowed us to write

S3 = {e, a, a2, b, ab, a2b}, where a3 = e, b2 = e, ba = a2b.

Also recall that those 6 elements in GL2(Z2) are[
1 0
0 1

]
,

[
1 1
1 0

]
,

[
0 1
1 1

]
,

[
0 1
1 0

]
,

[
1 1
0 1

]
,

[
1 0
1 1

]
.

To establish the connection between S3 and GL2(Z2), let

e =

[
1 0
0 1

]
, a =

[
1 1
1 0

]
, and b =

[
0 1
1 0

]
.

Then direct computations show that a3 = e, b2 = e and ba = a2b.
Furthermore, each element of GL2(Z2) can be expressed uniquely in one
of the following forms:

e, a, a2, b, ab, a2b.
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Example cont: GL2(Z2) ∼= S3

This indicates how to define an isomorphism from S3 to GL2(Z2).

Let

φ((123)) =

[
1 1
1 0

]
and φ((12)) =

[
0 1
1 0

]
and then extend this to all elements by letting

φ((123)i (12)j) =

[
1 1
1 0

]i [
0 1
1 0

]j
for i = 0, 1, 2 and j = 0, 1.

Proposition 4

Let φ : S3 → GL2(Z2) be defined as above. Then φ is an isomorphism.

Our remarks about the unique forms of the respective elements show that
φ is a one-to-one correspondence.X
The fact that the multiplication tables are identical shows that φ respects
the two operations. (Check it!)

Yi Isomorphisms May 27-28, 2020 16 / 21



Example cont: GL2(Z2) ∼= S3

This indicates how to define an isomorphism from S3 to GL2(Z2). Let

φ((123)) =

[
1 1
1 0

]
and φ((12)) =

[
0 1
1 0

]

and then extend this to all elements by letting

φ((123)i (12)j) =

[
1 1
1 0

]i [
0 1
1 0

]j
for i = 0, 1, 2 and j = 0, 1.

Proposition 4

Let φ : S3 → GL2(Z2) be defined as above. Then φ is an isomorphism.

Our remarks about the unique forms of the respective elements show that
φ is a one-to-one correspondence.X
The fact that the multiplication tables are identical shows that φ respects
the two operations. (Check it!)

Yi Isomorphisms May 27-28, 2020 16 / 21



Example cont: GL2(Z2) ∼= S3

This indicates how to define an isomorphism from S3 to GL2(Z2). Let

φ((123)) =

[
1 1
1 0

]
and φ((12)) =

[
0 1
1 0

]
and then extend this to all elements by letting

φ((123)i (12)j) =

[
1 1
1 0

]i [
0 1
1 0

]j
for i = 0, 1, 2 and j = 0, 1.

Proposition 4

Let φ : S3 → GL2(Z2) be defined as above. Then φ is an isomorphism.

Our remarks about the unique forms of the respective elements show that
φ is a one-to-one correspondence.X
The fact that the multiplication tables are identical shows that φ respects
the two operations. (Check it!)

Yi Isomorphisms May 27-28, 2020 16 / 21



Example cont: GL2(Z2) ∼= S3

This indicates how to define an isomorphism from S3 to GL2(Z2). Let

φ((123)) =

[
1 1
1 0

]
and φ((12)) =

[
0 1
1 0

]
and then extend this to all elements by letting

φ((123)i (12)j) =

[
1 1
1 0

]i [
0 1
1 0

]j
for i = 0, 1, 2 and j = 0, 1.

Proposition 4

Let φ : S3 → GL2(Z2) be defined as above. Then φ is an isomorphism.

Our remarks about the unique forms of the respective elements show that
φ is a one-to-one correspondence.X
The fact that the multiplication tables are identical shows that φ respects
the two operations. (Check it!)

Yi Isomorphisms May 27-28, 2020 16 / 21



Example cont: GL2(Z2) ∼= S3

This indicates how to define an isomorphism from S3 to GL2(Z2). Let

φ((123)) =

[
1 1
1 0

]
and φ((12)) =

[
0 1
1 0

]
and then extend this to all elements by letting

φ((123)i (12)j) =

[
1 1
1 0

]i [
0 1
1 0

]j
for i = 0, 1, 2 and j = 0, 1.

Proposition 4

Let φ : S3 → GL2(Z2) be defined as above. Then φ is an isomorphism.

Our remarks about the unique forms of the respective elements show that
φ is a one-to-one correspondence.X

The fact that the multiplication tables are identical shows that φ respects
the two operations. (Check it!)

Yi Isomorphisms May 27-28, 2020 16 / 21



Example cont: GL2(Z2) ∼= S3

This indicates how to define an isomorphism from S3 to GL2(Z2). Let

φ((123)) =

[
1 1
1 0

]
and φ((12)) =

[
0 1
1 0

]
and then extend this to all elements by letting

φ((123)i (12)j) =

[
1 1
1 0

]i [
0 1
1 0

]j
for i = 0, 1, 2 and j = 0, 1.

Proposition 4

Let φ : S3 → GL2(Z2) be defined as above. Then φ is an isomorphism.

