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Review

Group (G , ∗)


(i) Closure ↔ ∗
(ii) Associativity ↔ parentheses

(iii) Identity: Uniqueness by Associativity

(iv) Inverses: (a−1)−1 = a

Examples: (R×, ·), (Sym(S), ◦), (Mn(R),+matrix), (GLn(R), ·matrix)

Cancellation law

Abelian group: eg. (Z,+), (±1, ·), (Q×, ·), (Zn,+[a]n), (Z×n , ·[a]n)

Finite group (order) vs. Infinite group

Eg. Conjugacy ↔ Equivalence relation
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Definition

Definition 1

Let G be a group, and let H be a subset of G . Then H is called a
subgroup of G if H is itself a group, under the operation induced by G .

Example 2

Z ⊆ Q ⊆ R ⊆ C: each group is a subgroup of the next under ordinary addition.

Example 3

multiplicative (sub)groups of nonzero elements: {±1} ⊆ Q× ⊆ R× ⊆ C×.

We cannot include the set of nonzero integers in this diagram. (Why?)
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More examples

Example 4

The set of all multiples of a fixed positive integer n, denoted by

nZ = {x ∈ Z | x = nk for some k ∈ Z} is a subgroup of Z under addition.

(i) Closure: (Check it!) [a + b = nq + nk = n(q + k) for some q, k ∈ Z]
(ii) Associative law: X; (iii) Identity: 0 = n · 0; (iv) Inverses: its negative.

Example 5

R+ = {x ∈ R|x > 0} is a subgroup of R× under multiplication. (Check it!)
(i) if x , y > 0, then xy > 0; (ii) X; (iii) 1; (iv) 1/x > 0, since x > 0.

Example 6

The special linear group over R: SLn(R) = {A ∈ GLn(R)| det(A) = 1}
is a subgroup of GLn(R) under matrix multiplication. (Check it!)
(i) det(AB) = det(A) det(B); (ii) X; (iii) In; (iv) A−1, since det(A−1) = 1.
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A simpler way

Proposition 1

Let G be a group with identity element e, and let H be a subset of G.
Then H is a subgroup of G if and only if the following conditions hold:

(i) ab ∈ H for all a, b ∈ H;

(ii) e ∈ H;

(iii) a−1 ∈ H for all a ∈ H.

(⇒): (i) is trivial. (Why?);
(ii) Let e ′ be an identity element for H. To show : e ′ = e.

e ′e ′ = e ′ (Why?) and e ′e = e ′ (Why?) ⇒ e ′e ′ = e ′e ⇒ e ′ = e. (Why?)

(iii) If a ∈ H, then a must have an inverse b ∈ H. To show : a−1 = b.

In G , we have ab = e = aa−1, and then a−1 = b. ⇒ a−1 ∈ H.

(⇐): (i) Closure X; (ii) Associativity: If a, b, c ∈ H, then in G we have
a(bc) = (ab)c , and so also in H; (iii) Identity X; (iv) Inverses X.
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Consequences of Proposition 1

For any group G ,

the entire set G is certainly a subgroup;

the set {e} is always a subgroup of G , called the trivial subgroup.

Corollary 7

Let G be a group and let H be a subset of G. Then H is a subgroup of G
if and only if H is nonempty and ab−1 ∈ H for all a, b ∈ H.

(⇒): Nonempty: e ∈ H; If a, b ∈ H, then b−1 ∈ H and ab−1 ∈ H (Why?).
(⇐): Since H is nonempty, there is at least a ∈ H. Then e ∈ H (Why?).
So a−1 ∈ H since a−1 = ea−1 ∈ H. Finally, it follows from Proposition 1
that we must show that ab ∈ H for all a, b ∈ H. It can be achieved by

ab = a(b−1)−1∈ H. (Why?)

Note 1 (To show that the subset H is nonempty:)

The easiest way to do this is to show that H contains the identity element e.
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Finite subgroup

Corollary 8

Let G be a group, and let H be a finite, nonempty subset of G. Then H is
a subgroup of G if and only if ab ∈ H for all a, b ∈ H.

Proof.

(⇒): Trivial.
(⇐): By previous corollary, it suffices to show b−1 ∈ H for all b ∈ H.
Given b ∈ H, consider the powers of b:

{b, b2, b3, . . .}

These must all belong to H. (Why?)
But since H is a finite set, they cannot all be distinct. There must be
some repetition, say bn = bm for some positive integers n > m. Then
bn−m = e. (Why?) Either b = e or n −m > 1, and in the second case we
then have bbn−m−1 = e, which shows that b−1 = bn−m−1.
Thus b−1 can be expressed as a positive power of b, which must belong to H.
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then have bbn−m−1 = e, which shows that b−1 = bn−m−1.
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Examples

Example 9 (Subgroups of S3)

The subset {(1), (123), (132)} is closed under multiplication.
It follows from Corollary 8 that this subset is a subgroup.

