§3.4 Isomorphisms

Shaoyun Yi

MATH 546/701I

University of South Carolina

May 27-28, 2020

• Group

- Group
 - abelian vs. nonabelian

- Group
 - abelian vs. nonabelian
 - finite vs. infinite

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup
 - cyclic: $o(a) = |\langle a \rangle|$; If $o(a) = n < \infty$, then $a^k = e \Leftrightarrow n|k$.

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup
 - cyclic: $o(a) = |\langle a \rangle|$; If $o(a) = n < \infty$, then $a^k = e \Leftrightarrow n|k$.
 - Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup
 - cyclic: $o(a) = |\langle a \rangle|$; If $o(a) = n < \infty$, then $a^k = e \Leftrightarrow n|k$.
 - Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.
 - o(a)|n for any $a \in G$.

2 / 21

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup
 - cyclic: $o(a) = |\langle a \rangle|$; If $o(a) = n < \infty$, then $a^k = e \Leftrightarrow n|k$.
 - Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.

Isomorphisms

- o(a)|n for any $a \in G$.
- Any group of prime order is cyclic (and so abelian).

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup
 - cyclic: $o(a) = |\langle a \rangle|$; If $o(a) = n < \infty$, then $a^k = e \Leftrightarrow n|k$.
 - Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.
 - o(a)|n for any $a \in G$.
 - Any group of prime order is cyclic (and so abelian).
- Constructing (sub)groups

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup
 - cyclic: $o(a) = |\langle a \rangle|$; If $o(a) = n < \infty$, then $a^k = e \Leftrightarrow n|k$.
 - Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.
 - o(a)|n for any $a \in G$.
 - Any group of prime order is cyclic (and so abelian).
- Constructing (sub)groups
 - Product of two subgroups: HK is not always a subgroup of G.

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup
 - cyclic: $o(a) = |\langle a \rangle|$; If $o(a) = n < \infty$, then $a^k = e \Leftrightarrow n|k$.
 - Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.
 - o(a)|n for any $a \in G$.
 - Any group of prime order is cyclic (and so abelian).
- Constructing (sub)groups
 - Product of two subgroups: HK is not always a subgroup of G.
 - If $h^{-1}kh \in K$ for all $h \in H$ and $k \in K$, then HK is a subgroup of G.

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup
 - cyclic: $o(a) = |\langle a \rangle|$; If $o(a) = n < \infty$, then $a^k = e \Leftrightarrow n|k$.
 - Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.
 - o(a)|n for any $a \in G$.
 - Any group of prime order is cyclic (and so abelian).
- Constructing (sub)groups
 - Product of two subgroups: HK is not always a subgroup of G.
 - If $h^{-1}kh \in K$ for all $h \in H$ and $k \in K$, then HK is a subgroup of G.
 - If G is a finite group, then $|HK| = |H||K|/|H \cap K|$.

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup
 - cyclic: $o(a) = |\langle a \rangle|$; If $o(a) = n < \infty$, then $a^k = e \Leftrightarrow n|k$.
 - Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.
 - o(a)|n for any $a \in G$.
 - Any group of prime order is cyclic (and so abelian).
- Constructing (sub)groups
 - Product of two subgroups: HK is not always a subgroup of G.
 - If $h^{-1}kh \in K$ for all $h \in H$ and $k \in K$, then HK is a subgroup of G.
 - If G is a finite group, then $|HK| = |H||K|/|H \cap K|$.
 - Direct product: $G_1 \times G_2$ is a group under a new defined operation.

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup
 - cyclic: $o(a) = |\langle a \rangle|$; If $o(a) = n < \infty$, then $a^k = e \Leftrightarrow n|k$.
 - Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.
 - o(a)|n for any $a \in G$.
 - Any group of prime order is cyclic (and so abelian).
- Constructing (sub)groups
 - Product of two subgroups: HK is not always a subgroup of G.
 - If $h^{-1}kh \in K$ for all $h \in H$ and $k \in K$, then HK is a subgroup of G.
 - If G is a finite group, then $|HK| = |H||K|/|H \cap K|$.
 - Direct product: $G_1 \times G_2$ is a group under a new defined operation.
 - $o((a_1, a_2)) = \operatorname{lcm}[o(a_1), o(a_2)]$

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup
 - cyclic: $o(a) = |\langle a \rangle|$; If $o(a) = n < \infty$, then $a^k = e \Leftrightarrow n|k$.
 - Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.
 - o(a)|n for any $a \in G$.
 - Any group of prime order is cyclic (and so abelian).
- Constructing (sub)groups
 - Product of two subgroups: HK is not always a subgroup of G.
 - If $h^{-1}kh \in K$ for all $h \in H$ and $k \in K$, then HK is a subgroup of G.
 - If G is a finite group, then $|HK| = |H||K|/|H \cap K|$.
 - Direct product: $G_1 \times G_2$ is a group under a new defined operation.
 - $o((a_1, a_2)) = \operatorname{lcm}[o(a_1), o(a_2)]$
 - If G_1, G_2 are finite groups, then $|G_1 \times G_2| = |G_1| \cdot |G_2|$.

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup
 - cyclic: $o(a) = |\langle a \rangle|$; If $o(a) = n < \infty$, then $a^k = e \Leftrightarrow n|k$.
 - Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.
 - o(a)|n for any $a \in G$.
 - Any group of prime order is cyclic (and so abelian).
- Constructing (sub)groups
 - Product of two subgroups: HK is not always a subgroup of G.
 - If $h^{-1}kh \in K$ for all $h \in H$ and $k \in K$, then HK is a subgroup of G.
 - If G is a finite group, then $|HK| = |H||K|/|H \cap K|$.
 - Direct product: $G_1 \times G_2$ is a group under a new defined operation.
 - $o((a_1, a_2)) = \operatorname{lcm}[o(a_1), o(a_2)]$
 - If G_1, G_2 are finite groups, then $|G_1 \times G_2| = |G_1| \cdot |G_2|$.
 - $Z_n \times Z_m$ is cyclic if and only if gcd(n, m) = 1.

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup
 - cyclic: $o(a) = |\langle a \rangle|$; If $o(a) = n < \infty$, then $a^k = e \Leftrightarrow n|k$.
 - Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.
 - o(a)|n for any $a \in G$.
 - Any group of prime order is cyclic (and so abelian).
- Constructing (sub)groups
 - Product of two subgroups: HK is not always a subgroup of G.
 - If $h^{-1}kh \in K$ for all $h \in H$ and $k \in K$, then HK is a subgroup of G.
 - If G is a finite group, then $|HK| = |H||K|/|H \cap K|$.
 - Direct product: $G_1 \times G_2$ is a group under a new defined operation.
 - $o((a_1, a_2)) = \operatorname{lcm}[o(a_1), o(a_2)]$
 - If G_1, G_2 are finite groups, then $|G_1 \times G_2| = |G_1| \cdot |G_2|$.
 - $Z_n \times Z_m$ is cyclic if and only if gcd(n, m) = 1.
 - Definition of a field & New groups defined over a filed F.

- Group
 - abelian vs. nonabelian
 - finite vs. infinite
- Subgroup
 - cyclic: $o(a) = |\langle a \rangle|$; If $o(a) = n < \infty$, then $a^k = e \Leftrightarrow n|k$.
 - Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.
 - o(a)|n for any $a \in G$.
 - Any group of prime order is cyclic (and so abelian).
- Constructing (sub)groups
 - Product of two subgroups: HK is not always a subgroup of G.
 - If $h^{-1}kh \in K$ for all $h \in H$ and $k \in K$, then HK is a subgroup of G.
 - If G is a finite group, then $|HK| = |H||K|/|H \cap K|$.
 - Direct product: $G_1 \times G_2$ is a group under a new defined operation.
 - $o((a_1, a_2)) = \operatorname{lcm}[o(a_1), o(a_2)]$
 - If G_1, G_2 are finite groups, then $|G_1 \times G_2| = |G_1| \cdot |G_2|$.
 - $Z_n \times Z_m$ is cyclic if and only if gcd(n, m) = 1.
 - Definition of a field & New groups defined over a filed F.
 - Subgroup generated by S: $\langle S \rangle$ is the smallest subgroup that contains S.

Consider the group tables of the subgroup $\{\pm 1\}$ of \bm{Q}^{\times} and the group $\bm{Z}_2.$

Consider the group tables of the subgroup $\{\pm 1\}$ of \bm{Q}^{\times} and the group $\bm{Z}_2.$

Table: Multiplication in $\{\pm 1\}$

Consider the group tables of the subgroup $\{\pm 1\}$ of \bm{Q}^{\times} and the group $\bm{Z}_2.$

Table: Multiplication in $\{\pm 1\}$

$$\begin{array}{c|c|c|c|c|c|c|c|c|} \times & 1 & -1 \\ \hline 1 & 1 & -1 \\ -1 & -1 & 1 \end{array}$$

Table: Addition in \boldsymbol{Z}_2

$$\begin{array}{c|c|c} + & [0] & [1] \\ \hline [0] & [0] & [1] \\ \hline [1] & [1] & [0] \end{array}$$

Consider the group tables of the subgroup $\{\pm 1\}$ of \bm{Q}^{\times} and the group $\bm{Z}_2.$

Table: Multiplication in $\{\pm 1\}$

$$\begin{array}{c|c|c} \times & 1 & -1 \\ \hline 1 & 1 & -1 \\ -1 & -1 & 1 \end{array}$$

Table: Addition in \boldsymbol{Z}_2

$$\begin{array}{c|c|c} + & [0] & [1] \\ \hline [0] & [0] & [1] \\ \hline [1] & [1] & [0] \end{array}$$

Table: Group table in G with |G| = 2

*	е	а	
е	е	а	
а	а	е	

Consider the group tables of the subgroup $\{\pm 1\}$ of \mathbf{Q}^{\times} and the group \mathbf{Z}_2 .

Table: Multiplication in $\{\pm 1\}$

 $\begin{array}{c|c|c} \times & 1 & -1 \\ \hline 1 & 1 & -1 \\ -1 & -1 & 1 \end{array}$

Table: Addition in \boldsymbol{Z}_2

$$\begin{array}{c|c|c} + & [0] & [1] \\ \hline [0] & [0] & [1] \\ [1] & [1] & [0] \end{array}$$

Table: Group table in G with |G| = 2

*	е	а
е	е	а
а	а	е

Table: Group table in G with |G| = 3

*	е	а	b
е	е	а	b
а	а	b	е
b	b	е	а

Consider the group tables of the subgroup $\{\pm 1\}$ of \mathbf{Q}^{\times} and the group \mathbf{Z}_2 .

Table: Multiplication in $\{\pm 1\}$

Table: Addition in \boldsymbol{Z}_2

×	1	-1		+	[0]	[1]
1	1	-1	[[0]	[0]	[1]
-1	-1	1	[[1]	[1]	[0]

Table: Group table in G with |G| = 2

Table: Group table in G with |G| = 3

*		n	*	е	а	b
<u>т</u>	C	а	е	е	а	b
е	e	а	а	2	h	۵
а	а	е	4	4	D	C
	I		b	b	е	а

Upshot: All groups with two (or three) elements must have exactly the same algebraic properties.

Definition 1

Let $(G_1, *)$ and (G_2, \cdot) be two groups, and let $\phi : G_1 \to G_2$ be a function. Then ϕ is said to be a **group isomorphism** if

- ${\, \bullet \, } \phi$ is one-to-one and onto, and
- $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all elements $a, b \in G_1$.

Definition 1

Let $(G_1, *)$ and (G_2, \cdot) be two groups, and let $\phi : G_1 \to G_2$ be a function. Then ϕ is said to be a **group isomorphism** if

- ${\, \bullet \, \phi \,}$ is one-to-one and onto, and
- $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all elements $a, b \in G_1$.

In this case, G_1 is said to be **isomorphic** to G_2 , and this is denoted by $G_1 \cong G_2$.

Definition 1

Let $(G_1, *)$ and (G_2, \cdot) be two groups, and let $\phi : G_1 \to G_2$ be a function. Then ϕ is said to be a **group isomorphism** if

- ${\, \bullet \, \phi \,}$ is one-to-one and onto, and
- $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all elements $a, b \in G_1$.

In this case, G_1 is said to be **isomorphic** to G_2 , and this is denoted by $G_1 \cong G_2$.

Important Note: In every problem that requires you to prove that two groups are **isomorphic**, you need to

Definition 1

Let $(G_1, *)$ and (G_2, \cdot) be two groups, and let $\phi : G_1 \to G_2$ be a function. Then ϕ is said to be a **group isomorphism** if

- ${\, \bullet \, \phi \,}$ is one-to-one and onto, and
- $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all elements $a, b \in G_1$.

In this case, G_1 is said to be **isomorphic** to G_2 , and this is denoted by $G_1 \cong G_2$.

Important Note: In every problem that requires you to prove that two groups are **isomorphic**, you need to

• define a function (well-defined) and then

Definition 1

Let $(G_1, *)$ and (G_2, \cdot) be two groups, and let $\phi : G_1 \to G_2$ be a function. Then ϕ is said to be a **group isomorphism** if

- ${\, \bullet \, \phi \,}$ is one-to-one and onto, and
- $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all elements $a, b \in G_1$.

In this case, G_1 is said to be **isomorphic** to G_2 , and this is denoted by $G_1 \cong G_2$.

Important Note: In every problem that requires you to prove that two groups are **isomorphic**, you need to

- define a function (well-defined) and then
- verify that the function you defined is an isomorphism.

Note 1

Definition 1

Let $(G_1, *)$ and (G_2, \cdot) be two groups, and let $\phi : G_1 \to G_2$ be a function. Then ϕ is said to be a **group isomorphism** if

- ${\, \bullet \, \phi \,}$ is one-to-one and onto, and
- $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all elements $a, b \in G_1$.

In this case, G_1 is said to be **isomorphic** to G_2 , and this is denoted by $G_1 \cong G_2$.

Important Note: In every problem that requires you to prove that two groups are **isomorphic**, you need to

- define a function (well-defined) and then
- verify that the function you defined is an isomorphism.

Note 1

Sometimes your first guess for what that function is might not work, so you might need to try several different functions until you find one that satisfies the requirements.

Yi

Proposition 1

Let $(G_1, *)$ and (G_2, \cdot) be groups, and let $\phi : G_1 \to G_2$ be an isomorphism. Let e_1 and e_2 be the identity elements of G_1 and G_2 , respectively. Then

(a) φ(e₁) = e₂.
(b) φ(a⁻¹) = (φ(a))⁻¹ for all a ∈ G₁.
(c) φ(aⁿ) = (φ(a))ⁿ for all a ∈ G₁ and all n ∈ Z.

(a):

Proposition 1

Let $(G_1, *)$ and (G_2, \cdot) be groups, and let $\phi : G_1 \to G_2$ be an isomorphism. Let e_1 and e_2 be the identity elements of G_1 and G_2 , respectively. Then

- (a) φ(e₁) = e₂.
 (b) φ(a⁻¹) = (φ(a))⁻¹ for all a ∈ G₁.
 (c) φ(aⁿ) = (φ(a))ⁿ for all a ∈ G₁ and all n ∈ Z.
- (a): $\phi(e_1) \cdot \phi(e_1) = \phi(e_1 * e_1) = \phi(e_1) = \phi(e_1) \cdot e_2$

Proposition 1

Let $(G_1, *)$ and (G_2, \cdot) be groups, and let $\phi : G_1 \to G_2$ be an isomorphism. Let e_1 and e_2 be the identity elements of G_1 and G_2 , respectively. Then

(a) φ(e₁) = e₂.
(b) φ(a⁻¹) = (φ(a))⁻¹ for all a ∈ G₁.
(c) φ(aⁿ) = (φ(a))ⁿ for all a ∈ G₁ and all n ∈ Z.

(a): $\phi(e_1) \cdot \phi(e_1) = \phi(e_1 * e_1) = \phi(e_1) = \phi(e_1) \cdot e_2 \Rightarrow \phi(e_1) = e_2$. (Why?) (b):

Proposition 1

Let $(G_1, *)$ and (G_2, \cdot) be groups, and let $\phi : G_1 \to G_2$ be an isomorphism. Let e_1 and e_2 be the identity elements of G_1 and G_2 , respectively. Then

(a) φ(e₁) = e₂.
(b) φ(a⁻¹) = (φ(a))⁻¹ for all a ∈ G₁.
(c) φ(aⁿ) = (φ(a))ⁿ for all a ∈ G₁ and all n ∈ Z.

(a): $\phi(e_1) \cdot \phi(e_1) = \phi(e_1 * e_1) = \phi(e_1) = \phi(e_1) \cdot e_2 \Rightarrow \phi(e_1) = e_2$. (Why?) (b): $\phi(a^{-1}) \cdot \phi(a) = \phi(a^{-1} * a) = \phi(e_1) = e_2$

Proposition 1

Let $(G_1, *)$ and (G_2, \cdot) be groups, and let $\phi : G_1 \to G_2$ be an isomorphism. Let e_1 and e_2 be the identity elements of G_1 and G_2 , respectively. Then

(a) φ(e₁) = e₂.
(b) φ(a⁻¹) = (φ(a))⁻¹ for all a ∈ G₁.
(c) φ(aⁿ) = (φ(a))ⁿ for all a ∈ G₁ and all n ∈ Z.
(a): φ(e₁) ⋅ φ(e₁)=φ(e₁ * e₁) = φ(e₁) = φ(e₁) ⋅ e₂ ⇒φ(e₁) = e₂. (Why?)

