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Review

Subgroup H: No worry about associativity


Closure

Identity

Inverses

Corollary 7: ⇔ H is nonempty and ab−1 ∈ H for all a, b ∈ H
Corollary 8: add ”H is finite”⇔ H is nonempty and ab ∈ H,∀a, b ∈ H
Examples: Z ⊆ Q ⊆ R ⊆ C; R+ ⊆ R×; nZ ⊆ Z; SLn(R) ⊆ GLn(R).

Cyclic subgroup 〈a〉 is the smallest subgroup of G containing a ∈ G .
For example, 〈i〉 ⊆ C×; 〈2i〉 ⊆ C×; 〈(123)〉 ⊆ S3; 〈(12)〉 ⊆ S3.

G is cyclic if G = 〈a〉.
For example, Z; Zn; Z×5 . Not examples: Z×8 ;S3.

o(a) = |〈a〉|. If o(a) = n is finite, then ak = e ⇔ n|k for k ∈ Z.

Lagrange’s Theorem: If |G | = n <∞ and H ⊆ G , then |H|
∣∣n.

Corollary 20: o(a)|n for any a ∈ G . 99K Nice proof for Euler’s thm.
Corollary 21: Any group of prime order is cyclic (and so abelian).
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|G | = 4

Any group of order 2, 3, or 5 must be cyclic. (Why?)

Let |G | = 4 and a ∈ G with a 6= e. Then o(a) = 2 or o(a) = 4. (Why?)

(a) If o(a) = 4, then G = 〈a〉 = {e, a, a2, a3}.
(b) If there is no element of order 4, then o(a) = 2 for all a 6= e. So in the

multiplication table for G , e must occur down the main diagonal.

Fact 1

Each element must occur exactly once in each row and column.

By Fact 1, there is only one possible pattern for the table. (eg. Z×8 )
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|G | = 6

We know of two basic examples of groups of order 6:

(1) Z6: cyclic group. Its multiplication table is easy. (Check it!)
(2) S3: nonabelian. We have described it by explicitly listing the

permutations that belong to it. Here we will give another description:
Let e = (1), a = (123) and b = (12).⇒ a2 = (132), a3 = e, b2 = e.
Using the convention a0 = b0 = e, we can express each element of S3
in a unique way in the form aibj , for i = 0, 1, 2 and j = 0, 1. That is,

(1) = e, (123) = a, (132) = a2, (12) = b, (13) = ab, (23) = a2b.

Question 1

Question: What is ba? A: ba = a2b (Why?) (12)(123) = (23)

S3 = {e, a, a2, b, ab, a2b}, where a3 = e, b2 = e, ba = a2b.

Question 2

Question: What is ba2? ba2 = (ba)a = (a2b)a = a2(ba) = a2(a2b) = ab

Find its multiplication table. (Check it!)
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Multiplication Table for S3

S3 = {e, a, a2, b, ab, a2b}, where a3 = e, b2 = e, ba = a2b.

We also calculated ba2 = (ba)a = (a2b)a = a2(ba) = a2(a2b) = ab.

e a a2 b ab a2b

e e a a2 b ab a2b

a a a2 e ab a2b b

a2 a2 e a a2b b ab

b b a2b ab e a2 a

ab ab b a2b a e a2

a2b a2b ab b a2 a e
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Product of two subgroups

Recall: the intersection of subgroups of a group is again a subgroup.
If H and K are subgroups of a group G , then H ∩ K is the largest
subgroup of G that is contained in both H and K . On the other hand,
what is the smallest subgroup that contains both H and K?

Definition 2

Let G be a group, and let S and T be subsets of G . Then

ST = {x ∈ G | x = st for some s ∈ S , t ∈ T}.

If H and K are subgroups of G , then we call HK the product of H and K .

Question 3

Is the product HK a subgroup? A: NOT always. (When?)

If the operation of G is denoted additively, then we write H + K , and refer
to the sum of H and K .
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When the product HK is a subgroup?

Proposition 1

Let G be a group, and let H and K be subgroups of G. If h−1kh ∈ K for
all h ∈ H and k ∈ K, then HK is a subgroup of G

Proof.