Some other subgroups: {(1), (12)}, {(1), (13)}, {(1), (23)}. (Why?)

Example 10

In the group GL2(R), let H be the following set of matrices:[
1 0
0 1

]
,

[
−1 0
0 1

]
,

[
1 0
0 −1

]
,

[
−1 0
0 −1

]
.

The product of any two of these matrices is again in the set H. (Check it!)
Since the set is finite and closed under matrix multiplication, Corollary 8
implies that it is a subgroup of GL2(R).
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One more example

Let H be the set of all diagonal matrices in the group G = GLn(R).

The diagonal entries of any element in H must all be nonzero. (Why?)

To show that H is a subgroup, we can no longer apply Corollary 8. (Why?)

It is probably easiest to just use Proposition 1.

(i) If a, b ∈ H, then ab ∈ H. (Check it!)

(ii) The identity matrix In ∈ H.

(iii) The inverse of a diagonal matrix a with nonzero entries is again a
diagonal matrix with nonzero entries. That is, a−1 ∈ H.
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Cyclic subgroup

Definition 11

Let G be a group, and let a be any element of G .
The set

〈a〉 = {x ∈ G | x = an for some n ∈ Z}

is called the cyclic subgroup generated by a.

The group G is called a cyclic group if there exists an element a ∈ G
such that G = 〈a〉. In this case a is called a generator of G .

Proposition 2

Let G be a group, and let a ∈ G.

(a) The set 〈a〉 is a subgroup of G.

(b) If K is any subgroup of G such that a ∈ K, then 〈a〉 ⊆ K.

(a): (i) am, an ∈ 〈a〉 ⇒ aman = am+n ∈ 〈a〉; (ii) a0 = e; (iii) (an)−1 = a−n.
(b): If K is any subgroup that contains a, then it must contain all positive
powers of a. (Why?) It also contains e = a0, and if n < 0 then an ∈ K . (Why?)
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Examples

The intersection of any collection of subgroups is again a subgroup.

Given any subset S of a group G , the intersection of all subgroups of G
that contain S is in fact the smallest subgroup that contains S .

Example 12

In the case S = {a}, by the previous proposition we obtain 〈a〉.
But, in the case S = {a, b} of a nonabelian group G , it becomes much
more complicated to describe the smallest subgroup of G that contains S .

Example 13

In the multiplicative group C×, consider the powers of i . We can easily get

〈i〉 = {1, i ,−1,−i}, which is a cyclic subgroup of C× of order 4.

The situation is quite different if we consider 〈2i〉, which is infinite:

〈2i〉 = {. . . , 1
16 ,

1
8 i ,−

1
4 ,−

1
2 i , 1, 2i ,−4,−8i , 16, . . .}.

Let z = cos 2π
n + i sin 2π

n . We can show that 〈z〉 = {zk | k ∈ Z} is the set
of complex nth roots of unity, which is a cyclic subgroup of C× of order n.
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More examples

When the operation is denoted additively rather than multiplicatively, we
must consider multiples rather than powers.

Example 14 ((Z,+) is cyclic)

Z = 〈1〉 = 〈−1〉. (Check it!) Z = 〈a〉 = {na | n ∈ Z} ⇒ a = ±1.

Example 15 ((Zn,+[a]n) is cyclic)

Zn = 〈[1]n〉. In fact, we can determine all possible generators. (How?)
Claim: Zn = 〈[a]n〉 if and only if [1]n is a multiple of [a]n. (Check it!)
Equivalently, ba ≡ 1 (mod n) for some b ∈ Z⇔ (a, n) = 1, i.e., [a]n ∈ Z×n .

Example 16 (Sometimes (Z×n , ·[a]n) is cyclic, sometimes not)

(a) Z×5 = 〈[2]5〉 = 〈[3]5〉 (Check it!) But [4]5 is not a generator. (Why?)

(b) Z×8 = {[1]8, [3]8, [5]8, [7]8} is not cyclic. (Why?) The square of each
element is [1], so 〈[3]〉 = {[1], [3]}, 〈[5]〉 = {[1], [5]}, 〈[7]〉 = {[1], [7]}.
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Revisit Example 9

The group S3 is not cyclic.

We can list all cyclic subgroups as follows:

〈(1)〉 ={(1)};
〈(12)〉 ={(1), (12)};
〈(13)〉 ={(1), (13)};
〈(23)〉 ={(1), (23)};
〈(123)〉 ={(1), (123), (132)};
〈(132)〉 ={(1), (132), (123)}.

Since no cyclic subgroup is equal to all of S3, it is not cyclic.

Remark 1

Every proper subgroup of S3 is cyclic, but S3 is not cyclic. Same with Z×8 .
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Order of an element

Definition 17 (Let a be an element of the group G .)

If there exists a positive integer n such that an = e, then a is said to have
finite order, and the smallest such positive integer is called the order of
a, denoted by o(a).