(a): $\phi(e_1) \cdot \phi(e_1) = \phi(e_1) = \phi(e_1) = \phi(e_1) \cdot e_2 \Rightarrow \phi(e_1) = e_2$. (Why?) (b): $\phi(a^{-1}) \cdot \phi(a) = \phi(a^{-1} * a) = \phi(e_1) = e_2 \Rightarrow \phi(a^{-1}) = (\phi(a))^{-1}$. (Why?) (c):
Properties of isomorphisms

Proposition 1

Let $(G_1, *)$ and (G_2, \cdot) be groups, and let $\phi : G_1 \to G_2$ be an isomorphism. Let e_1 and e_2 be the identity elements of G_1 and G_2 , respectively. Then

(a) φ(e₁) = e₂.
(b) φ(a⁻¹) = (φ(a))⁻¹ for all a ∈ G₁.
(c) φ(aⁿ) = (φ(a))ⁿ for all a ∈ G₁ and all n ∈ Z.

(a): $\phi(e_1) \cdot \phi(e_1) = \phi(e_1 * e_1) = \phi(e_1) = \phi(e_1) \cdot e_2 \Rightarrow \phi(e_1) = e_2$. (Why?) (b): $\phi(a^{-1}) \cdot \phi(a) = \phi(a^{-1} * a) = \phi(e_1) = e_2 \Rightarrow \phi(a^{-1}) = (\phi(a))^{-1}$. (Why?) (c): By induction, we have

$$\phi(a_1 * a_2 * \cdots * a_n) = \phi(a_1) \cdot \phi(a_2) \cdot \ldots \cdot \phi(a_n),$$

for $a_1, a_2, ..., a_n \in G_1$.

Yi

Properties of isomorphisms

Proposition 1

Let $(G_1, *)$ and (G_2, \cdot) be groups, and let $\phi : G_1 \to G_2$ be an isomorphism. Let e_1 and e_2 be the identity elements of G_1 and G_2 , respectively. Then

(a) φ(e₁) = e₂.
(b) φ(a⁻¹) = (φ(a))⁻¹ for all a ∈ G₁.
(c) φ(aⁿ) = (φ(a))ⁿ for all a ∈ G₁ and all n ∈ Z.

(a): $\phi(e_1) \cdot \phi(e_1) = \phi(e_1 * e_1) = \phi(e_1) = \phi(e_1) \cdot e_2 \Rightarrow \phi(e_1) = e_2$. (Why?) (b): $\phi(a^{-1}) \cdot \phi(a) = \phi(a^{-1} * a) = \phi(e_1) = e_2 \Rightarrow \phi(a^{-1}) = (\phi(a))^{-1}$. (Why?) (c): By induction, we have

$$\phi(a_1 * a_2 * \cdots * a_n) = \phi(a_1) \cdot \phi(a_2) \cdot \ldots \cdot \phi(a_n),$$

for $a_1, a_2, \ldots, a_n \in G_1$. In particular, $\phi(a^n) = (\phi(a))^n$ for all $n \in \mathbf{Z}^+$.

Proposition 1

Let $(G_1, *)$ and (G_2, \cdot) be groups, and let $\phi : G_1 \to G_2$ be an isomorphism. Let e_1 and e_2 be the identity elements of G_1 and G_2 , respectively. Then

(a) φ(e₁) = e₂.
(b) φ(a⁻¹) = (φ(a))⁻¹ for all a ∈ G₁.
(c) φ(aⁿ) = (φ(a))ⁿ for all a ∈ G₁ and all n ∈ Z.

(a): $\phi(e_1) \cdot \phi(e_1) = \phi(e_1 * e_1) = \phi(e_1) = \phi(e_1) \cdot e_2 \Rightarrow \phi(e_1) = e_2$. (Why?) (b): $\phi(a^{-1}) \cdot \phi(a) = \phi(a^{-1} * a) = \phi(e_1) = e_2 \Rightarrow \phi(a^{-1}) = (\phi(a))^{-1}$. (Why?) (c): By induction, we have

$$\phi(a_1 * a_2 * \cdots * a_n) = \phi(a_1) \cdot \phi(a_2) \cdot \ldots \cdot \phi(a_n),$$

for $a_1, a_2, \ldots, a_n \in G_1$. In particular, $\phi(a^n) = (\phi(a))^n$ for all $n \in \mathbb{Z}^+$. It follows that $\phi(a^n) = (\phi(a))^n$ for all $n \in \mathbb{Z}$. (Check it!)

Properties of isomorphisms

Proposition 1

Let $(G_1, *)$ and (G_2, \cdot) be groups, and let $\phi : G_1 \to G_2$ be an isomorphism. Let e_1 and e_2 be the identity elements of G_1 and G_2 , respectively. Then

(a) φ(e₁) = e₂.
(b) φ(a⁻¹) = (φ(a))⁻¹ for all a ∈ G₁.
(c) φ(aⁿ) = (φ(a))ⁿ for all a ∈ G₁ and all n ∈ Z.

(a): $\phi(e_1) \cdot \phi(e_1) = \phi(e_1 * e_1) = \phi(e_1) = \phi(e_1) \cdot e_2 \Rightarrow \phi(e_1) = e_2$. (Why?) (b): $\phi(a^{-1}) \cdot \phi(a) = \phi(a^{-1} * a) = \phi(e_1) = e_2 \Rightarrow \phi(a^{-1}) = (\phi(a))^{-1}$. (Why?) (c): By induction, we have

$$\phi(a_1 * a_2 * \cdots * a_n) = \phi(a_1) \cdot \phi(a_2) \cdot \ldots \cdot \phi(a_n),$$

for $a_1, a_2, ..., a_n \in G_1$. In particular, $\phi(a^n) = (\phi(a))^n$ for all $n \in \mathbb{Z}^+$. It follows that $\phi(a^n) = (\phi(a))^n$ for all $n \in \mathbb{Z}$. (Check it!) If n < 0, then n = -|n|: $\phi(a^n) = \phi((a^{-1})^{|n|}) = (\phi(a^{-1}))^{|n|} = ((\phi(a))^{-1})^{|n|}$

Upshot: Any group isomorphism preserves general products, the identity element, and inverses of elements.

Example 2

Upshot: Any group isomorphism preserves general products, the identity element, and inverses of elements.

Example 2

Prove that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$.

Upshot: Any group isomorphism preserves general products, the identity element, and inverses of elements.

Example 2

Prove that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$.

We need a function $\phi: \mathbf{R} \to \mathbf{R}^+$ that has the following properties:

Upshot: Any group isomorphism preserves general products, the identity element, and inverses of elements.

Example 2

Prove that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$.

We need a function $\phi : \mathbf{R} \to \mathbf{R}^+$ that has the following properties:

sends real numbers to positive real numbers

Upshot: Any group isomorphism preserves general products, the identity element, and inverses of elements.

Example 2

Prove that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$.

We need a function $\phi : \mathbf{R} \to \mathbf{R}^+$ that has the following properties:

- sends real numbers to **positive** real numbers
- sends addition to multiplication

Upshot: Any group isomorphism preserves general products, the identity element, and inverses of elements.

Example 2

Prove that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$.

We need a function $\phi : \mathbf{R} \to \mathbf{R}^+$ that has the following properties:

- sends real numbers to **positive** real numbers
- sends addition to multiplication
- sends the identity $e_1=0$ of $({f R},+)$ to the identity $e_2=1$ of $({f R}^+,\cdot)$

Upshot: Any group isomorphism preserves general products, the identity element, and inverses of elements.

Example 2

Prove that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$.

We need a function $\phi : \mathbf{R} \to \mathbf{R}^+$ that has the following properties:

- sends real numbers to **positive** real numbers
- sends addition to multiplication
- sends the identity $e_1 = 0$ of $(\mathbf{R}, +)$ to the identity $e_2 = 1$ of (\mathbf{R}^+, \cdot)

Try $\phi(x) = e^x$:

Upshot: Any group isomorphism preserves general products, the identity element, and inverses of elements.

Example 2

Prove that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$.

We need a function $\phi : \mathbf{R} \to \mathbf{R}^+$ that has the following properties:

- sends real numbers to **positive** real numbers
- sends addition to multiplication

• sends the identity $e_1 = 0$ of $(\mathbf{R}, +)$ to the identity $e_2 = 1$ of (\mathbf{R}^+, \cdot)

Try
$$\phi(x) = e^x$$
:
(i) $\phi(x) = e^x > 0$ for all $x \in \mathbf{R}$. That is, $\phi(x) \in \mathbf{R}^+$.
(ii) $\phi(x) = e^x$ is

Upshot: Any group isomorphism preserves general products, the identity element, and inverses of elements.

Example 2

Prove that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$.

We need a function $\phi : \mathbf{R} \to \mathbf{R}^+$ that has the following properties:

- sends real numbers to **positive** real numbers
- sends addition to multiplication
- sends the identity $e_1 = 0$ of $(\mathbf{R}, +)$ to the identity $e_2 = 1$ of (\mathbf{R}^+, \cdot)

Try $\phi(x) = e^x$:

(i) $\phi(x) = e^x > 0$ for all $x \in \mathbf{R}$. That is, $\phi(x) \in \mathbf{R}^+$.

(ii)
$$\phi(x) = e^x$$
 is

• one-to-one:

Upshot: Any group isomorphism preserves general products, the identity element, and inverses of elements.

Example 2

Prove that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$.

We need a function $\phi : \mathbf{R} \to \mathbf{R}^+$ that has the following properties:

- sends real numbers to **positive** real numbers
- sends addition to multiplication

• sends the identity $e_1 = 0$ of $(\mathbf{R}, +)$ to the identity $e_2 = 1$ of (\mathbf{R}^+, \cdot)

Try
$$\phi(x) = e^x$$
:
(i) $\phi(x) = e^x > 0$ for all $x \in \mathbf{R}$. That is, $\phi(x) \in \mathbf{R}^+$.
(ii) $\phi(x) = e^x$ is
• one-to-one: $e^{x_1} = e^{x_2} \Rightarrow e^{x_1 - x_2} = 1 \Rightarrow x_1 - x_2 = 0 \Rightarrow x_1 = x_2$. (Why?)

Upshot: Any group isomorphism preserves general products, the identity element, and inverses of elements.

Example 2

Prove that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$.

We need a function $\phi : \mathbf{R} \to \mathbf{R}^+$ that has the following properties:

- sends real numbers to **positive** real numbers
- sends addition to multiplication
- sends the identity $e_1 = 0$ of $(\mathbf{R}, +)$ to the identity $e_2 = 1$ of (\mathbf{R}^+, \cdot)

Try $\phi(x) = e^x$: (i) $\phi(x) = e^x > 0$ for all $x \in \mathbf{R}$. That is, $\phi(x) \in \mathbf{R}^+$. (ii) $\phi(x) = e^x$ is

- one-to-one: $e^{x_1} = e^{x_2} \Rightarrow e^{x_1-x_2} = 1 \Rightarrow x_1 x_2 = 0 \Rightarrow x_1 = x_2$. (Why?)
- onto:

Upshot: Any group isomorphism preserves general products, the identity element, and inverses of elements.

Example 2

Prove that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$.

We need a function $\phi : \mathbf{R} \to \mathbf{R}^+$ that has the following properties:

- sends real numbers to **positive** real numbers
- sends addition to multiplication
- sends the identity $e_1 = 0$ of $(\mathbf{R}, +)$ to the identity $e_2 = 1$ of (\mathbf{R}^+, \cdot)

Try $\phi(x) = e^x$:

(i) $\phi(x) = e^x > 0$ for all $x \in \mathbf{R}$. That is, $\phi(x) \in \mathbf{R}^+$.

ii)
$$\phi(x) = e^x$$
 is

- one-to-one: $e^{x_1} = e^{x_2} \Rightarrow e^{x_1-x_2} = 1 \Rightarrow x_1 x_2 = 0 \Rightarrow x_1 = x_2$. (Why?)
- onto: For any $y \in \mathbf{R}^+$, take $x = \ln y \in \mathbf{R}$ and then $\phi(x) = e^{\ln y} = y$.

Upshot: Any group isomorphism preserves general products, the identity element, and inverses of elements.

Example 2

Prove that $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$.

We need a function $\phi : \mathbf{R} \to \mathbf{R}^+$ that has the following properties:

- sends real numbers to **positive** real numbers
- sends addition to multiplication
- sends the identity $e_1=0$ of $({f R},+)$ to the identity $e_2=1$ of $({f R}^+,\cdot)$

Try $\phi(x) = e^x$:

- (i) $\phi(x) = e^x > 0$ for all $x \in \mathbf{R}$. That is, $\phi(x) \in \mathbf{R}^+$. (ii) $\phi(x) = e^x$ is
 - one-to-one: $e^{x_1} = e^{x_2} \Rightarrow e^{x_1-x_2} = 1 \Rightarrow x_1 x_2 = 0 \Rightarrow x_1 = x_2$. (Why?) • onto: For any $y \in \mathbf{R}^+$, take $x = \ln y \in \mathbf{R}$ and then $\phi(x) = e^{\ln y} = y$.

(iii) $\phi(x_1 + x_2) = e^{x_1 + x_2} = e^{x_1} \cdot e^{x_2} = \phi(x_1) \cdot \phi(x_2).$

Proposition 2

Proposition 2

(a) The inverse of a group isomorphism is a group isomorphism.

Proposition 2

(a) The inverse of a group isomorphism is a group isomorphism.

(b) The composite of two group isomorphisms is a group isomorphism.

(a):

Proposition 2

(a) The inverse of a group isomorphism is a group isomorphism.

(b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi: G_1 \to G_2$ be a group isomorphism.

Proposition 2

(a) The inverse of a group isomorphism is a group isomorphism.

(b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi: G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta: G_2 \to G_1$. (Why?) [

Proposition 2

(a) The inverse of a group isomorphism is a group isomorphism.

(b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

Proposition 2

(a) The inverse of a group isomorphism is a group isomorphism.

(b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

• For each $g_2 \in G_2$ there exists a unique $g_1 \in G_1$ such that $\phi(g_1) = g_2$, and then $\theta(g_2) = g_1$.

Proposition 2

(a) The inverse of a group isomorphism is a group isomorphism.

(b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

- For each $g_2 \in G_2$ there exists a unique $g_1 \in G_1$ such that $\phi(g_1) = g_2$, and then $\theta(g_2) = g_1$.
- By definition of θ , we have $\theta \phi = 1_{G_1}$ and $\phi \theta = 1_{G_2}$.

Proposition 2

- (a) The inverse of a group isomorphism is a group isomorphism.
- (b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

- For each $g_2 \in G_2$ there exists a unique $g_1 \in G_1$ such that $\phi(g_1) = g_2$, and then $\theta(g_2) = g_1$.
- By definition of θ , we have $\theta \phi = 1_{G_1}$ and $\phi \theta = 1_{G_2}$.
- The definition also implies that θ is one-to-one and onto.

Proposition 2

- (a) The inverse of a group isomorphism is a group isomorphism.
- (b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

- For each $g_2 \in G_2$ there exists a unique $g_1 \in G_1$ such that $\phi(g_1) = g_2$, and then $\theta(g_2) = g_1$.
- By definition of θ , we have $\theta \phi = 1_{G_1}$ and $\phi \theta = 1_{G_2}$.
- The definition also implies that θ is one-to-one and onto.

To show θ preserves products. Let $a_2, b_2 \in G_2$. Let $\theta(a_2) = a_1$ and $\theta(b_2) = b_1$.

Proposition 2

- (a) The inverse of a group isomorphism is a group isomorphism.
- (b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

- For each $g_2 \in G_2$ there exists a unique $g_1 \in G_1$ such that $\phi(g_1) = g_2$, and then $\theta(g_2) = g_1$.
- By definition of θ , we have $\theta \phi = 1_{G_1}$ and $\phi \theta = 1_{G_2}$.
- The definition also implies that θ is one-to-one and onto.

To show θ preserves products. Let $a_2, b_2 \in G_2$. Let $\theta(a_2) = a_1$ and $\theta(b_2) = b_1$. Then $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$,

Proposition 2

- (a) The inverse of a group isomorphism is a group isomorphism.
- (b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

- For each $g_2 \in G_2$ there exists a unique $g_1 \in G_1$ such that $\phi(g_1) = g_2$, and then $\theta(g_2) = g_1$.
- By definition of θ , we have $\theta \phi = 1_{G_1}$ and $\phi \theta = 1_{G_2}$.
- The definition also implies that θ is one-to-one and onto.