(i) Closure: Let g1, g2 ∈ HK . Then g1 = h1k1 and g2 = h2k2.

g1g2 = (h1k1)(h2k2)=h1(h2h
−1
2 )k1h2k2 = h1h2(h−12 k1h2)k2

?
∈HK

We omit parentheses because of associativity.

(ii) Identity: e = e · e ∈ HK . (Why?)

(iii) Inverses: If g = hk for h ∈ H and k ∈ K . Then

g−1 = k−1h−1=(h−1h)k−1h−1 = h−1((h−1)−1k−1h−1)
?
∈HK

If G is abelian, then the product of any two subgroups is again a subgroup.

If G is a finite group, then |HK | = |H||K |/|H ∩ K |. (How to prove it?)
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If G is a finite group, then |HK | = |H||K |/|H ∩ K |. (How to prove it?)
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Proof of |HK | = |H ||K |/|H ∩ K |

H ∩ K is a subgroup of G . (Why?)

H ∩ K is a subgroup of H and a subgroup of K . (Why?)

For any element t ∈ H ∩ K , if hk ∈ HK , then we can write

hk = (ht)(t−1k)∈HK . (Why?)

This implies that every element in HK can be written in at least
|H ∩ K | different ways.

On the other hand, if hk = h′k ′ ∈ HK , then

h′−1h = k ′k−1 ∈ H ∩ K . (Why?)

This means that there exists t ∈ H ∩ K such that t = h′−1h = k ′k−1.
So h′ = ht−1 and k ′ = tk, i.e., h′k ′ = (ht−1)(tk) for some t ∈ H ∩K .

Thus, every element in HK can be written in exactly |H ∩K | different
ways. Therefore,

|HK | =
|H||K |
|H ∩ K |

.
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Examples

Example 3

G = Z×15,H = {[1], [11]},K = {[1], [4]}:

Then HK is a subgroup. (Why?)
[Z×15 is abelian] Computing all possible products in HK gives us

[1][1] = [1], [1][4] = [4], [11][1] = [11], [11][4] = [14],

and so HK = {[1], [4], [11], [14]} is a subgroup of order 4.
Let L = 〈[7]〉 = {[1], [4], [7], [13]}. Listing all of the distinct products:

HL = {[1], [2], [4], [7], [8], [11], [13], [14]} = Z×15.

Example 4 (aZ + bZ = (a, b)Z)

Let h ∈ H = aZ and k ∈ K = bZ. Let (a, b) = d . Claim: H + K = dZ.

H + K ⊆ dZ: (Why?) [h + k is a linear combination of a and b.]

dZ ⊆ H + K : (Why?) [d is a linear combination of a and b, so
d ∈ H + K . It implies that dZ ⊆ H + K . (Proposition 2 in §3.2 (b))]
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Direct product

Definition 5

Let G1 and G2 be groups. The set of all ordered pairs (x1, x2) such that
x1 ∈ G1 and x2 ∈ G2 is called the direct product of G1 and G2, denoted
by G1 × G2. That is,

G1 × G2 = {(x1, x2) | x1 ∈ G1 and x2 ∈ G2}

Proposition 2 (Let (G1, ∗) and (G2, ·) be groups.)

(a) The direct product G1 × G2 is a group under the operation defined for
all (a1, a2), (b1, b2) ∈ G1 × G2 by

(a1, a2)(b1, b2) = (a1 ∗ b1, a2 · b2).

(b) If a1 ∈ G1 and a2 ∈ G2 have orders n and m, respectively, then in
G1 × G2 the element (a1, a2) has order lcm[n,m].

Remark 1

If G1,G2 are finite groups, then |G1 × G2| = |G1| · |G2|.
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Proof of Proposition 2

(a) (i) Closure: The given operation defines a binary operation. (Check it!)
(ii) Associativity: For all (a1, a2), (b1, b2), (c1, c2) ∈ G1 × G2 we have

(a1, a2)((b1, b2)(c1, c2)) =(a1, a2)(b1 ∗ c1, b2 · c2)

=(a1 ∗ (b1 ∗ c1), a2 · (b2 · c2))

=((a1 ∗ b1) ∗ c1, (a2 · b2) · c2)

=(a1 ∗ b1, a2 · b2)(c1, c2)

=((a1, a2)(b1, b2))(c1, c2)

(iii) Identity: (e1, e2), where ei is the identity elements in Gi , i = 1, 2.
(iv) Inverses: (a1, a2)−1 = (a−1

1 , a−1
2 ). (Check it!)