Our remarks about the unique forms of the respective elements show that
φ is a one-to-one correspondence.X
The fact that the multiplication tables are identical shows that φ respects
the two operations. (Check it!)

Yi Isomorphisms May 27-28, 2020 16 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic,

we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3.

In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one:

If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3).

That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).

Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since

(2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1.

It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) =

φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) =

([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =

([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) =

([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)=

φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



Example: Z6
∼= Z2 × Z3

Since we have already observed that both groups are cyclic, we can let a
be a generator for Z6 and b be a generator for Z2 × Z3. In particular,

Z6 = 〈[1]6〉 and Z2 × Z3 = 〈[1]2, [1]3〉.

Define the function φ : Z6 → Z2 × Z3 by letting

φ([1]6) = ([1]2, [1]3).

And so φ([n]6) = φ(n[1]6) = n([1]2, [1]3)= ([n]2, [n]3).

If [n1]6 = [n2]6, i.e., n1 ≡ n2 (mod 6), then n1 ≡ n2 (mod 2) and
n1 ≡ n2 (mod 3), and so φ is well-defined.

one-to-one: If ([n1]2, [n1]3) = ([n2]2, [n2]3), then n1 ≡ n2 (mod 2)
and n1 ≡ n2 (mod 3). That is to say, 2|(n1 − n2) and 3|(n1 − n2).
Thus, 6|(n1 − n2) since (2, 3) = 1. It follows that n1 ≡ n2 (mod 6).

Since |Z6| = |Z2 × Z3| = 6, any one-to-one mapping must be onto.

φ([n]6 + [m]6) = φ([n + m]6) = ([n + m]2, [n + m]3) =
([n]2 + [m]2, [n]3 + [m]3) = ([n]2, [n]3)([m]2, [m]3)= φ([n]6)φ([m]6).

Yi Isomorphisms May 27-28, 2020 17 / 21



An easier way to check that φ which preserves products is one-to-one

Proposition 5

Let G1 and G2 be groups, and let φ : G1 → G2 be a function such that
φ(a ∗ b) = φ(a) · φ(b) for all a, b ∈ G1. Then φ is one-to-one if and only if
φ(x) = e2 implies x = e1, for all x ∈ G1.

Proof.

⇒: If φ is one-to-one, then only e1 can map to e2. (Why?) On the other
hand, suppose that φ(x) = e2 implies x = e1, for all x ∈ G1.

⇐: If φ(x1) = φ(x2) for some x1, x2 ∈ G1, then

φ(x1 ∗ x−1
2 )=φ(x1) · φ(x−1

2 )=φ(x1) · (φ(x2))−1 = φ(x2) · (φ(x2))−1 = e2,

and hence x1 ∗ x−12 = e1, and thus

x1 = x2.

This shows that φ is one-to-one.

Yi Isomorphisms May 27-28, 2020 18 / 21
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Example

Show that the group G1 = {fm,b : R→ R | fm,b(x) = mx + b,m 6= 0} of
affine functions under composition of functions is isomorphic to the group

G2 =

{[
m b
0 1

] ∣∣∣m 6= 0

}
under matrix multiplication.

Define a function φ : G1 → G2 by

φ(fm,b) =

[
m b
0 1

]
.

Verify: φ(fm1,b1 ◦ fm2,b2) = φ(fm1,b1)φ(fm2,b2) for all fm1,b1 , fm2,b2 ∈ G1.

First, for any x ∈ R, we have fm1,b1 ◦ fm2,b2(x) = fm1,b1(fm2,b2(x)) =
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Verify: X φ(fm1,b1 ◦ fm2,b2) = φ(fm1,b1)φ(fm2,b2) for all fm1,b1 , fm2,b2 ∈ G1.

well-defined: X(Why?) [m 6= 0]

one-to-one: If φ(fm,b) =

[
m b
0 1

]
= e2 =

[
1 0
0 1

]
, then m = 1, b = 0.

It is easy to check that f1,0 = e1. (Check it!) (By Proposition 5 X1-1)

onto: It is obvious by definition of φ.

Thus, φ is an isomorphism.
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Example: Zmn
∼= Zm × Zn if gcd(m, n) = 1.

Note 3 (Proposition 3 in §3.3)

Zm × Zn is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If m, n ∈ Z+ such that gcd(m, n) = 1, then Zmn
∼= Zm × Zn.

Define φ : Zmn → Zm × Zn by φ([x ]mn) = ([x ]m, [x ]n).

If a ≡ b (mod mn), then a ≡ b (mod m) and a ≡ b (mod n), and so
φ is well-defined.

φ([x ]mn + [y ]mn) = φ([x + y ]mn) = ([x + y ]m, [x + y ]n) =
([x ]m + [y ]m, [x ]n + [y ]n) = ([x ]m, [x ]n)([y ]m, [y ]n)= φ([x ]mn)φ([y ]mn)

If φ([x ]mn) = ([0]m, [0]n), then m|x , n|x . (Why?) So mn|x . (Why?)
It follows that [x ]mn = [0]mn, and so φ is one-to-one. (Why?)
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