To show θ preserves products. Let $a_2, b_2 \in G_2$. Let $\theta(a_2) = a_1$ and $\theta(b_2) = b_1$. Then $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$, so $\phi(a_1 * b_1) = \phi(a_1) \cdot \phi(b_1) = a_2 \cdot b_2$.

Proposition 2

- (a) The inverse of a group isomorphism is a group isomorphism.
- (b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

- For each $g_2 \in G_2$ there exists a unique $g_1 \in G_1$ such that $\phi(g_1) = g_2$, and then $\theta(g_2) = g_1$.
- By definition of θ , we have $\theta \phi = 1_{G_1}$ and $\phi \theta = 1_{G_2}$.
- The definition also implies that θ is one-to-one and onto.

To show θ preserves products. Let $a_2, b_2 \in G_2$. Let $\theta(a_2) = a_1$ and $\theta(b_2) = b_1$. Then $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$, so $\phi(a_1 * b_1) = \phi(a_1) \cdot \phi(b_1) = a_2 \cdot b_2$.

$$\theta(a_2 \cdot b_2) = a_1 * b_1 = \theta(a_2) * \theta(b_2).$$

(b):

Proposition 2

- (a) The inverse of a group isomorphism is a group isomorphism.
- (b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

- For each $g_2 \in G_2$ there exists a unique $g_1 \in G_1$ such that $\phi(g_1) = g_2$, and then $\theta(g_2) = g_1$.
- By definition of θ , we have $\theta \phi = 1_{G_1}$ and $\phi \theta = 1_{G_2}$.
- The definition also implies that θ is one-to-one and onto.

To show θ preserves products. Let $a_2, b_2 \in G_2$. Let $\theta(a_2) = a_1$ and $\theta(b_2) = b_1$. Then $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$, so $\phi(a_1 * b_1) = \phi(a_1) \cdot \phi(b_1) = a_2 \cdot b_2$.

$$\theta(a_2 \cdot b_2) = a_1 * b_1 = \theta(a_2) * \theta(b_2).$$

(b): Let $\phi: G_1 \to G_2$ and $\psi: G_2 \to G_3$ be group isomorphisms.

Proposition 2

- (a) The inverse of a group isomorphism is a group isomorphism.
- (b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

- For each $g_2 \in G_2$ there exists a unique $g_1 \in G_1$ such that $\phi(g_1) = g_2$, and then $\theta(g_2) = g_1$.
- By definition of θ , we have $\theta \phi = 1_{G_1}$ and $\phi \theta = 1_{G_2}$.
- The definition also implies that θ is one-to-one and onto.

To show θ preserves products. Let $a_2, b_2 \in G_2$. Let $\theta(a_2) = a_1$ and $\theta(b_2) = b_1$. Then $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$, so $\phi(a_1 * b_1) = \phi(a_1) \cdot \phi(b_1) = a_2 \cdot b_2$.

$$\theta(a_2 \cdot b_2) = a_1 * b_1 = \theta(a_2) * \theta(b_2).$$

(b): Let $\phi: G_1 \to G_2$ and $\psi: G_2 \to G_3$ be group isomorphisms. Then $\psi\phi$ is one-to-one and onto. (Why?)

Proposition 2

- (a) The inverse of a group isomorphism is a group isomorphism.
- (b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

- For each $g_2 \in G_2$ there exists a unique $g_1 \in G_1$ such that $\phi(g_1) = g_2$, and then $\theta(g_2) = g_1$.
- By definition of θ , we have $\theta \phi = 1_{G_1}$ and $\phi \theta = 1_{G_2}$.
- The definition also implies that θ is one-to-one and onto.

To show θ preserves products. Let $a_2, b_2 \in G_2$. Let $\theta(a_2) = a_1$ and $\theta(b_2) = b_1$. Then $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$, so $\phi(a_1 * b_1) = \phi(a_1) \cdot \phi(b_1) = a_2 \cdot b_2$.

$$\theta(a_2 \cdot b_2) = a_1 * b_1 = \theta(a_2) * \theta(b_2).$$

(b): Let $\phi : G_1 \to G_2$ and $\psi : G_2 \to G_3$ be group isomorphisms. Then $\psi \phi$ is one-to-one and onto. (Why?) To show $\psi \phi$ preserves products. If $a, b \in G_1$, $\Rightarrow \psi \phi(a * b) =$

Proposition 2

(a) The inverse of a group isomorphism is a group isomorphism.

(b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

- For each $g_2 \in G_2$ there exists a unique $g_1 \in G_1$ such that $\phi(g_1) = g_2$, and then $\theta(g_2) = g_1$.
- By definition of θ , we have $\theta \phi = 1_{G_1}$ and $\phi \theta = 1_{G_2}$.
- The definition also implies that θ is one-to-one and onto.

To show θ preserves products. Let $a_2, b_2 \in G_2$. Let $\theta(a_2) = a_1$ and $\theta(b_2) = b_1$. Then $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$, so $\phi(a_1 * b_1) = \phi(a_1) \cdot \phi(b_1) = a_2 \cdot b_2$.

$$\theta(a_2 \cdot b_2) = a_1 * b_1 = \theta(a_2) * \theta(b_2).$$

(b): Let $\phi : G_1 \to G_2$ and $\psi : G_2 \to G_3$ be group isomorphisms. Then $\psi \phi$ is one-to-one and onto. (Why?) To show $\psi \phi$ preserves products. If $a, b \in G_1$, $\Rightarrow \psi \phi(a * b) = \psi(\phi(a * b)) =$

Proposition 2

- (a) The inverse of a group isomorphism is a group isomorphism.
- (b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

- For each $g_2 \in G_2$ there exists a unique $g_1 \in G_1$ such that $\phi(g_1) = g_2$, and then $\theta(g_2) = g_1$.
- By definition of θ , we have $\theta \phi = 1_{G_1}$ and $\phi \theta = 1_{G_2}$.
- The definition also implies that θ is one-to-one and onto.

To show θ preserves products. Let $a_2, b_2 \in G_2$. Let $\theta(a_2) = a_1$ and $\theta(b_2) = b_1$. Then $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$, so $\phi(a_1 * b_1) = \phi(a_1) \cdot \phi(b_1) = a_2 \cdot b_2$.

$$\theta(a_2 \cdot b_2) = a_1 * b_1 = \theta(a_2) * \theta(b_2).$$

(b): Let $\phi : G_1 \to G_2$ and $\psi : G_2 \to G_3$ be group isomorphisms. Then $\psi \phi$ is one-to-one and onto. (Why?) To show $\psi \phi$ preserves products. If $a, b \in G_1$, $\Rightarrow \psi \phi(a * b) = \psi(\phi(a * b)) = \psi(\phi(a) \cdot \phi(b)) =$

Proposition 2

- (a) The inverse of a group isomorphism is a group isomorphism.
- (b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

- For each $g_2 \in G_2$ there exists a unique $g_1 \in G_1$ such that $\phi(g_1) = g_2$, and then $\theta(g_2) = g_1$.
- By definition of θ , we have $\theta \phi = 1_{G_1}$ and $\phi \theta = 1_{G_2}$.
- The definition also implies that θ is one-to-one and onto.

To show θ preserves products. Let $a_2, b_2 \in G_2$. Let $\theta(a_2) = a_1$ and $\theta(b_2) = b_1$. Then $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$, so $\phi(a_1 * b_1) = \phi(a_1) \cdot \phi(b_1) = a_2 \cdot b_2$.

$$\theta(a_2 \cdot b_2) = a_1 * b_1 = \theta(a_2) * \theta(b_2).$$

(b): Let $\phi : G_1 \to G_2$ and $\psi : G_2 \to G_3$ be group isomorphisms. Then $\psi \phi$ is one-to-one and onto. (Why?) To show $\psi \phi$ preserves products. If $a, b \in G_1$, $\Rightarrow \psi \phi(a * b) = \psi(\phi(a * b)) = \psi(\phi(a) \cdot \phi(b)) = \psi(\phi(a)) * \psi(\phi(b)) =$
More properties of isomorphisms

Proposition 2

- (a) The inverse of a group isomorphism is a group isomorphism.
- (b) The composite of two group isomorphisms is a group isomorphism.

(a): Let $\phi : G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta : G_2 \to G_1$. (Why?) [ϕ is one-to-one and onto]

- For each $g_2 \in G_2$ there exists a unique $g_1 \in G_1$ such that $\phi(g_1) = g_2$, and then $\theta(g_2) = g_1$.
- By definition of θ , we have $\theta \phi = 1_{G_1}$ and $\phi \theta = 1_{G_2}$.
- The definition also implies that $\boldsymbol{\theta}$ is one-to-one and onto.

To show θ preserves products. Let $a_2, b_2 \in G_2$. Let $\theta(a_2) = a_1$ and $\theta(b_2) = b_1$. Then $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$, so $\phi(a_1 * b_1) = \phi(a_1) \cdot \phi(b_1) = a_2 \cdot b_2$.

$$\theta(a_2 \cdot b_2) = a_1 * b_1 = \theta(a_2) * \theta(b_2).$$

(b): Let $\phi : G_1 \to G_2$ and $\psi : G_2 \to G_3$ be group isomorphisms. Then $\psi \phi$ is one-to-one and onto. (Why?) To show $\psi \phi$ preserves products. If $a, b \in G_1$, $\Rightarrow \psi \phi(a * b) = \psi(\phi(a * b)) = \psi(\phi(a) \cdot \phi(b)) = \psi(\phi(a)) * \psi(\phi(b)) = \psi \phi(a) * \psi \phi(b)$.

Upshot: The isomorphism \cong is an equivalence relation.

(i) Reflexive:

Upshot: The isomorphism \cong is an equivalence relation.

(i) Reflexive: $G \cong G$ [

Upshot: The isomorphism \cong is an equivalence relation.

- (i) Reflexive: $G \cong G$ [ϕ =the identity mapping 1_G]
- (ii) Symmetric:

Upshot: The isomorphism \cong is an equivalence relation.

- (i) Reflexive: $G \cong G$ [ϕ =the identity mapping 1_G]
- (ii) Symmetric: $G_1 \cong G_2 \Rightarrow G_2 \cong G_1$ [

Upshot: The isomorphism \cong is an equivalence relation.

(i) Reflexive: $G \cong G$ [ϕ =the identity mapping 1_G]

(ii) Symmetric: $G_1 \cong G_2 \Rightarrow G_2 \cong G_1$ [Take the inverse $\theta = \phi^{-1}$] (iii) Transitive:

Upshot: The isomorphism \cong is an equivalence relation.

- (i) Reflexive: $G \cong G$ [ϕ =the identity mapping 1_G]
- (ii) Symmetric: $G_1 \cong G_2 \Rightarrow G_2 \cong G_1$ [Take the inverse $\theta = \phi^{-1}$]

(iii) Transitive: ${\it G}_1\cong {\it G}_2$ and ${\it G}_2\cong {\it G}_3\Rightarrow {\it G}_1\cong {\it G}_3$ [

Upshot: The isomorphism \cong is an equivalence relation.

- (i) Reflexive: $G \cong G$ [ϕ =the identity mapping 1_G]
- (ii) Symmetric: $G_1 \cong G_2 \Rightarrow G_2 \cong G_1$ [Take the inverse $\theta = \phi^{-1}$]
- (iii) Transitive: $G_1 \cong G_2$ and $G_2 \cong G_3 \Rightarrow G_1 \cong G_3$ [The composite $\psi \phi$]

Example 3

$$(\langle i \rangle, \cdot) \cong (\mathbf{Z}_4, +_{[]_4}).$$
 Here, $\langle i \rangle = \{1, i, -1, -i\}$ and $\mathbf{Z}_4 = \{[0], [1], [2], [3]\}.$

Upshot: The isomorphism \cong is an equivalence relation.

- (i) Reflexive: $G \cong G$ [ϕ =the identity mapping 1_G]
- (ii) Symmetric: $G_1 \cong G_2 \Rightarrow G_2 \cong G_1$ [Take the inverse $\theta = \phi^{-1}$]
- (iii) Transitive: $G_1 \cong G_2$ and $G_2 \cong G_3 \Rightarrow G_1 \cong G_3$ [The composite $\psi \phi$]

Example 3

$(\langle i \rangle, \cdot) \cong (\mathbf{Z}_4, +_{[]_4}).$ Here, $\langle i \rangle = \{1, i, -1, -i\}$ and $\mathbf{Z}_4 = \{[0], [1], [2], [3]\}.$

Table: Multiplication in $\langle i \rangle$

Upshot: The isomorphism \cong is an equivalence relation.

- (i) Reflexive: $G \cong G$ [ϕ =the identity mapping 1_G]
- (ii) Symmetric: $G_1 \cong G_2 \Rightarrow G_2 \cong G_1$ [Take the inverse $\theta = \phi^{-1}$]
- (iii) Transitive: $G_1 \cong G_2$ and $G_2 \cong G_3 \Rightarrow G_1 \cong G_3$ [The composite $\psi \phi$]

Example 3

$$(\langle i \rangle, \cdot) \cong (\mathbf{Z}_4, +_{[]_4}).$$
 Here, $\langle i \rangle = \{1, i, -1, -i\}$ and $\mathbf{Z}_4 = \{[0], [1], [2], [3]\}.$

Table: Multiplication in $\langle i \rangle$

Table: Multiplication in $\langle i \rangle$

Example cont.: $(\langle i \rangle, \cdot) \cong (\overline{\mathbf{Z}_4, +_{[]_4}})$

Table: Multiplication in $\langle i \rangle$

•	i ⁰	i^1	i ²	i ³
i ⁰	i ⁰	i^1	i ²	i ³
i^1	i^1	i ²	i ³	i ⁰
i ²	i ²	i ³	i ⁰	i^1
i ³	i ³	i ⁰	i^1	i ²

Example cont.: $(\langle i \rangle, \cdot) \cong (\overline{Z_4, +_{[]_4}})$

Table:	Multiplication	in	$\langle i \rangle$
--------	----------------	----	---------------------

•	i ⁰	i^1	i ²	i ³
i ⁰	i ⁰	i^1	i ²	i ³
i^1	i^1	i ²	i ³	i ⁰
i ²	i ²	i ³	i ⁰	i^1
i ³	i ³	i ⁰	i^1	i ²

Table: Addition in Z_4

+[]4	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

Example cont.: $(\langle i \rangle, \cdot) \cong (\mathbf{Z}_4, +_{[]_4})$

Table: Multiplication in $\langle i \rangle$				Tab	e: Ac	lditio	n in Z	4	
•	i ⁰	i^1	i ²	i ³	+[]4	[0]	[1]	[2]	[3]
i ⁰	i ⁰	i^1	i ²	i ³	[0]	[0]	[1]	[2]	[3]
i ¹	i^1	i ²	i ³	i ⁰	[1]	[1]	[2]	[3]	[0]
i ²	i ²	i ³	i ⁰	i ¹	[2]	[2]	[3]	[0]	[1]
i ³	i ³	i ⁰	i^1	i ²	[3]	[3]	[0]	[1]	[2]

The elements of Z_4 appear in the addition table in Z_4 precisely the same positions as the exponents of *i* did in the multiplication table in $\langle i \rangle$.

Yi

Example cont.: $(\langle i \rangle, \cdot) \cong (Z_4, +_{[]_4})$

Table: Multiplication in $\langle i \rangle$				Tab	e: Ac	Iditio	n in Z	4		
	i ⁰	i^1	i ²	i ³		+[]4	[0]	[1]	[2]	[3]
i ⁰	i ⁰	i^1	i ²	i ³		[0]	[0]	[1]	[2]	[3]
i^1	i ¹	i ²	i ³	i ⁰		[1]	[1]	[2]	[3]	[0]
i ²	i ²	i ³	i ⁰	i ¹		[2]	[2]	[3]	[0]	[1]
i ³	i ³	i ⁰	i^1	i ²		[3]	[3]	[0]	[1]	[2]

The elements of Z_4 appear in the addition table in Z_4 precisely the same positions as the exponents of *i* did in the multiplication table in $\langle i \rangle$.

Define a function $\phi : \mathbf{Z}_4 \to \langle i \rangle$ by $\phi([n]) = i^n$.

• Well-defined:

Example cont.: $(\langle i \rangle, \cdot) \cong (Z_4, +_{[]_4})$

Table: Multiplication i	n $\langle i \rangle$ Tab	le: Ad	lditio	1 in Z	4
$\cdot \mid i^0 i^1 i^2 i$	3 +[]4	[0]	[1]	[2]	[3]
i ⁰ i ⁰ i ¹ i ² i	³ [0]	[0]	[1]	[2]	[3]
i^{1} i^{1} i^{2} i^{3} i	0 [1]	[1]	[2]	[3]	[0]
i^2 i^2 i^3 i^0 i	¹ [2]	[2]	[3]	[0]	[1]
i^{3} i^{3} i^{0} i^{1} i	² [3]	[3]	[0]	[1]	[2]

The elements of Z_4 appear in the addition table in Z_4 precisely the same positions as the exponents of *i* did in the multiplication table in $\langle i \rangle$.

Define a function $\phi : \mathbf{Z}_4 \to \langle i \rangle$ by $\phi([n]) = i^n$.