(b) Let o(a1) = n, o(a2) = m. In G1 × G2, o((a1, a2)) is the smallest
positive power k s.t. (a1, a2)k = (e1, e2). To show : k = lcm[n,m].

(a1, a2)k = (ak1 , a
k
2) = (e1, e2)⇒ ak1 = e1, a

k
2 = e2⇒n|k ,m|k .(Why?)

k is the smallest positive integer s.t. n|k and m|k , so k = lcm[n,m].
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Example: Klein four-group

We give the addition table for Z2 × Z2 = {([0], [0]), ([1], [0]), ([0], [1]), ([1], [1])}:

([0], [0]) ([1], [0]) ([0], [1]) ([1], [1])

([0], [0]) ([0], [0]) ([1], [0]) ([0], [1]) ([1], [1])
([1], [0]) ([1], [0]) ([0], [0]) ([1], [1]) ([0], [1])
([0], [1]) ([0], [1]) ([1], [1]) ([0], [0]) ([1], [0])
([1], [1]) ([1], [1]) ([0], [1]) ([1], [0]) ([0], [0])

This group is usually called the Klein four-group.
The pattern in this table is the same as the table below.

e a b c

e e a b c
a a e c b
b b c e a
c c b a e

This group is characterized by the fact that it has order 4 and each
element except the identity has order 2.
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More Examples

Example 6

In the group Z× Z,

the subgroup generated by an element (m, n) consists
of all multiples k(m, n).
This subgroup cannot contain both of (1, 0) and (0, 1). (Check it!)
So no single element generates Z× Z. Thus, it is not cyclic.
Natural subgroups: 〈(1, 0)〉 and 〈(0, 1)〉. The “diagonal” subgroup 〈(1, 1)〉.

Example 7

Z2 × Z3 is cyclic. (Why?) [(1, 1) has order 6 (Why?)order= lcm[2, 3] = 6]
Z2 × Z4 is not cyclic. (Why?) [Note that |Z2 × Z4| = 2 · 4 = 8]
In the first component the possible orders are 1 and 2.
In the second component the possible orders are 1, 2, and 4.
The largest possible least common multiple we can have is 4, so there is
no element of order 8 and the group is not cyclic.

Proposition 3

Zn × Zm is cyclic if and only if gcd(n,m) = 1.
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Proof of Proposition 3: Zn × Zm is cyclic ⇔ (n,m) = 1.

Recall: A finite group G is cyclic if and only if o(x) = |G | for some x ∈ G .
⇒: Assume Zn × Zm is cyclic, we need to show (n,m) = 1.

There is an
element (a, b) ∈ Zn × Zm with o((a, b)) = nm since |Zn × Zm| = nm.
We also have o(a)|n and o(b)|m. (Why?) [Corollary 20 (a) in §3.2]
And we have o((a, b)) = lcm[o(a), o(b)]. (Why?) [Proposition 2 (b)]
Therefore, we must have o(a) = n and o(b) = m. Otherwise,

nm = o((a, b)) = lcm[o(a), o(b)] =
o(a) · o(b)

gcd(o(a), o(b))
≤ o(a) · o(b) < nm

It implies that gcd(o(a), o(b)) = gcd(n,m) = 1. (Why?)
⇐: Assume (n,m) = 1, consider the cyclic subgroup 〈([1]n, [1]m)〉. It is
easy to see that o([1]n) = n and o([1]m) = m. Again, we have

o(([1]n, [1]m)) = lcm[o([1]n), o([1]m)] = lcm[n,m] =
nm

(n,m)
= nm.