• Well-defined: If [n] = [m], i.e., $n \equiv m \pmod{4}$, then $i^n = i^m$. (Why?)

Example cont.: $(\langle i \rangle, \cdot) \cong (\mathbf{Z}_4, +_{[]_4})$

Table: Multiplication in $\langle i \rangle$				Tab	le: Ac	Iditio	n in Z	4	
	i ⁰	i^1	i ²	i ³	+[]4	[0]	[1]	[2]	[3]
i ⁰	i ⁰	i^1	i ²	i ³	[0]	[0]	[1]	[2]	[3]
i ¹	i ¹	i ²	i ³	i ⁰	[1]	[1]	[2]	[3]	[0]
i ²	i ²	i ³	i ⁰	i ¹	[2]	[2]	[3]	[0]	[1]
i ³	i ³	i ⁰	i^1	i ²	[3]	[3]	[0]	[1]	[2]

The elements of Z_4 appear in the addition table in Z_4 precisely the same positions as the exponents of *i* did in the multiplication table in $\langle i \rangle$.

Define a function $\phi : \mathbf{Z}_4 \to \langle i \rangle$ by $\phi([n]) = i^n$.

- Well-defined: If [n] = [m], i.e., $n \equiv m \pmod{4}$, then $i^n = i^m$. (Why?)
- The function ϕ defines a one-to-one correspondence. (Check it!)
- ϕ preserves the respective operations:

Example cont.: $(\langle i \rangle, \cdot) \cong (Z_4, +_{[]_4})$

Table: Multiplication in $\langle i \rangle$			Tab	le: Ac	Iditio	n in Z	4		
	i ⁰	i^1	i ²	i ³	+[]4	[0]	[1]	[2]	[3]
i ⁰	i ⁰	i^1	i ²	i ³	[0]	[0]	[1]	[2]	[3]
i ¹	i ¹	i ²	i ³	i ⁰	[1]	[1]	[2]	[3]	[0]
i ²	i ²	i ³	i ⁰	i ¹	[2]	[2]	[3]	[0]	[1]
i ³	i ³	i ⁰	i^1	i ²	[3]	[3]	[0]	[1]	[2]

The elements of Z_4 appear in the addition table in Z_4 precisely the same positions as the exponents of *i* did in the multiplication table in $\langle i \rangle$.

Define a function $\phi : \mathbf{Z}_4 \to \langle i \rangle$ by $\phi([n]) = i^n$.

- Well-defined: If [n] = [m], i.e., $n \equiv m \pmod{4}$, then $i^n = i^m$. (Why?)
- The function ϕ defines a one-to-one correspondence. (Check it!)
- ϕ preserves the respective operations:

 $\phi([n] + [m]) = \phi([n + m]) = i^{n+m} = i^n \cdot i^m = \phi([n]) \cdot \phi([m]).$

Example cont.: $(\langle i \rangle, \cdot) \cong (Z_4, +_{[]_4})$

Table: Multiplication in $\langle i \rangle$			Tab	le: Ac	Iditio	n in Z	4		
	i ⁰	i^1	i ²	i ³	+[]4	[0]	[1]	[2]	[3]
i ⁰	i ⁰	i^1	i ²	i ³	[0]	[0]	[1]	[2]	[3]
i ¹	i ¹	i ²	i ³	i ⁰	[1]	[1]	[2]	[3]	[0]
i ²	i ²	i ³	i ⁰	i ¹	[2]	[2]	[3]	[0]	[1]
i ³	i ³	i ⁰	i^1	i ²	[3]	[3]	[0]	[1]	[2]

The elements of Z_4 appear in the addition table in Z_4 precisely the same positions as the exponents of *i* did in the multiplication table in $\langle i \rangle$.

Define a function $\phi : \mathbf{Z}_4 \to \langle i \rangle$ by $\phi([n]) = i^n$.

- Well-defined: If [n] = [m], i.e., $n \equiv m \pmod{4}$, then $i^n = i^m$. (Why?)
- The function ϕ defines a one-to-one correspondence. (Check it!)
- ϕ preserves the respective operations:

 $\phi([n] + [m]) = \phi([n + m]) = i^{n+m} = i^n \cdot i^m = \phi([n]) \cdot \phi([m]).$

We conclude that ϕ is a group isomorphism.

(i) The identity element $e = aea^{-1} \in aHa^{-1}$. So aHa^{-1} is nonempty.

- (i) The identity element $e = aea^{-1} \in aHa^{-1}$. So aHa^{-1} is nonempty.
- (ii) For $x, y \in aHa^{-1}$, we have $xy^{-1} \in aHa^{-1}$. (Check it!)

(i) The identity element $e = aea^{-1} \in aHa^{-1}$. So aHa^{-1} is nonempty.

(ii) For $x, y \in aHa^{-1}$, we have $xy^{-1} \in aHa^{-1}$. (Check it!)

(i) The identity element $e = aea^{-1} \in aHa^{-1}$. So aHa^{-1} is nonempty.

(ii) For $x, y \in aHa^{-1}$, we have $xy^{-1} \in aHa^{-1}$. (Check it!)

- It is easy to see that $\phi(h) \in aHa^{-1}$.
- one-to-one:

- (i) The identity element $e = aea^{-1} \in aHa^{-1}$. So aHa^{-1} is nonempty.
- (ii) For $x, y \in aHa^{-1}$, we have $xy^{-1} \in aHa^{-1}$. (Check it!)

- It is easy to see that $\phi(h) \in aHa^{-1}$.
- one-to-one: $\phi(h_1) = \phi(h_2) \Rightarrow ah_1 a^{-1} = ah_2 a^{-1}$

- (i) The identity element $e = aea^{-1} \in aHa^{-1}$. So aHa^{-1} is nonempty.
- (ii) For $x, y \in aHa^{-1}$, we have $xy^{-1} \in aHa^{-1}$. (Check it!)

Define $\phi: H \to aHa^{-1}$ by letting $\phi(h) = aha^{-1}$, for all $h \in H$.

- It is easy to see that $\phi(h) \in aHa^{-1}$.
- one-to-one: $\phi(h_1) = \phi(h_2) \Rightarrow ah_1 a^{-1} = ah_2 a^{-1} \Rightarrow h_1 = h_2$. (Why?)

onto:

- (i) The identity element $e = aea^{-1} \in aHa^{-1}$. So aHa^{-1} is nonempty.
- (ii) For $x, y \in aHa^{-1}$, we have $xy^{-1} \in aHa^{-1}$. (Check it!)

- It is easy to see that $\phi(h) \in aHa^{-1}$.
- one-to-one: $\phi(h_1) = \phi(h_2) \Rightarrow ah_1 a^{-1} = ah_2 a^{-1} \Rightarrow h_1 = h_2$. (Why?)
- onto: If $y \in aHa^{-1}$, then $y = aha^{-1}$ for some $h \in H$, so $\phi(h) = y$.
- ϕ respects multiplication in H: Let $h, k \in H$.

- (i) The identity element $e = aea^{-1} \in aHa^{-1}$. So aHa^{-1} is nonempty.
- (ii) For $x, y \in aHa^{-1}$, we have $xy^{-1} \in aHa^{-1}$. (Check it!)

- It is easy to see that $\phi(h) \in aHa^{-1}$.
- one-to-one: $\phi(h_1) = \phi(h_2) \Rightarrow ah_1 a^{-1} = ah_2 a^{-1} \Rightarrow h_1 = h_2$. (Why?)
- onto: If $y \in aHa^{-1}$, then $y = aha^{-1}$ for some $h \in H$, so $\phi(h) = y$.
- ϕ respects multiplication in H: Let $h, k \in H$. $\phi(hk) =$

- (i) The identity element $e = aea^{-1} \in aHa^{-1}$. So aHa^{-1} is nonempty.
- (ii) For $x, y \in aHa^{-1}$, we have $xy^{-1} \in aHa^{-1}$. (Check it!)

- It is easy to see that $\phi(h) \in aHa^{-1}$.
- one-to-one: $\phi(h_1) = \phi(h_2) \Rightarrow ah_1 a^{-1} = ah_2 a^{-1} \Rightarrow h_1 = h_2$. (Why?)
- onto: If $y \in aHa^{-1}$, then $y = aha^{-1}$ for some $h \in H$, so $\phi(h) = y$.
- φ respects multiplication in H: Let h, k ∈ H.
 φ(hk) = ahka⁻¹ =

- (i) The identity element $e = aea^{-1} \in aHa^{-1}$. So aHa^{-1} is nonempty.
- (ii) For $x, y \in aHa^{-1}$, we have $xy^{-1} \in aHa^{-1}$. (Check it!)

Define $\phi: H \to aHa^{-1}$ by letting $\phi(h) = aha^{-1}$, for all $h \in H$.

- It is easy to see that $\phi(h) \in aHa^{-1}$.
- one-to-one: $\phi(h_1) = \phi(h_2) \Rightarrow ah_1 a^{-1} = ah_2 a^{-1} \Rightarrow h_1 = h_2$. (Why?)
- onto: If $y \in aHa^{-1}$, then $y = aha^{-1}$ for some $h \in H$, so $\phi(h) = y$.

• ϕ respects multiplication in H: Let $h, k \in H$.

 $\phi(hk) = ahka^{-1} = ah(a^{-1}a)ka^{-1} =$

- (i) The identity element $e = aea^{-1} \in aHa^{-1}$. So aHa^{-1} is nonempty.
- (ii) For $x, y \in aHa^{-1}$, we have $xy^{-1} \in aHa^{-1}$. (Check it!)

Define $\phi: H \to aHa^{-1}$ by letting $\phi(h) = aha^{-1}$, for all $h \in H$.

- It is easy to see that $\phi(h) \in aHa^{-1}$.
- one-to-one: $\phi(h_1) = \phi(h_2) \Rightarrow ah_1 a^{-1} = ah_2 a^{-1} \Rightarrow h_1 = h_2$. (Why?)
- onto: If $y \in aHa^{-1}$, then $y = aha^{-1}$ for some $h \in H$, so $\phi(h) = y$.

• ϕ respects multiplication in H: Let $h, k \in H$. $\phi(hk) = ahka^{-1} = ah(a^{-1}a)ka^{-1} = (aha^{-1})(aka^{-1}) = ah(a^{-1}a)ka^{-1} = (aha^{-1}a)ka^{-1} = ah(a^{-1}a)ka^{-1} = ah(a^{-1}a)ka^$

- (i) The identity element $e = aea^{-1} \in aHa^{-1}$. So aHa^{-1} is nonempty.
- (ii) For $x, y \in aHa^{-1}$, we have $xy^{-1} \in aHa^{-1}$. (Check it!)

Define $\phi: H \to aHa^{-1}$ by letting $\phi(h) = aha^{-1}$, for all $h \in H$.

- It is easy to see that $\phi(h) \in aHa^{-1}$.
- one-to-one: $\phi(h_1) = \phi(h_2) \Rightarrow ah_1 a^{-1} = ah_2 a^{-1} \Rightarrow h_1 = h_2$. (Why?)
- onto: If $y \in aHa^{-1}$, then $y = aha^{-1}$ for some $h \in H$, so $\phi(h) = y$.

• ϕ respects multiplication in H: Let $h, k \in H$. $\phi(hk) = ahka^{-1} = ah(a^{-1}a)ka^{-1} = (aha^{-1})(aka^{-1}) = \phi(h)\phi(k)$.

- (i) The identity element $e = aea^{-1} \in aHa^{-1}$. So aHa^{-1} is nonempty.
- (ii) For $x, y \in aHa^{-1}$, we have $xy^{-1} \in aHa^{-1}$. (Check it!)

Define $\phi: H \to aHa^{-1}$ by letting $\phi(h) = aha^{-1}$, for all $h \in H$.

- It is easy to see that $\phi(h) \in aHa^{-1}$.
- one-to-one: $\phi(h_1) = \phi(h_2) \Rightarrow ah_1 a^{-1} = ah_2 a^{-1} \Rightarrow h_1 = h_2$. (Why?)
- onto: If $y \in aHa^{-1}$, then $y = aha^{-1}$ for some $h \in H$, so $\phi(h) = y$.

• ϕ respects multiplication in H: Let $h, k \in H$.

 $\phi(hk) = ahka^{-1} = ah(a^{-1}a)ka^{-1} = (aha^{-1})(aka^{-1}) = \phi(h)\phi(k).$ Thus, ϕ is an isomorphism.

Yi

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

We prove $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$ by showing that $\phi : \mathbf{R} \to \mathbf{R}^+$ is an isomorphism.

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

We prove $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$ by showing that $\phi : \mathbf{R} \to \mathbf{R}^+$ is an isomorphism. In particular, we define $\phi(\mathbf{x}) = e^{\mathbf{x}}$. To show that ϕ is one-to-one and onto,
Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

We prove $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$ by showing that $\phi : \mathbf{R} \to \mathbf{R}^+$ is an isomorphism. In particular, we define $\phi(x) = e^x$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : \mathbf{R}^+ \to \mathbf{R}$ by $\phi^{-1}(y) = \ln y$ for all $y \in \mathbf{R}^+$.

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

We prove $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$ by showing that $\phi : \mathbf{R} \to \mathbf{R}^+$ is an isomorphism. In particular, we define $\phi(x) = e^x$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : \mathbf{R}^+ \to \mathbf{R}$ by $\phi^{-1}(y) = \ln y$ for all $y \in \mathbf{R}^+$. Well-defined \checkmark

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

We prove $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$ by showing that $\phi : \mathbf{R} \to \mathbf{R}^+$ is an isomorphism. In particular, we define $\phi(x) = e^x$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : \mathbf{R}^+ \to \mathbf{R}$ by $\phi^{-1}(y) = \ln y$ for all $y \in \mathbf{R}^+$. Well-defined \checkmark Verify that this is the inverse function of ϕ :

 $\phi(\phi^{-1}(y)) =$

Yi

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

We prove $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$ by showing that $\phi : \mathbf{R} \to \mathbf{R}^+$ is an isomorphism. In particular, we define $\phi(x) = e^x$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : \mathbf{R}^+ \to \mathbf{R}$ by $\phi^{-1}(y) = \ln y$ for all $y \in \mathbf{R}^+$. Well-defined \checkmark Verify that this is the inverse function of ϕ :

$$\phi(\phi^{-1}(y)) = \phi(\ln y) = e^{\ln y} = y, \quad \phi^{-1}(\phi(x)) = 0$$

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

We prove $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$ by showing that $\phi : \mathbf{R} \to \mathbf{R}^+$ is an isomorphism. In particular, we define $\phi(x) = e^x$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : \mathbf{R}^+ \to \mathbf{R}$ by $\phi^{-1}(y) = \ln y$ for all $y \in \mathbf{R}^+$. Well-defined \checkmark Verify that this is the inverse function of ϕ :

 $\phi(\phi^{-1}(y)) = \phi(\ln y) = e^{\ln y} = y, \quad \phi^{-1}(\phi(x)) = \phi^{-1}(e^x) = \ln e^x = x.$

Isomorphisms

Example 5

Yi

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

We prove $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$ by showing that $\phi : \mathbf{R} \to \mathbf{R}^+$ is an isomorphism. In particular, we define $\phi(x) = e^x$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : \mathbf{R}^+ \to \mathbf{R}$ by $\phi^{-1}(y) = \ln y$ for all $y \in \mathbf{R}^+$. Well-defined \checkmark Verify that this is the inverse function of ϕ :

$$\phi(\phi^{-1}(y)) = \phi(\ln y) = e^{\ln y} = y, \quad \phi^{-1}(\phi(x)) = \phi^{-1}(e^x) = \ln e^x = x.$$

Example 5

We prove $aHa^{-1} \cong H$ by showing that $\phi : H \to aHa^{-1}$ is an isomorphism.

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

We prove $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$ by showing that $\phi : \mathbf{R} \to \mathbf{R}^+$ is an isomorphism. In particular, we define $\phi(x) = e^x$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : \mathbf{R}^+ \to \mathbf{R}$ by $\phi^{-1}(y) = \ln y$ for all $y \in \mathbf{R}^+$. Well-defined \checkmark Verify that this is the inverse function of ϕ :

$$\phi(\phi^{-1}(y)) = \phi(\ln y) = e^{\ln y} = y, \quad \phi^{-1}(\phi(x)) = \phi^{-1}(e^x) = \ln e^x = x.$$

Example 5

We prove $aHa^{-1} \cong H$ by showing that $\phi : H \to aHa^{-1}$ is an isomorphism. Define $\phi(h) = aha^{-1}$ for all $h \in H$. To show that ϕ is one-to-one and onto,

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

We prove $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$ by showing that $\phi : \mathbf{R} \to \mathbf{R}^+$ is an isomorphism. In particular, we define $\phi(x) = e^x$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : \mathbf{R}^+ \to \mathbf{R}$ by $\phi^{-1}(y) = \ln y$ for all $y \in \mathbf{R}^+$. Well-defined \checkmark Verify that this is the inverse function of ϕ :

$$\phi(\phi^{-1}(y)) = \phi(\ln y) = e^{\ln y} = y, \quad \phi^{-1}(\phi(x)) = \phi^{-1}(e^x) = \ln e^x = x.$$

Example 5

We prove $aHa^{-1} \cong H$ by showing that $\phi : H \to aHa^{-1}$ is an isomorphism. Define $\phi(h) = aha^{-1}$ for all $h \in H$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : aHa^{-1} \to H$ by $\phi^{-1}(b) = a^{-1}ba$ for all $b \in aHa^{-1}$.

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

We prove $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$ by showing that $\phi : \mathbf{R} \to \mathbf{R}^+$ is an isomorphism. In particular, we define $\phi(x) = e^x$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : \mathbf{R}^+ \to \mathbf{R}$ by $\phi^{-1}(y) = \ln y$ for all $y \in \mathbf{R}^+$. Well-defined \checkmark Verify that this is the inverse function of ϕ :

$$\phi(\phi^{-1}(y)) = \phi(\ln y) = e^{\ln y} = y, \quad \phi^{-1}(\phi(x)) = \phi^{-1}(e^x) = \ln e^x = x.$$

Example 5

We prove $aHa^{-1} \cong H$ by showing that $\phi : H \to aHa^{-1}$ is an isomorphism. Define $\phi(h) = aha^{-1}$ for all $h \in H$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : aHa^{-1} \to H$ by $\phi^{-1}(b) = a^{-1}ba$ for all $b \in aHa^{-1}$.

Isomorphisms

Yi

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

We prove $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$ by showing that $\phi : \mathbf{R} \to \mathbf{R}^+$ is an isomorphism. In particular, we define $\phi(x) = e^x$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : \mathbf{R}^+ \to \mathbf{R}$ by $\phi^{-1}(y) = \ln y$ for all $y \in \mathbf{R}^+$. Well-defined \checkmark Verify that this is the inverse function of ϕ :

$$\phi(\phi^{-1}(y)) = \phi(\ln y) = e^{\ln y} = y, \quad \phi^{-1}(\phi(x)) = \phi^{-1}(e^x) = \ln e^x = x.$$

Example 5

We prove $aHa^{-1} \cong H$ by showing that $\phi : H \to aHa^{-1}$ is an isomorphism. Define $\phi(h) = aha^{-1}$ for all $h \in H$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : aHa^{-1} \to H$ by $\phi^{-1}(b) = a^{-1}ba$ for all $b \in aHa^{-1}$. Verify that this is the inverse function of ϕ :

 $\phi(\phi^{-1}(b)) =$

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

We prove $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$ by showing that $\phi : \mathbf{R} \to \mathbf{R}^+$ is an isomorphism. In particular, we define $\phi(x) = e^x$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : \mathbf{R}^+ \to \mathbf{R}$ by $\phi^{-1}(y) = \ln y$ for all $y \in \mathbf{R}^+$. Well-defined \checkmark Verify that this is the inverse function of ϕ :

$$\phi(\phi^{-1}(y)) = \phi(\ln y) = e^{\ln y} = y, \quad \phi^{-1}(\phi(x)) = \phi^{-1}(e^x) = \ln e^x = x.$$

Example 5

We prove $aHa^{-1} \cong H$ by showing that $\phi : H \to aHa^{-1}$ is an isomorphism. Define $\phi(h) = aha^{-1}$ for all $h \in H$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : aHa^{-1} \to H$ by $\phi^{-1}(b) = a^{-1}ba$ for all $b \in aHa^{-1}$. Verify that this is the inverse function of ϕ :

$$\phi(\phi^{-1}(b)) = \phi(a^{-1}ba) = a(a^{-1}ba)a^{-1} = b$$

 $\phi^{-1}(\phi(h)) =$

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ .

Example 4

We prove $(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$ by showing that $\phi : \mathbf{R} \to \mathbf{R}^+$ is an isomorphism. In particular, we define $\phi(x) = e^x$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : \mathbf{R}^+ \to \mathbf{R}$ by $\phi^{-1}(y) = \ln y$ for all $y \in \mathbf{R}^+$. Well-defined \checkmark Verify that this is the inverse function of ϕ :

$$\phi(\phi^{-1}(y)) = \phi(\ln y) = e^{\ln y} = y, \quad \phi^{-1}(\phi(x)) = \phi^{-1}(e^x) = \ln e^x = x.$$

Example 5

We prove $aHa^{-1} \cong H$ by showing that $\phi : H \to aHa^{-1}$ is an isomorphism. Define $\phi(h) = aha^{-1}$ for all $h \in H$. To show that ϕ is one-to-one and onto, we define $\phi^{-1} : aHa^{-1} \to H$ by $\phi^{-1}(b) = a^{-1}ba$ for all $b \in aHa^{-1}$. Verify that this is the inverse function of ϕ :

$$\phi(\phi^{-1}(b)) = \phi(a^{-1}ba) = a(a^{-1}ba)a^{-1} = b$$

$$\phi^{-1}(\phi(h)) = \phi^{-1}(aha^{-1}) = a^{-1}(aha^{-1})a = h$$

Let $\phi : G_1 \rightarrow G_2$ be an isomorphism of groups.

Let $\phi: G_1 \rightarrow G_2$ be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

Let $\phi: G_1 \rightarrow G_2$ be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

- Let $\phi : G_1 \rightarrow G_2$ be an isomorphism of groups.
- (a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .
- (b) If G_1 is abelian, then so is G_2 .
- (c) If G_1 is cyclic, then so is G_2 .

(a):

Let $\phi : G_1 \rightarrow G_2$ be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

(a): Assume that $a \in G_1$ with $a^n = e_1$.

Let $\phi: G_1 \rightarrow G_2$ be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

(a): Assume that $a \in G_1$ with $a^n = e_1$. So $(\phi(a))^n = \phi(a^n) = \phi(e_1) = e_2$.

Let $\phi : G_1 \rightarrow G_2$ be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

(a): Assume that $a \in G_1$ with $a^n = e_1$. So $(\phi(a))^n = \phi(a^n) = \phi(e_1) = e_2$. This shows that $o(\phi(a))|n$.

Let $\phi: G_1 \rightarrow G_2$ be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

(a): Assume that $a \in G_1$ with $a^n = e_1$. So $(\phi(a))^n = \phi(a^n) = \phi(e_1) = e_2$. This shows that $o(\phi(a))|n$. Since ϕ is an isomorphism, there exists ϕ^{-1} such that $\phi^{-1}(\phi(a)) = a$,

Let $\phi: G_1 \rightarrow G_2$ be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

(a): Assume that $a \in G_1$ with $a^n = e_1$. So $(\phi(a))^n = \phi(a^n) = \phi(e_1) = e_2$. This shows that $o(\phi(a))|n$. Since ϕ is an isomorphism, there exists ϕ^{-1} such that $\phi^{-1}(\phi(a)) = a$, and a similar argument shows that $n|o(\phi(a))$. (b):

Let $\phi: G_1 \rightarrow G_2$ be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

(a): Assume that $a \in G_1$ with $a^n = e_1$. So $(\phi(a))^n = \phi(a^n) = \phi(e_1) = e_2$. This shows that $o(\phi(a))|n$. Since ϕ is an isomorphism, there exists ϕ^{-1} such that $\phi^{-1}(\phi(a)) = a$, and a similar argument shows that $n|o(\phi(a))$. (b): Let $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$ for $a_1, b_1 \in G_1$ and $a_2, b_2 \in G_2$. Then

 $a_2 \cdot b_2 =$

Let $\phi: G_1 \rightarrow G_2$ be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

$$\mathbf{a_2} \cdot \mathbf{b_2} = \phi(\mathbf{a_1}) \cdot \phi(\mathbf{b_1}) =$$

Let
$$\phi: G_1 \rightarrow G_2$$
 be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

$$\mathbf{a}_2 \cdot \mathbf{b}_2 = \phi(\mathbf{a}_1) \cdot \phi(\mathbf{b}_1) = \phi(\mathbf{a}_1 \ast \mathbf{b}_1) \stackrel{!}{=}$$

Let $\phi: G_1 \rightarrow G_2$ be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

$$a_2 \cdot b_2 = \phi(a_1) \cdot \phi(b_1) = \phi(a_1 * b_1) \stackrel{!}{=} \phi(b_1 * a_1) =$$

Let
$$\phi: G_1 \rightarrow G_2$$
 be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

$$a_2 \cdot b_2 = \phi(a_1) \cdot \phi(b_1) = \phi(a_1 * b_1) \stackrel{!}{=} \phi(b_1 * a_1) = \phi(b_1) \cdot \phi(a_1) =$$

Let
$$\phi: G_1 \rightarrow G_2$$
 be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

(a): Assume that $a \in G_1$ with $a^n = e_1$. So $(\phi(a))^n = \phi(a^n) = \phi(e_1) = e_2$. This shows that $o(\phi(a))|n$. Since ϕ is an isomorphism, there exists ϕ^{-1} such that $\phi^{-1}(\phi(a)) = a$, and a similar argument shows that $n|o(\phi(a))$. (b): Let $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$ for $a_1, b_1 \in G_1$ and $a_2, b_2 \in G_2$. Then

$$a_{2} \cdot b_{2} = \phi(a_{1}) \cdot \phi(b_{1}) = \phi(a_{1} * b_{1}) \stackrel{!}{=} \phi(b_{1} * a_{1}) = \phi(b_{1}) \cdot \phi(a_{1}) = b_{2} \cdot a_{2}.$$

(c):

Let $\phi: G_1 \rightarrow G_2$ be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

(a): Assume that $a \in G_1$ with $a^n = e_1$. So $(\phi(a))^n = \phi(a^n) = \phi(e_1) = e_2$. This shows that $o(\phi(a))|n$. Since ϕ is an isomorphism, there exists ϕ^{-1} such that $\phi^{-1}(\phi(a)) = a$, and a similar argument shows that $n|o(\phi(a))$. (b): Let $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$ for $a_1, b_1 \in G_1$ and $a_2, b_2 \in G_2$. Then

$$\mathbf{a}_2 \cdot \mathbf{b}_2 = \phi(\mathbf{a}_1) \cdot \phi(\mathbf{b}_1) = \phi(\mathbf{a}_1 \ast \mathbf{b}_1) \stackrel{!}{=} \phi(\mathbf{b}_1 \ast \mathbf{a}_1) = \phi(\mathbf{b}_1) \cdot \phi(\mathbf{a}_1) = \mathbf{b}_2 \cdot \mathbf{a}_2.$$

(c): Suppose that G_1 is cyclic, with $G_1 = \langle a \rangle$.

Let
$$\phi: G_1 \rightarrow G_2$$
 be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

(a): Assume that $a \in G_1$ with $a^n = e_1$. So $(\phi(a))^n = \phi(a^n) = \phi(e_1) = e_2$. This shows that $o(\phi(a))|n$. Since ϕ is an isomorphism, there exists ϕ^{-1} such that $\phi^{-1}(\phi(a)) = a$, and a similar argument shows that $n|o(\phi(a))$. (b): Let $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$ for $a_1, b_1 \in G_1$ and $a_2, b_2 \in G_2$. Then

$$\mathbf{a}_2 \cdot \mathbf{b}_2 = \phi(\mathbf{a}_1) \cdot \phi(\mathbf{b}_1) = \phi(\mathbf{a}_1 \ast \mathbf{b}_1) \stackrel{!}{=} \phi(\mathbf{b}_1 \ast \mathbf{a}_1) = \phi(\mathbf{b}_1) \cdot \phi(\mathbf{a}_1) = \mathbf{b}_2 \cdot \mathbf{a}_2.$$

(c): Suppose that G_1 is cyclic, with $G_1 = \langle a \rangle$. For any element $y \in G_2$, we have $y = \phi(x)$ for some $x \in G_1$. (Why?)

Let
$$\phi: G_1 \rightarrow G_2$$
 be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

(a): Assume that $a \in G_1$ with $a^n = e_1$. So $(\phi(a))^n = \phi(a^n) = \phi(e_1) = e_2$. This shows that $o(\phi(a))|n$. Since ϕ is an isomorphism, there exists ϕ^{-1} such that $\phi^{-1}(\phi(a)) = a$, and a similar argument shows that $n|o(\phi(a))$. (b): Let $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$ for $a_1, b_1 \in G_1$ and $a_2, b_2 \in G_2$. Then

$$\mathbf{a}_2 \cdot \mathbf{b}_2 = \phi(\mathbf{a}_1) \cdot \phi(\mathbf{b}_1) = \phi(\mathbf{a}_1 \ast \mathbf{b}_1) \stackrel{!}{=} \phi(\mathbf{b}_1 \ast \mathbf{a}_1) = \phi(\mathbf{b}_1) \cdot \phi(\mathbf{a}_1) = \mathbf{b}_2 \cdot \mathbf{a}_2.$$

(c): Suppose that G_1 is cyclic, with $G_1 = \langle a \rangle$. For any element $y \in G_2$, we have $y = \phi(x)$ for some $x \in G_1$. (Why?) We write $x = a^n$ for some $n \in \mathbb{Z}$.

Let
$$\phi: G_1 \rightarrow G_2$$
 be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

(a): Assume that $a \in G_1$ with $a^n = e_1$. So $(\phi(a))^n = \phi(a^n) = \phi(e_1) = e_2$. This shows that $o(\phi(a))|n$. Since ϕ is an isomorphism, there exists ϕ^{-1} such that $\phi^{-1}(\phi(a)) = a$, and a similar argument shows that $n|o(\phi(a))$. (b): Let $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$ for $a_1, b_1 \in G_1$ and $a_2, b_2 \in G_2$. Then

$$\mathbf{a}_2 \cdot \mathbf{b}_2 = \phi(\mathbf{a}_1) \cdot \phi(\mathbf{b}_1) = \phi(\mathbf{a}_1 \ast \mathbf{b}_1) \stackrel{!}{=} \phi(\mathbf{b}_1 \ast \mathbf{a}_1) = \phi(\mathbf{b}_1) \cdot \phi(\mathbf{a}_1) = \mathbf{b}_2 \cdot \mathbf{a}_2.$$

(c): Suppose that G_1 is cyclic, with $G_1 = \langle a \rangle$. For any element $y \in G_2$, we have $y = \phi(x)$ for some $x \in G_1$. (Why?) We write $x = a^n$ for some $n \in \mathbb{Z}$. Then $y = \phi(x) = \phi(a^n) = (\phi(a))^n$.

Let $\phi: G_1 \rightarrow G_2$ be an isomorphism of groups.

(a) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .

(b) If G_1 is abelian, then so is G_2 .

(c) If G_1 is cyclic, then so is G_2 .

(a): Assume that $a \in G_1$ with $a^n = e_1$. So $(\phi(a))^n = \phi(a^n) = \phi(e_1) = e_2$. This shows that $o(\phi(a))|n$. Since ϕ is an isomorphism, there exists ϕ^{-1} such that $\phi^{-1}(\phi(a)) = a$, and a similar argument shows that $n|o(\phi(a))$. (b): Let $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$ for $a_1, b_1 \in G_1$ and $a_2, b_2 \in G_2$. Then

$$\mathbf{a}_2 \cdot \mathbf{b}_2 = \phi(\mathbf{a}_1) \cdot \phi(\mathbf{b}_1) = \phi(\mathbf{a}_1 \ast \mathbf{b}_1) \stackrel{!}{=} \phi(\mathbf{b}_1 \ast \mathbf{a}_1) = \phi(\mathbf{b}_1) \cdot \phi(\mathbf{a}_1) = \mathbf{b}_2 \cdot \mathbf{a}_2.$$

(c): Suppose that G_1 is cyclic, with $G_1 = \langle a \rangle$. For any element $y \in G_2$, we have $y = \phi(x)$ for some $x \in G_1$. (Why?) We write $x = a^n$ for some $n \in \mathbb{Z}$. Then $y = \phi(x) = \phi(a^n) = (\phi(a))^n$. Thus G_2 is cyclic, generated by $\phi(a)$.

The previous proposition gives us a technique for proving that two groups are **not isomorphic**.

Example 6 $((\mathbf{R}, +) \not\cong (\mathbf{R}^{\times}, \cdot))$

The previous proposition gives us a technique for proving that two groups are **not isomorphic**.

Example 6 $((\mathbf{R}, +) \not\cong (\mathbf{R}^{\times}, \cdot))$

In $(\mathbf{R}^{\times}, \cdot)$, there is an element of order 2, namely, -1.

The previous proposition gives us a technique for proving that two groups are **not isomorphic**.

Example 6 $((\mathbf{R}, +) \not\cong (\mathbf{R}^{\times}, \cdot))$

In $(\mathbf{R}^{\times}, \cdot)$, there is an element of order 2, namely, -1. In $(\mathbf{R}, +)$, there is no element of order 2. (Why?) [

The previous proposition gives us a technique for proving that two groups are **not isomorphic**.

Example 6 $((\mathbf{R}, +) \not\cong (\mathbf{R}^{\times}, \cdot))$

In $(\mathbf{R}^{\times}, \cdot)$, there is an element of order 2, namely, -1. In $(\mathbf{R}, +)$, there is no element of order 2. (Why?) [If so, $2x = 0 \Rightarrow x = 0$.]
The previous proposition gives us a technique for proving that two groups are **not isomorphic**.