Therefore, Zn × Zm = 〈([1]n, [1]m)〉 since |Zn × Zm| = o(([1]n, [1]m)).
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Definition of a field

Definition 8

Let F be a set with two binary operations + and · with respective identity
elements 0 and 1, where 0 6= 1. Then F is called a field if

(i) the set of all elements of F is an abelian group under + ;

(ii) the set of all nonzero elements of F is an abelian group under · ;

(iii) a(b + c) = ab + ac and (a + b)c = ac + bc for all a, b, c ∈ F .

For example, Q,R,C,Zp, when p is a prime number. But Z is not a field.
Axiom (iii) lists the distributive laws, which give a connection between
addition and multiplication.

Proposition 4

For any element a ∈ F , we have a · 0 = 0 and 0 · a = 0.

Proof : Note that 0 is (not)in the multiplicative group (F×, ·), but in (F ,+).

0 + a · 0 = a · 0 = a · (0 + 0) = a · 0 + a · 0 ⇒ 0 = a · 0 (Why?)

A similar argument shows that 0 · a = 0 for all a ∈ F . (Check it!)
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GLn(F )

Definition 9

Let F be a field. The set of all invertible n × n matrices with entries in F
is called the general linear group of degree n over F , and is denoted by
GLn(F ).

Proposition 5

Let F be a field. Then GLn(F ) is a group under matrix multiplication.

(i) Well-definedness: If (aij) and (bij) are n × n matrices, then the

product (cij) with (i , j)-entries cij =
n∑

k=1

aikbkj .

If A,B ∈ GLn(F ), then AB ∈ GLn(F ). (Why?)

(ii) Associativity: X
(iii) Identity: The identity matrix In
(iv) Inverses: A−1 ∈ GLn(F ). (Why?) [definition of invertible matrix]
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Example 1: GL2(Z2)

We can check that |GL2(Z2)| = 6. These 6 elements are[
1 0
0 1

]
,

[
1 1
1 0

]
,

[
0 1
1 1

]
,

[
0 1
1 0

]
,

[
1 1
0 1

]
,

[
1 0
1 1

]
.

We simply use 0 and 1 to denote the congruence classes [0]2 and [1]2.
Note that the group GL2(Z2) is not abelian.

Proposition 6

|GL2(Zp)| = (p2 − 1)(p2 − p), where p is a prime number.

For the first row, there are p2 − 1 choices. (Why?)
−1 is because (0, 0) cannot be a choice.

For the second row, there are p2 − p choices. (Why?)
−p is because the scalars of the first row cannot be choices.
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Example 2: Quaternion group

Let Q be the following set of matrices in GL2(C) :

±
[

1 0
0 1

]
, ±

[
i 0
0 −i

]
, ±

[
0 1
−1 0

]
, ±

[
0 i
i 0

]
.

If we let

1 =

[
1 0
0 1

]
, i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
, k =

[
0 i
i 0

]
.

then computations show that we have the following identities:

i2 = j2 = k2 = −1;
ij = k, jk = i, ki = j; ji = −k, kj = −i, ik = −j.

Q is a subgroup of GL2(C). (Check it!) [Closure: X]
Q is not abelian (Why?) and is not cyclic (Why?).

−1 has order 2

±i,±j, and ±k have order 4
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Subgroup generated by S

Definition 10

Let S be a nonempty subset of the group G . A finite product of elements
of S and their inverses is called a word in S . The set of all words in S is
denoted by 〈S〉.

For example, for a, b, c ∈ S , the product a−1a−1bab−1acb−1cbc−1c−1.

Proposition 7

Let S be a nonempty subset of the group G. Then 〈S〉 is a subgroup of G,
and is equal to the intersection of all subgroups of G that contain S.

(i) If x and y are two words in S , then xy is again a word in S . X
(ii) e = aa−1 ∈ 〈S〉. A element a ∈ S always exists since S is nonempty.
(iii) x−1 ∈ 〈S〉: reverses the order and changes the sign of the exponent.

If S ⊆ H, where H is a subgroup of G , then it contains all words in S .
Therefore, 〈S〉 ⊆ H. It follows that 〈S〉 is the intersection of all subgroups
of G that contain S . That is, 〈S〉 is the smallest subgroup that contains S .
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