Example 6 $((\mathbf{R}, +) \not\cong (\mathbf{R}^{\times}, \cdot))$

In $(\mathbf{R}^{\times}, \cdot)$, there is an element of order 2, namely, -1. In $(\mathbf{R}, +)$, there is no element of order 2. (Why?) [If so, $2x = 0 \Rightarrow x = 0$.] Thus there cannot be an isomorphism between the two groups. (Why?)

Example 7 (($\mathbf{R}^{\times}, \cdot$) \ncong ($\mathbf{C}^{\times}, \cdot$))

Yi

The previous proposition gives us a technique for proving that two groups are **not isomorphic**.

Example 6 $((\mathbf{R}, +) \not\cong (\mathbf{R}^{\times}, \cdot))$

In $(\mathbf{R}^{\times}, \cdot)$, there is an element of order 2, namely, -1. In $(\mathbf{R}, +)$, there is no element of order 2. (Why?) [If so, $2x = 0 \Rightarrow x = 0$.] Thus there cannot be an isomorphism between the two groups. (Why?)

Example 7 $((\mathbf{R}^{\times}, \cdot) \not\cong (\mathbf{C}^{\times}, \cdot))$

In ($\mathbf{R}^{\times}, \cdot$), only 1 and -1 have finite orders, i.e.,

The previous proposition gives us a technique for proving that two groups are **not isomorphic**.

Example 6 $((\mathbf{R}, +) \not\cong (\mathbf{R}^{\times}, \cdot))$

In $(\mathbf{R}^{\times}, \cdot)$, there is an element of order 2, namely, -1. In $(\mathbf{R}, +)$, there is no element of order 2. (Why?) [If so, $2x = 0 \Rightarrow x = 0$.] Thus there cannot be an isomorphism between the two groups. (Why?)

Example 7 $((\mathbf{R}^{\times}, \cdot) \not\cong (\mathbf{C}^{\times}, \cdot))$

In $(\mathbf{R}^{\times}, \cdot)$, only 1 and -1 have finite orders, i.e., o(1) = 1 and o(-1) = 2.

The previous proposition gives us a technique for proving that two groups are **not isomorphic**.

Example 6 $((\mathbf{R}, +) \not\cong (\mathbf{R}^{\times}, \cdot))$

In $(\mathbf{R}^{\times}, \cdot)$, there is an element of order 2, namely, -1. In $(\mathbf{R}, +)$, there is no element of order 2. (Why?) [If so, $2x = 0 \Rightarrow x = 0$.] Thus there cannot be an isomorphism between the two groups. (Why?)

Example 7 $((\mathbf{R}^{\times}, \cdot) \not\cong (\mathbf{C}^{\times}, \cdot))$

In $(\mathbf{R}^{\times}, \cdot)$, only 1 and -1 have finite orders, i.e., o(1) = 1 and o(-1) = 2. In $(\mathbf{C}^{\times}, \cdot)$, there are other elements of finite orders.

The previous proposition gives us a technique for proving that two groups are **not isomorphic**.

Example 6 $((\mathbf{R}, +) \not\cong (\mathbf{R}^{\times}, \cdot))$

In $(\mathbf{R}^{\times}, \cdot)$, there is an element of order 2, namely, -1. In $(\mathbf{R}, +)$, there is no element of order 2. (Why?) [If so, $2x = 0 \Rightarrow x = 0$.] Thus there cannot be an isomorphism between the two groups. (Why?)

Example 7 $((\mathbf{R}^{\times}, \cdot) \not\cong (\mathbf{C}^{\times}, \cdot))$

In $(\mathbf{R}^{\times}, \cdot)$, only 1 and -1 have finite orders, i.e., o(1) = 1 and o(-1) = 2. In $(\mathbf{C}^{\times}, \cdot)$, there are other elements of finite orders. For example, o(i) = 4.

The previous proposition gives us a technique for proving that two groups are **not isomorphic**.

Example 6 $((\mathbf{R}, +) \not\cong (\mathbf{R}^{\times}, \cdot))$

In $(\mathbf{R}^{\times}, \cdot)$, there is an element of order 2, namely, -1. In $(\mathbf{R}, +)$, there is no element of order 2. (Why?) [If so, $2x = 0 \Rightarrow x = 0$.] Thus there cannot be an isomorphism between the two groups. (Why?)

Example 7 $((\mathbf{R}^{\times}, \cdot) \not\cong (\mathbf{C}^{\times}, \cdot))$

In $(\mathbf{R}^{\times}, \cdot)$, only 1 and -1 have finite orders, i.e., o(1) = 1 and o(-1) = 2. In $(\mathbf{C}^{\times}, \cdot)$, there are other elements of finite orders. For example, o(i) = 4. Thus there cannot be an isomorphism between the two groups. (Why?)

More examples

Example 8 ($\mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2$)

More examples

Example 8 ($\mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2$)

 \mathbf{Z}_4 is cyclic.

 Z_4 is cyclic. That is, there is an element $([1]_4 \text{ or } [3]_4)$ of order 4 in Z_4 .

 \textbf{Z}_4 is cyclic. That is, there is an element ([1]₄ or [3]₄) of order 4 in \textbf{Z}_4 . $\textbf{Z}_2\times\textbf{Z}_2$ is not cyclic.

 Z_4 is cyclic. That is, there is an element ([1]₄ or [3]₄) of order 4 in Z_4 . $Z_2 \times Z_2$ is not cyclic. Any non-identity element must have order 2. (Why?)

Example 9 ($\mathbf{Z}_4 \times \mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$)

 Z_4 is cyclic. That is, there is an element ([1]₄ or [3]₄) of order 4 in Z_4 . $Z_2 \times Z_2$ is not cyclic. Any non-identity element must have order 2. (Why?)

Example 9 ($\mathbf{Z}_4 \times \mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$)

In the second group, any non-identity element must have order 2. (Why?)

 Z_4 is cyclic. That is, there is an element ([1]₄ or [3]₄) of order 4 in Z_4 . $Z_2 \times Z_2$ is not cyclic. Any non-identity element must have order 2. (Why?)

Example 9 ($\mathbf{Z}_4 \times \mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$)

In the second group, any non-identity element must have order 2. (Why?) In the first group, there are elements of order 4.

 Z_4 is cyclic. That is, there is an element ([1]₄ or [3]₄) of order 4 in Z_4 . $Z_2 \times Z_2$ is not cyclic. Any non-identity element must have order 2. (Why?)

Example 9 ($\mathbf{Z}_4 \times \mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$)

In the second group, any non-identity element must have order 2. (Why?) In the first group, there are elements of order 4. For example, $([1]_4, [1]_4)$ has order 4. (Why?) [

Yi

 Z_4 is cyclic. That is, there is an element ([1]₄ or [3]₄) of order 4 in Z_4 . $Z_2 \times Z_2$ is not cyclic. Any non-identity element must have order 2. (Why?)

Example 9 ($\mathbf{Z}_4 \times \mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$)

In the second group, any non-identity element must have order 2. (Why?) In the first group, there are elements of order 4. For example, $([1]_4, [1]_4)$ has order 4. (Why?) [If $(x, y) \in G_1 \times G_2$, so o((x, y)) = lcm[o(x), o(y)].]

Question 1 (Groups of order 6)

 Z_4 is cyclic. That is, there is an element ([1]₄ or [3]₄) of order 4 in Z_4 . $Z_2 \times Z_2$ is not cyclic. Any non-identity element must have order 2. (Why?)

Example 9 ($\mathbf{Z}_4 \times \mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$)

In the second group, any non-identity element must have order 2. (Why?) In the first group, there are elements of order 4. For example, $([1]_4, [1]_4)$ has order 4. (Why?) [If $(x, y) \in G_1 \times G_2$, so o((x, y)) = lcm[o(x), o(y)].]

Question 1 (Groups of order 6)

Which of the groups S_3 , $GL_2(Z_2)$, Z_6 and $Z_2 \times Z_3$ are isomorphic?

Yi

 Z_4 is cyclic. That is, there is an element ([1]₄ or [3]₄) of order 4 in Z_4 . $Z_2 \times Z_2$ is not cyclic. Any non-identity element must have order 2. (Why?)

Example 9 ($\mathbf{Z}_4 \times \mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$)

In the second group, any non-identity element must have order 2. (Why?) In the first group, there are elements of order 4. For example, $([1]_4, [1]_4)$ has order 4. (Why?) [If $(x, y) \in G_1 \times G_2$, so o((x, y)) = lcm[o(x), o(y)].]

Question 1 (Groups of order 6)

Which of the groups S_3 , $\operatorname{GL}_2(\mathbb{Z}_2)$, \mathbb{Z}_6 and $\mathbb{Z}_2 \times \mathbb{Z}_3$ are isomorphic?

• The first two groups $(S_3 \text{ and } \operatorname{GL}_2(\mathbf{Z}_2))$ we know to be nonabelian.

 Z_4 is cyclic. That is, there is an element ([1]₄ or [3]₄) of order 4 in Z_4 . $Z_2 \times Z_2$ is not cyclic. Any non-identity element must have order 2. (Why?)

Example 9 ($\mathbf{Z}_4 \times \mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$)

In the second group, any non-identity element must have order 2. (Why?) In the first group, there are elements of order 4. For example, $([1]_4, [1]_4)$ has order 4. (Why?) [If $(x, y) \in G_1 \times G_2$, so o((x, y)) = lcm[o(x), o(y)].]

Question 1 (Groups of order 6)

Which of the groups S_3 , $\operatorname{GL}_2(\mathbb{Z}_2)$, \mathbb{Z}_6 and $\mathbb{Z}_2 \times \mathbb{Z}_3$ are isomorphic?

- The first two groups (S_3 and $\operatorname{GL}_2(\mathbf{Z}_2)$) we know to be nonabelian.
- Any cyclic group is abelian.

 Z_4 is cyclic. That is, there is an element ([1]₄ or [3]₄) of order 4 in Z_4 . $Z_2 \times Z_2$ is not cyclic. Any non-identity element must have order 2. (Why?)

Example 9 ($\mathbf{Z}_4 \times \mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$)

In the second group, any non-identity element must have order 2. (Why?) In the first group, there are elements of order 4. For example, $([1]_4, [1]_4)$ has order 4. (Why?) [If $(x, y) \in G_1 \times G_2$, so o((x, y)) = lcm[o(x), o(y)].]

Question 1 (Groups of order 6)

Which of the groups S_3 , $\operatorname{GL}_2(\mathbb{Z}_2)$, \mathbb{Z}_6 and $\mathbb{Z}_2 \times \mathbb{Z}_3$ are isomorphic?

- The first two groups $(S_3 \text{ and } \operatorname{GL}_2(\mathbf{Z}_2))$ we know to be nonabelian.
- \bullet Any cyclic group is abelian. So \textbf{Z}_6 and $\textbf{Z}_2\times\textbf{Z}_3$ (Why?) are abelian.

 Z_4 is cyclic. That is, there is an element ([1]₄ or [3]₄) of order 4 in Z_4 . $Z_2 \times Z_2$ is not cyclic. Any non-identity element must have order 2. (Why?)

Example 9 ($\mathbf{Z}_4 \times \mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$)

In the second group, any non-identity element must have order 2. (Why?) In the first group, there are elements of order 4. For example, $([1]_4, [1]_4)$ has order 4. (Why?) [If $(x, y) \in G_1 \times G_2$, so o((x, y)) = lcm[o(x), o(y)].]

Question 1 (Groups of order 6)

Which of the groups S_3 , $\operatorname{GL}_2(Z_2)$, Z_6 and $Z_2 \times Z_3$ are isomorphic?

- The first two groups $(S_3 \text{ and } \operatorname{GL}_2(\mathbf{Z}_2))$ we know to be nonabelian.
- Any cyclic group is abelian. So Z_6 and $Z_2 \times Z_3$ (Why?) are abelian. In fact, the element ([1]₂, [1]₃) of $Z_2 \times Z_3$ has order 6. (Why?)

Example: $\operatorname{GL}_2(\mathbf{Z}_2) \cong \overline{S_3}$

In §3.3 we described S_3 by letting e = (1), a = (123) and b = (12), which allowed us to write

$$S_3 = \{e, a, a^2, b, ab, a^2b\},$$
 where $a^3 = e, b^2 = e, ba = a^2b.$

In §3.3 we described S_3 by letting e = (1), a = (123) and b = (12), which allowed us to write

 $S_3 = \{e, a, a^2, b, ab, a^2b\},$ where $a^3 = e, b^2 = e, ba = a^2b.$

Also recall that those 6 elements in $GL_2(\mathbf{Z}_2)$ are

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

In §3.3 we described S_3 by letting e = (1), a = (123) and b = (12), which allowed us to write

 $S_3 = \{e, a, a^2, b, ab, a^2b\},$ where $a^3 = e, b^2 = e, ba = a^2b.$

Also recall that those 6 elements in $GL_2(\mathbf{Z}_2)$ are

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

To establish the connection between S_3 and $GL_2(\mathbf{Z}_2)$, let

$$e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad a = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad \text{and} \quad b = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

In §3.3 we described S_3 by letting e = (1), a = (123) and b = (12), which allowed us to write

 $S_3 = \{e, a, a^2, b, ab, a^2b\},$ where $a^3 = e, b^2 = e, ba = a^2b.$

Also recall that those 6 elements in $GL_2(\mathbf{Z}_2)$ are

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

To establish the connection between S_3 and $GL_2(\mathbf{Z}_2)$, let

$$e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad a = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \qquad \text{and} \qquad b = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Then direct computations show that $a^3 = e, b^2 = e$ and $ba = a^2b$.

In §3.3 we described S_3 by letting e = (1), a = (123) and b = (12), which allowed us to write

 $S_3 = \{e, a, a^2, b, ab, a^2b\}$, where $a^3 = e, b^2 = e, ba = a^2b$.

Also recall that those 6 elements in $GL_2(\mathbf{Z}_2)$ are

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

To establish the connection between S_3 and $\operatorname{GL}_2(\mathbb{Z}_2)$, let

$$e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad a = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad \text{and} \quad b = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Then direct computations show that $a^3 = e, b^2 = e$ and $ba = a^2b$. Furthermore, each element of $GL_2(\mathbb{Z}_2)$ can be expressed uniquely in one of the following forms:

$$e, a, a^2, b, ab, a^2b.$$

This indicates how to define an isomorphism from S_3 to $GL_2(\mathbf{Z}_2)$.

This indicates how to define an isomorphism from S_3 to $GL_2(\mathbf{Z}_2)$. Let

$$\phi((123)) = egin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix}$$
 and $\phi((12)) = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$

This indicates how to define an isomorphism from S_3 to $GL_2(\mathbf{Z}_2)$. Let

$$\phi((123)) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $\phi((12)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

and then extend this to all elements by letting

$$\phi((123)^i(12)^j) = egin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix}^i egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}^j$$

for i = 0, 1, 2 and j = 0, 1.

Proposition 4

This indicates how to define an isomorphism from S_3 to $GL_2(\mathbf{Z}_2)$. Let

$$\phi((123)) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $\phi((12)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

and then extend this to all elements by letting

$$\phi((123)^i(12)^j) = egin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix}^i egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}^j$$

for i = 0, 1, 2 and j = 0, 1.

Proposition 4

Let $\phi : S_3 \to \operatorname{GL}_2(\mathbf{Z}_2)$ be defined as above. Then ϕ is an isomorphism.

This indicates how to define an isomorphism from S_3 to $\operatorname{GL}_2(\mathbf{Z}_2)$. Let

$$\phi((123)) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $\phi((12)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

and then extend this to all elements by letting

$$\phi((123)^i(12)^j) = egin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix}^i egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}^j$$

for i = 0, 1, 2 and j = 0, 1.

Proposition 4

Let $\phi : S_3 \to \operatorname{GL}_2(\mathbf{Z}_2)$ be defined as above. Then ϕ is an isomorphism.

Our remarks about the unique forms of the respective elements show that ϕ is a one-to-one correspondence. \checkmark

This indicates how to define an isomorphism from S_3 to $\operatorname{GL}_2(\mathbf{Z}_2)$. Let

$$\phi((123)) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $\phi((12)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

and then extend this to all elements by letting

$$\phi((123)^i(12)^j) = egin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix}^i egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}^j$$

for i = 0, 1, 2 and j = 0, 1.

Proposition 4

Let $\phi : S_3 \to \operatorname{GL}_2(\mathbf{Z}_2)$ be defined as above. Then ϕ is an isomorphism.

Our remarks about the unique forms of the respective elements show that ϕ is a one-to-one correspondence. \checkmark The fact that the multiplication tables are identical shows that ϕ respects the two operations. (Check it!)

Since we have already observed that both groups are cyclic,

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$.

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\mathbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \mathbf{Z}_2 \times \mathbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$
Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\textbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \textbf{Z}_2 \times \textbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$

Define the function $\phi: \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$ by letting

 $\phi([1]_6) = ([1]_2, [1]_3).$

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\textbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \textbf{Z}_2 \times \textbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$

Define the function $\phi: \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$ by letting

 $\phi([1]_6) = ([1]_2, [1]_3).$

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\mathbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \mathbf{Z}_2 \times \mathbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$

Define the function $\phi: \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$ by letting

 $\phi([1]_6) = ([1]_2, [1]_3).$

And so $\phi([n]_6) = \phi(n[1]_6) = n([1]_2, [1]_3) = ([n]_2, [n]_3).$

• If $[n_1]_6 = [n_2]_6$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$, and so ϕ is well-defined.

• one-to-one:

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\textbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \textbf{Z}_2 \times \textbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$

Define the function $\phi: \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$ by letting

 $\phi([1]_6) = ([1]_2, [1]_3).$

- If $[n_1]_6 = [n_2]_6$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$, and so ϕ is well-defined.
- one-to-one: If $([n_1]_2, [n_1]_3) = ([n_2]_2, [n_2]_3)$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$.

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\textbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \textbf{Z}_2 \times \textbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$

Define the function $\phi: \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$ by letting

 $\phi([1]_6) = ([1]_2, [1]_3).$

- If $[n_1]_6 = [n_2]_6$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$, and so ϕ is well-defined.
- one-to-one: If $([n_1]_2, [n_1]_3) = ([n_2]_2, [n_2]_3)$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$. That is to say, $2|(n_1 - n_2)$ and $3|(n_1 - n_2)$.

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\textbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \textbf{Z}_2 \times \textbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$

Define the function $\phi: \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$ by letting

 $\phi([1]_6) = ([1]_2, [1]_3).$

- If $[n_1]_6 = [n_2]_6$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$, and so ϕ is well-defined.
- one-to-one: If $([n_1]_2, [n_1]_3) = ([n_2]_2, [n_2]_3)$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$. That is to say, $2|(n_1 - n_2)$ and $3|(n_1 - n_2)$. Thus, $6|(n_1 - n_2)$ since

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\textbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \textbf{Z}_2 \times \textbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$

Define the function $\phi: {\bf Z}_6 \rightarrow {\bf Z}_2 \times {\bf Z}_3$ by letting

 $\phi([1]_6) = ([1]_2, [1]_3).$

- If $[n_1]_6 = [n_2]_6$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$, and so ϕ is well-defined.
- one-to-one: If $([n_1]_2, [n_1]_3) = ([n_2]_2, [n_2]_3)$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$. That is to say, $2|(n_1 - n_2)$ and $3|(n_1 - n_2)$. Thus, $6|(n_1 - n_2)$ since (2, 3) = 1.

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\textbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \textbf{Z}_2 \times \textbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$

Define the function $\phi: \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$ by letting

 $\phi([1]_6) = ([1]_2, [1]_3).$

- If $[n_1]_6 = [n_2]_6$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$, and so ϕ is well-defined.
- one-to-one: If $([n_1]_2, [n_1]_3) = ([n_2]_2, [n_2]_3)$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$. That is to say, $2|(n_1 - n_2)$ and $3|(n_1 - n_2)$. Thus, $6|(n_1 - n_2)$ since (2, 3) = 1. It follows that $n_1 \equiv n_2 \pmod{6}$.

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\mathbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \mathbf{Z}_2 \times \mathbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$

Define the function $\phi: \mathbf{Z}_6 \rightarrow \mathbf{Z}_2 \times \mathbf{Z}_3$ by letting

 $\phi([1]_6) = ([1]_2, [1]_3).$

- If $[n_1]_6 = [n_2]_6$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$, and so ϕ is well-defined.
- one-to-one: If $([n_1]_2, [n_1]_3) = ([n_2]_2, [n_2]_3)$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$. That is to say, $2|(n_1 - n_2)$ and $3|(n_1 - n_2)$. Thus, $6|(n_1 - n_2)$ since (2, 3) = 1. It follows that $n_1 \equiv n_2 \pmod{6}$.
- Since |Z₆| = |Z₂ × Z₃| = 6, any one-to-one mapping must be onto.
 φ([n]₆ + [m]₆) =

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\mathbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \mathbf{Z}_2 \times \mathbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$

Define the function $\phi: \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$ by letting

 $\phi([1]_6) = ([1]_2, [1]_3).$

- If $[n_1]_6 = [n_2]_6$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$, and so ϕ is well-defined.
- one-to-one: If $([n_1]_2, [n_1]_3) = ([n_2]_2, [n_2]_3)$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$. That is to say, $2|(n_1 - n_2)$ and $3|(n_1 - n_2)$. Thus, $6|(n_1 - n_2)$ since (2, 3) = 1. It follows that $n_1 \equiv n_2 \pmod{6}$.
- Since |Z₆| = |Z₂ × Z₃| = 6, any one-to-one mapping must be onto.
 φ([n]₆ + [m]₆) = φ([n + m]₆) =

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\mathbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \mathbf{Z}_2 \times \mathbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$

Define the function $\phi: \mathbf{Z}_6 \rightarrow \mathbf{Z}_2 \times \mathbf{Z}_3$ by letting

 $\phi([1]_6) = ([1]_2, [1]_3).$

And so $\phi([n]_6) = \phi(n[1]_6) = n([1]_2, [1]_3) = ([n]_2, [n]_3).$

- If $[n_1]_6 = [n_2]_6$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$, and so ϕ is well-defined.
- one-to-one: If $([n_1]_2, [n_1]_3) = ([n_2]_2, [n_2]_3)$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$. That is to say, $2|(n_1 - n_2)$ and $3|(n_1 - n_2)$. Thus, $6|(n_1 - n_2)$ since (2, 3) = 1. It follows that $n_1 \equiv n_2 \pmod{6}$.

• Since $|\mathbf{Z}_6| = |\mathbf{Z}_2 \times \mathbf{Z}_3| = 6$, any one-to-one mapping must be onto.

• $\phi([n]_6 + [m]_6) = \phi([n+m]_6) = ([n+m]_2, [n+m]_3) =$

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\mathbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \mathbf{Z}_2 \times \mathbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$

Define the function $\phi: \mathbf{Z}_6 \rightarrow \mathbf{Z}_2 \times \mathbf{Z}_3$ by letting

 $\phi([1]_6) = ([1]_2, [1]_3).$

And so $\phi([n]_6) = \phi(n[1]_6) = n([1]_2, [1]_3) = ([n]_2, [n]_3).$

- If $[n_1]_6 = [n_2]_6$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$, and so ϕ is well-defined.
- one-to-one: If $([n_1]_2, [n_1]_3) = ([n_2]_2, [n_2]_3)$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$. That is to say, $2|(n_1 - n_2)$ and $3|(n_1 - n_2)$. Thus, $6|(n_1 - n_2)$ since (2, 3) = 1. It follows that $n_1 \equiv n_2 \pmod{6}$.

• Since $|\mathbf{Z}_6| = |\mathbf{Z}_2 \times \mathbf{Z}_3| = 6$, any one-to-one mapping must be onto.

• $\phi([n]_6 + [m]_6) = \phi([n+m]_6) = ([n+m]_2, [n+m]_3) = ([n]_2 + [m]_2, [n]_3 + [m]_3) =$

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\mathbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \mathbf{Z}_2 \times \mathbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$

Define the function $\phi: \mathbf{Z}_6 \rightarrow \mathbf{Z}_2 \times \mathbf{Z}_3$ by letting

 $\phi([1]_6) = ([1]_2, [1]_3).$

And so $\phi([n]_6) = \phi(n[1]_6) = n([1]_2, [1]_3) = ([n]_2, [n]_3).$

- If $[n_1]_6 = [n_2]_6$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$, and so ϕ is well-defined.
- one-to-one: If $([n_1]_2, [n_1]_3) = ([n_2]_2, [n_2]_3)$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$. That is to say, $2|(n_1 - n_2)$ and $3|(n_1 - n_2)$. Thus, $6|(n_1 - n_2)$ since (2, 3) = 1. It follows that $n_1 \equiv n_2 \pmod{6}$.

• Since $|\mathbf{Z}_6| = |\mathbf{Z}_2 \times \mathbf{Z}_3| = 6$, any one-to-one mapping must be onto.

• $\phi([n]_6 + [m]_6) = \phi([n+m]_6) = ([n+m]_2, [n+m]_3) = ([n]_2 + [m]_2, [n]_3 + [m]_3) = ([n]_2, [n]_3)([m]_2, [m]_3) =$

Since we have already observed that both groups are cyclic, we can let *a* be a generator for Z_6 and *b* be a generator for $Z_2 \times Z_3$. In particular,

$$\mathbf{Z}_6 = \langle [1]_6 \rangle \qquad \text{and} \qquad \mathbf{Z}_2 \times \mathbf{Z}_3 = \langle [1]_2, [1]_3 \rangle.$$

Define the function $\phi: \mathbf{Z}_6 \rightarrow \mathbf{Z}_2 \times \mathbf{Z}_3$ by letting

 $\phi([1]_6) = ([1]_2, [1]_3).$

And so $\phi([n]_6) = \phi(n[1]_6) = n([1]_2, [1]_3) = ([n]_2, [n]_3).$

- If $[n_1]_6 = [n_2]_6$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$, and so ϕ is well-defined.
- one-to-one: If $([n_1]_2, [n_1]_3) = ([n_2]_2, [n_2]_3)$, then $n_1 \equiv n_2 \pmod{2}$ and $n_1 \equiv n_2 \pmod{3}$. That is to say, $2|(n_1 - n_2)$ and $3|(n_1 - n_2)$. Thus, $6|(n_1 - n_2)$ since (2, 3) = 1. It follows that $n_1 \equiv n_2 \pmod{6}$.

• Since $|\mathbf{Z}_6| = |\mathbf{Z}_2 \times \mathbf{Z}_3| = 6$, any one-to-one mapping must be onto.

• $\phi([n]_6 + [m]_6) = \phi([n + m]_6) = ([n + m]_2, [n + m]_3) = ([n]_2 + [m]_2, [n]_3 + [m]_3) = ([n]_2, [n]_3)([m]_2, [m]_3) = \phi([n]_6)\phi([m]_6).$

An easier way to check that ϕ which preserves products is one-to-one

Proposition 5

Let G_1 and G_2 be groups, and let $\phi : G_1 \to G_2$ be a function such that $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Let G_1 and G_2 be groups, and let $\phi : G_1 \to G_2$ be a function such that $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$. Then ϕ is one-to-one if and only if $\phi(x) = e_2$ implies $x = e_1$, for all $x \in G_1$.

Proof.

 \Rightarrow : If ϕ is one-to-one,

Let G_1 and G_2 be groups, and let $\phi : G_1 \to G_2$ be a function such that $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$. Then ϕ is one-to-one if and only if $\phi(x) = e_2$ implies $x = e_1$, for all $x \in G_1$.

Proof.

⇒: If ϕ is one-to-one, then only e_1 can map to e_2 . (Why?) On the other hand, suppose that $\phi(x) = e_2$

Let G_1 and G_2 be groups, and let $\phi : G_1 \to G_2$ be a function such that $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$. Then ϕ is one-to-one if and only if $\phi(x) = e_2$ implies $x = e_1$, for all $x \in G_1$.

Proof.

⇒: If ϕ is one-to-one, then only e_1 can map to e_2 . (Why?) On the other hand, suppose that $\phi(x) = e_2$ implies $x = e_1$, for all $x \in G_1$.

Let G_1 and G_2 be groups, and let $\phi : G_1 \to G_2$ be a function such that $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$. Then ϕ is one-to-one if and only if $\phi(x) = e_2$ implies $x = e_1$, for all $x \in G_1$.

- ⇒: If ϕ is one-to-one, then only e_1 can map to e_2 . (Why?) On the other hand, suppose that $\phi(x) = e_2$ implies $x = e_1$, for all $x \in G_1$.
- \Leftarrow : If $\phi(x_1) = \phi(x_2)$ for some $x_1, x_2 \in G_1$, then

Let G_1 and G_2 be groups, and let $\phi : G_1 \to G_2$ be a function such that $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$. Then ϕ is one-to-one if and only if $\phi(x) = e_2$ implies $x = e_1$, for all $x \in G_1$.

- ⇒: If ϕ is one-to-one, then only e_1 can map to e_2 . (Why?) On the other hand, suppose that $\phi(x) = e_2$ implies $x = e_1$, for all $x \in G_1$.
- $\coloneqq: \text{ If } \phi(x_1) = \phi(x_2) \text{ for some } x_1, x_2 \in G_1, \text{ then} \\ \phi(x_1 * x_2^{-1}) = \phi(x_1) \cdot \phi(x_2^{-1}) = \phi(x_1) \cdot (\phi(x_2))^{-1} = \phi(x_2) \cdot (\phi(x_2))^{-1} = e_2,$

Let G_1 and G_2 be groups, and let $\phi : G_1 \to G_2$ be a function such that $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$. Then ϕ is one-to-one if and only if $\phi(x) = e_2$ implies $x = e_1$, for all $x \in G_1$.

- ⇒: If ϕ is one-to-one, then only e_1 can map to e_2 . (Why?) On the other hand, suppose that $\phi(x) = e_2$ implies $x = e_1$, for all $x \in G_1$.
- $\Leftarrow: \text{ If } \phi(x_1) = \phi(x_2) \text{ for some } x_1, x_2 \in G_1, \text{ then} \\ \phi(x_1 * x_2^{-1}) = \phi(x_1) \cdot \phi(x_2^{-1}) = \phi(x_1) \cdot (\phi(x_2))^{-1} = \phi(x_2) \cdot (\phi(x_2))^{-1} = e_2, \\ \text{ and hence } x_1 * x_2^{-1} = e_1, \text{ and thus}$

Let G_1 and G_2 be groups, and let $\phi : G_1 \to G_2$ be a function such that $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$. Then ϕ is one-to-one if and only if $\phi(x) = e_2$ implies $x = e_1$, for all $x \in G_1$.

- ⇒: If ϕ is one-to-one, then only e_1 can map to e_2 . (Why?) On the other hand, suppose that $\phi(x) = e_2$ implies $x = e_1$, for all $x \in G_1$.
- $\Leftarrow: \text{ If } \phi(x_1) = \phi(x_2) \text{ for some } x_1, x_2 \in G_1, \text{ then} \\ \phi(x_1 * x_2^{-1}) = \phi(x_1) \cdot \phi(x_2^{-1}) = \phi(x_1) \cdot (\phi(x_2))^{-1} = \phi(x_2) \cdot (\phi(x_2))^{-1} = e_2, \\ \text{ and hence } x_1 * x_2^{-1} = e_1, \text{ and thus}$

$$x_1 = x_2$$
.

Let G_1 and G_2 be groups, and let $\phi : G_1 \to G_2$ be a function such that $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$. Then ϕ is one-to-one if and only if $\phi(x) = e_2$ implies $x = e_1$, for all $x \in G_1$.

Proof.

- ⇒: If ϕ is one-to-one, then only e_1 can map to e_2 . (Why?) On the other hand, suppose that $\phi(x) = e_2$ implies $x = e_1$, for all $x \in G_1$.
- $\Leftarrow: \text{ If } \phi(x_1) = \phi(x_2) \text{ for some } x_1, x_2 \in G_1, \text{ then} \\ \phi(x_1 * x_2^{-1}) = \phi(x_1) \cdot \phi(x_2^{-1}) = \phi(x_1) \cdot (\phi(x_2))^{-1} = \phi(x_2) \cdot (\phi(x_2))^{-1} = e_2, \\ \text{ and hence } x_1 * x_2^{-1} = e_1, \text{ and thus}$

Isomorphisms

$$x_1 = x_2$$
.

This shows that ϕ is one-to-one.

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m \neq 0 \right\}$$
 under matrix multiplication.

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m \neq 0 \right\}$$
 under matrix multiplication.

Define a function $\phi: \mathcal{G}_1 \to \mathcal{G}_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$$

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m \neq 0 \right\}$$
 under matrix multiplication.

Define a function $\phi: \mathcal{G}_1 \to \mathcal{G}_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$$

Verify: $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$.

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m \neq 0 \right\}$$
 under matrix multiplication.

Define a function $\phi: \mathcal{G}_1 \to \mathcal{G}_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$$

Verify: $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$. First, for any $x \in \mathbf{R}$, we have $f_{m_1,b_1} \circ f_{m_2,b_2}(x) =$

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m \neq 0 \right\}$$
 under matrix multiplication.

Define a function $\phi: G_1 \rightarrow G_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$$

Verify: $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$. First, for any $x \in \mathbf{R}$, we have $f_{m_1,b_1} \circ f_{m_2,b_2}(x) = f_{m_1,b_1}(f_{m_2,b_2}(x)) =$

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m \neq 0 \right\}$$
 under matrix multiplication.

Define a function $\phi: G_1 \rightarrow G_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$$

Verify: $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$. First, for any $x \in \mathbf{R}$, we have $f_{m_1,b_1} \circ f_{m_2,b_2}(x) = f_{m_1,b_1}(f_{m_2,b_2}(x)) = f_{m_1,b_1}(m_2x + b_2) =$

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m \neq 0 \right\}$$
 under matrix multiplication.

Define a function $\phi: G_1 \rightarrow G_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$$

Verify: $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$. First, for any $x \in \mathbf{R}$, we have $f_{m_1,b_1} \circ f_{m_2,b_2}(x) = f_{m_1,b_1}(f_{m_2,b_2}(x)) = f_{m_1,b_1}(m_2x + b_2) = m_1(m_2x + b_2) + b_1 =$

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m \neq 0 \right\}$$
 under matrix multiplication.

Define a function $\phi: G_1 \rightarrow G_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$$

Verify: $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$. First, for any $x \in \mathbf{R}$, we have $f_{m_1,b_1} \circ f_{m_2,b_2}(x) = f_{m_1,b_1}(f_{m_2,b_2}(x)) = f_{m_1,b_1}(m_2x + b_2) = m_1(m_2x + b_2) + b_1 = m_1m_2x + (m_1b_2 + b_1)$.

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ egin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m
eq 0
ight\}$$
 under matrix multiplication.

Define a function $\phi: G_1 \rightarrow G_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$$

Verify: $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$. First, for any $x \in \mathbf{R}$, we have $f_{m_1,b_1} \circ f_{m_2,b_2}(x) = f_{m_1,b_1}(f_{m_2,b_2}(x)) = f_{m_1,b_1}(m_2x + b_2) = m_1(m_2x + b_2) + b_1 = m_1m_2x + (m_1b_2 + b_1)$. It follows that $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = m_1(m_2x + b_2) = m_1(m_2m_2) = m_1(m_2m_$

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m \neq 0 \right\}$$
 under matrix multiplication.

Define a function $\phi: G_1 \rightarrow G_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$$

Verify: $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$. First, for any $x \in \mathbf{R}$, we have $f_{m_1,b_1} \circ f_{m_2,b_2}(x) = f_{m_1,b_1}(f_{m_2,b_2}(x)) = f_{m_1,b_1}(m_2x + b_2) = m_1(m_2x + b_2) + b_1 = m_1m_2x + (m_1b_2 + b_1)$. It follows that $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1m_2,m_1b_2+b_1}) =$

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \, \middle| \, m \neq 0 \right\}$$
 under matrix multiplication.

Define a function $\phi: G_1 \rightarrow G_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$$

Verify: $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$. First, for any $x \in \mathbf{R}$, we have $f_{m_1,b_1} \circ f_{m_2,b_2}(x) = f_{m_1,b_1}(f_{m_2,b_2}(x)) = f_{m_1,b_1}(m_2x + b_2) = m_1(m_2x + b_2) + b_1 = m_1m_2x + (m_1b_2 + b_1)$. It follows that $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1m_2,m_1b_2+b_1}) = \begin{bmatrix} m_1m_2 & m_1b_2 + b_1 \\ 0 & 1 \end{bmatrix}$

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ egin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m
eq 0
ight\}$$
 under matrix multiplication.

Define a function $\phi: G_1 \rightarrow G_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$$

Verify: $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$. First, for any $x \in \mathbf{R}$, we have $f_{m_1,b_1} \circ f_{m_2,b_2}(x) = f_{m_1,b_1}(f_{m_2,b_2}(x)) = f_{m_1,b_1}(m_2x + b_2) = m_1(m_2x + b_2) + b_1 = m_1m_2x + (m_1b_2 + b_1)$. It follows that $\phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1m_2,m_1b_2+b_1}) = \begin{bmatrix} m_1m_2 & m_1b_2 + b_1 \\ 0 & 1 \end{bmatrix}$ And also $\phi(f_{m_1,b_1})\phi(f_{m_2,b_2}) = \begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m_2 & b_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} m_1m_2 & m_1b_2 + b_1 \\ 0 & 1 \end{bmatrix}$
Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ egin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m
eq 0
ight\}$$
 under matrix multiplication.

Define a function $\phi: \mathcal{G}_1 \to \mathcal{G}_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}.$$

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ egin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m
eq 0
ight\}$$
 under matrix multiplication.

Define a function $\phi: \mathcal{G}_1 \to \mathcal{G}_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}.$$

Verify: $\checkmark \phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$.

• well-defined: √ (Why?) [

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ egin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m
eq 0
ight\}$$
 under matrix multiplication.

Define a function $\phi: \mathcal{G}_1 \to \mathcal{G}_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}.$$

Verify: $\checkmark \phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$.

• well-defined: $\sqrt{(Why?)} [m \neq 0]$

one-to-one:

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ egin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m
eq 0
ight\}$$
 under matrix multiplication.

Define a function $\phi: \mathcal{G}_1 \to \mathcal{G}_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}.$$

Verify: $\checkmark \phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$.

• well-defined: \checkmark (Why?) [$m \neq 0$]

• one-to-one: If
$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} = e_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
,

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ egin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m
eq 0
ight\}$$
 under matrix multiplication.

Define a function $\phi: \mathcal{G}_1 \to \mathcal{G}_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}.$$

Verify: $\checkmark \phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$.

• well-defined: $\sqrt{\text{Why?}}$ [$m \neq 0$]

• one-to-one: If
$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} = e_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, then $m = 1, b = 0$.

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ egin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m
eq 0
ight\}$$
 under matrix multiplication.

Define a function $\phi: \mathcal{G}_1 \to \mathcal{G}_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}.$$

Verify: $\checkmark \phi(f_{m_1,b_1} \circ f_{m_2,b_2}) = \phi(f_{m_1,b_1})\phi(f_{m_2,b_2})$ for all $f_{m_1,b_1}, f_{m_2,b_2} \in G_1$.

- well-defined: $\sqrt{(Why?)} [m \neq 0]$
- one-to-one: If $\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} = e_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then m = 1, b = 0. It is easy to check that $f_{1,0} = e_1$. (Check it!) (

Yi

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ egin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m
eq 0
ight\}$$
 under matrix multiplication.

Define a function $\phi: \mathcal{G}_1 \to \mathcal{G}_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}.$$

- well-defined: $\sqrt{(Why?)} [m \neq 0]$
- one-to-one: If $\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} = e_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then m = 1, b = 0. It is easy to check that $f_{1,0} = e_1$. (Check it!) (By Proposition 5 \checkmark 1-1) • onto:

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ egin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m
eq 0
ight\}$$
 under matrix multiplication.

Define a function $\phi: \mathcal{G}_1 \to \mathcal{G}_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}.$$

- well-defined: $\sqrt{\text{Why?}}$ [$m \neq 0$]
- one-to-one: If $\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} = e_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then m = 1, b = 0. It is easy to check that $f_{1,0} = e_1$. (Check it!) (By Proposition 5 \checkmark 1-1) • onto: It is obvious by definition of ϕ .

Show that the group $G_1 = \{f_{m,b} : \mathbf{R} \to \mathbf{R} \mid f_{m,b}(x) = mx + b, m \neq 0\}$ of affine functions under composition of functions is isomorphic to the group

$$G_2 = \left\{ egin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \middle| m
eq 0
ight\}$$
 under matrix multiplication.

Define a function $\phi: \mathcal{G}_1 \to \mathcal{G}_2$ by

$$\phi(f_{m,b}) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}.$$

- well-defined: $\sqrt{\text{Why?}}$ [$m \neq 0$]
- one-to-one: If φ(f_{m,b}) = ^m b 0 1 = e₂ = ¹ 0 0 1, then m = 1, b = 0. It is easy to check that f_{1,0} = e₁. (Check it!) (By Proposition 5 √ 1-1)
 onto: It is obvious by definition of φ. Thus, φ is an isomorphism.

Note 3 (Proposition 3 in $\S3.3$)

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If $m, n \in \mathbf{Z}^+$ such that gcd(m, n) = 1, then $\mathbf{Z}_{mn} \cong \mathbf{Z}_m \times \mathbf{Z}_n$.

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If $m, n \in \mathbf{Z}^+$ such that gcd(m, n) = 1, then $\mathbf{Z}_{mn} \cong \mathbf{Z}_m \times \mathbf{Z}_n$.

Define $\phi: \mathbf{Z}_{mn} \to \mathbf{Z}_m \times \mathbf{Z}_n$ by

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If $m, n \in \mathbf{Z}^+$ such that gcd(m, n) = 1, then $\mathbf{Z}_{mn} \cong \mathbf{Z}_m \times \mathbf{Z}_n$.

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If $m, n \in \mathbf{Z}^+$ such that gcd(m, n) = 1, then $\mathbf{Z}_{mn} \cong \mathbf{Z}_m \times \mathbf{Z}_n$.

Define
$$\phi : \mathbf{Z}_{mn} \to \mathbf{Z}_m \times \mathbf{Z}_n$$
 by $\phi([x]_{mn}) = ([x]_m, [x]_n)$.

• If
$$a \equiv b \pmod{mn}$$
,

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If $m, n \in \mathbf{Z}^+$ such that gcd(m, n) = 1, then $\mathbf{Z}_{mn} \cong \mathbf{Z}_m \times \mathbf{Z}_n$.

Define $\phi : \mathbf{Z}_{mn} \to \mathbf{Z}_m \times \mathbf{Z}_n$ by $\phi([x]_{mn}) = ([x]_m, [x]_n)$.

• If $a \equiv b \pmod{mn}$, then $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$,

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If $m, n \in \mathbf{Z}^+$ such that gcd(m, n) = 1, then $\mathbf{Z}_{mn} \cong \mathbf{Z}_m \times \mathbf{Z}_n$.

Define $\phi : \mathbf{Z}_{mn} \to \mathbf{Z}_m \times \mathbf{Z}_n$ by $\phi([x]_{mn}) = ([x]_m, [x]_n)$.

• If $a \equiv b \pmod{mn}$, then $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$, and so ϕ is well-defined.

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If
$$m, n \in \mathbf{Z}^+$$
 such that $\gcd(m, n) = 1$, then $\mathbf{Z}_{mn} \cong \mathbf{Z}_m imes \mathbf{Z}_n$.

- If $a \equiv b \pmod{mn}$, then $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$, and so ϕ is well-defined.
- $\phi([x]_{mn} + [y]_{mn}) = \phi([x + y]_{mn}) = ([x + y]_m, [x + y]_n) = ([x]_m + [y]_m, [x]_n + [y]_n) = ([x]_m, [x]_n)([y]_m, [y]_n) = \phi([x]_{mn})\phi([y]_{mn})$

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If
$$m, n \in \mathbf{Z}^+$$
 such that $\gcd(m, n) = 1$, then $\mathbf{Z}_{mn} \cong \mathbf{Z}_m imes \mathbf{Z}_n$.

- If $a \equiv b \pmod{mn}$, then $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$, and so ϕ is well-defined.
- $\phi([x]_{mn} + [y]_{mn}) = \phi([x + y]_{mn}) = ([x + y]_m, [x + y]_n) = ([x]_m + [y]_m, [x]_n + [y]_n) = ([x]_m, [x]_n)([y]_m, [y]_n) = \phi([x]_{mn})\phi([y]_{mn})$
- If $\phi([x]_{mn}) = ([0]_m, [0]_n)$, then m|x, n|x. (Why?)

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If
$$m, n \in \mathbf{Z}^+$$
 such that $\gcd(m, n) = 1$, then $\mathbf{Z}_{mn} \cong \mathbf{Z}_m imes \mathbf{Z}_n$.

- If $a \equiv b \pmod{mn}$, then $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$, and so ϕ is well-defined.
- $\phi([x]_{mn} + [y]_{mn}) = \phi([x + y]_{mn}) = ([x + y]_m, [x + y]_n) = ([x]_m + [y]_m, [x]_n + [y]_n) = ([x]_m, [x]_n)([y]_m, [y]_n) = \phi([x]_{mn})\phi([y]_{mn})$
- If $\phi([x]_{mn}) = ([0]_m, [0]_n)$, then m|x, n|x. (Why?) So mn|x. (Why?)

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If
$$m, n \in \mathbf{Z}^+$$
 such that $\gcd(m, n) = 1$, then $\mathbf{Z}_{mn} \cong \mathbf{Z}_m imes \mathbf{Z}_n$.

- If $a \equiv b \pmod{mn}$, then $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$, and so ϕ is well-defined.
- $\phi([x]_{mn} + [y]_{mn}) = \phi([x + y]_{mn}) = ([x + y]_m, [x + y]_n) = ([x]_m + [y]_m, [x]_n + [y]_n) = ([x]_m, [x]_n)([y]_m, [y]_n) = \phi([x]_{mn})\phi([y]_{mn})$
- If $\phi([x]_{mn}) = ([0]_m, [0]_n)$, then m|x, n|x. (Why?) So mn|x. (Why?) It follows that $[x]_{mn} = [0]_{mn}$,

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If
$$m, n \in \mathbf{Z}^+$$
 such that $\gcd(m, n) = 1$, then $\mathbf{Z}_{mn} \cong \mathbf{Z}_m imes \mathbf{Z}_n$.

- If $a \equiv b \pmod{mn}$, then $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$, and so ϕ is well-defined.
- $\phi([x]_{mn} + [y]_{mn}) = \phi([x + y]_{mn}) = ([x + y]_m, [x + y]_n) = ([x]_m + [y]_m, [x]_n + [y]_n) = ([x]_m, [x]_n)([y]_m, [y]_n) = \phi([x]_{mn})\phi([y]_{mn})$
- If $\phi([x]_{mn}) = ([0]_m, [0]_n)$, then m|x, n|x. (Why?) So mn|x. (Why?) It follows that $[x]_{mn} = [0]_{mn}$, and so ϕ is one-to-one. (Why?)

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If
$$m, n \in \mathbf{Z}^+$$
 such that $\gcd(m, n) = 1$, then $\mathbf{Z}_{mn} \cong \mathbf{Z}_m imes \mathbf{Z}_n$.

- If $a \equiv b \pmod{mn}$, then $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$, and so ϕ is well-defined.
- $\phi([x]_{mn} + [y]_{mn}) = \phi([x + y]_{mn}) = ([x + y]_m, [x + y]_n) = ([x]_m + [y]_m, [x]_n + [y]_n) = ([x]_m, [x]_n)([y]_m, [y]_n) = \phi([x]_{mn})\phi([y]_{mn})$
- If $\phi([x]_{mn}) = ([0]_m, [0]_n)$, then m|x, n|x. (Why?) So mn|x. (Why?) It follows that $[x]_{mn} = [0]_{mn}$, and so ϕ is one-to-one. (Why?)
- Since $|\mathbf{Z}_{mn}| = |\mathbf{Z}_m \times \mathbf{Z}_n|$,

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If
$$m, n \in \mathbf{Z}^+$$
 such that $\gcd(m, n) = 1$, then $\mathbf{Z}_{mn} \cong \mathbf{Z}_m imes \mathbf{Z}_n$.

- If $a \equiv b \pmod{mn}$, then $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$, and so ϕ is well-defined.
- $\phi([x]_{mn} + [y]_{mn}) = \phi([x + y]_{mn}) = ([x + y]_m, [x + y]_n) = ([x]_m + [y]_m, [x]_n + [y]_n) = ([x]_m, [x]_n)([y]_m, [y]_n) = \phi([x]_{mn})\phi([y]_{mn})$
- If $\phi([x]_{mn}) = ([0]_m, [0]_n)$, then m|x, n|x. (Why?) So mn|x. (Why?) It follows that $[x]_{mn} = [0]_{mn}$, and so ϕ is one-to-one. (Why?)
- Since $|\mathbf{Z}_{mn}| = |\mathbf{Z}_m \times \mathbf{Z}_n|$, any one-to-one mapping must be onto.

Note 3 (Proposition 3 in $\S3.3$)

 $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Proposition 6

If
$$m, n \in \mathbf{Z}^+$$
 such that $gcd(m, n) = 1$, then $\mathbf{Z}_{mn} \cong \mathbf{Z}_m \times \mathbf{Z}_n$.

Define $\phi : \mathbf{Z}_{mn} \to \mathbf{Z}_m \times \mathbf{Z}_n$ by $\phi([x]_{mn}) = ([x]_m, [x]_n)$.

- If $a \equiv b \pmod{mn}$, then $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$, and so ϕ is well-defined.
- $\phi([x]_{mn} + [y]_{mn}) = \phi([x + y]_{mn}) = ([x + y]_m, [x + y]_n) = ([x]_m + [y]_m, [x]_n + [y]_n) = ([x]_m, [x]_n)([y]_m, [y]_n) = \phi([x]_{mn})\phi([y]_{mn})$
- If $\phi([x]_{mn}) = ([0]_m, [0]_n)$, then m|x, n|x. (Why?) So mn|x. (Why?) It follows that $[x]_{mn} = [0]_{mn}$, and so ϕ is one-to-one. (Why?)

• Since $|\mathbf{Z}_{mn}| = |\mathbf{Z}_m \times \mathbf{Z}_n|$, any one-to-one mapping must be onto.

Thus, ϕ is an isomorphism.