If there does not exist a positive integer n such that an = e, then a is said
to have infinite order.

Every element of a finite group must have finite order. (Why?)

Proposition 3 (Let a be an element of the group G .)

(a) If a has infinite order, then ak 6= am for all integers k 6= m.

(b) If a has finite order and k ∈ Z, then ak = e if and only if o(a)|k.

(c) If a has finite order o(a) = n, then for all integers k ,m, we have

ak = am if and only if k ≡ m (mod n).

Furthermore, |〈a〉| = o(a).
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Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?)

Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .

Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?)

Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?)

Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐:

If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n.

ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e

⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)

⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).

Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[

Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]

To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.

• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]

• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.

Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Proof of Proposition 3

(a) Let a have infinite order. Suppose that ak = am for k,m ∈ Z, with k ≥ m.

Then ak−m = e. (Why?) Thus, we must have k −m = 0. (Why?)

(b) ⇒: Let o(a) = n, and suppose that ak = e. To show : n|k .
Write k = nq + r , where 0 ≤ r < n. (Why?) Thus,

ar = ak−nq = aka−nq = ak(an)−q = e · e−q = e.

We must have r = 0. (Why?) Therefore k = nq.
⇐: If o(a)|k , then k = o(a) · q. Thus ak = (ao(a))q = eq = e.

(c) Let o(a) = n. ak = am ⇔ ak−m = e⇔n|(k −m)⇔ k ≡ m (mod n).
Claim: The subset S = {e, a, . . . , an−1} is a subgroup. (Why?)[Cor. 8]
To show : S = 〈a〉.
• Since a ∈ S , then 〈a〉 ⊆ S . (Why?) [Proposition 2]
• On the other hand, S ⊆ 〈a〉 by the definition of 〈a〉.
Thus |〈a〉| = |S | = o(a).

Yi Subgroups May 18-19, 2020 15 / 21



Lagrange’s Theorem

Theorem 18 (Lagrange)

If H is a subgroup of the finite group G, then |H| is a divisor of |G |.

To prove it, we need the following lemma:

Lemma 19 (Let H be a subgroup of the group G .)

For a, b ∈ G define a ∼ b if ab−1 ∈ H. Then ∼ is an equivalence relation.

Proof of Lemma 19:

(i) Reflexive: a ∼ a since aa−1 = e ∈ H.
(ii) Symmetric: If a ∼ b, then ab−1 ∈ H.⇒ ba−1 = (ab−1)−1 ∈ H.

(iii) Transitive: If a ∼ b and b ∼ c , then ab−1 ∈ H and bc−1 ∈ H. Thus,

ac−1 = (ab−1)(bc) ∈ H. (Why?)

If the operation is denoted additively, then define a ∼ b if a + (−b) ∈ H.
This is usually written as a ∼ b if a− b ∈ H. For example, consider G = Z
and H is the subgroup nZ: a ≡ b (mod n)⇔ n|(a− b)⇔ a− b ∈ nZ.
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Proof of Lagrange’s Theorem

Let H be a subgroup of the finite group G , with |G | = n and |H| = m.

Let ∼ denote the equivalence relation defined in the previous lemma, i.e.,

For a, b ∈ G , define a ∼ b if ab−1 ∈ H.

For any a ∈ G , let [a] = {b ∈ G |b ∼ a} denote the equivalence class of a.
Consider the function ρa : H → [a] defined by ρa(h) = ha for all h ∈ H.
Claim: The function ρa a one-to-one correspondence between H and [a].

(i) The codomain of ρa is correct: If h ∈ H, then ρa(h) = ha ∈ [a]. (Why?)

(ii) one-to-one: For h, k ∈ H, if ρa(h) = ρa(k), then ha = ka.⇒ h = k .

(iii) onto: If b ∈ [a], then ba−1 = h for some h ∈ H.⇒ b = ha = ρa(h).

Since the equivalence classes of ∼ partition G , each element of G belongs
to precisely one of the equivalence classes. We have shown that each
equivalence class [a] has m elements. (Why?)
Counting the elements of G according to the distinct equivalence classes,
then we get n = mt, where t is the number of distinct equivalence classes.
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Example: G = S3

(1) Let H = 〈(123)〉 = {(1), (123), (132)}.

By definition, the elements of H form the first equivalence class.
Any other equivalence class must be disjoint from the first one and
have the same number of elements, so the only possibility is that the
remaining elements of G must form a second equivalence class:

{(12), (13), (23)}.
(2) Let K = 〈(12)〉 = {(1), (12)}.

So the equivalence classes must each contain two elements.
We can find the equivalence class of a ∈ G by multiplying it on the
left by all elements of K . (Why?) [ρa : H → [a]; ρa(h) = ha,∀h ∈ H.]
If a = (123), then (1)(123) = (123) and (12)(123) = (23).
And the remaining two elements form the third equivalence class. So
the ∼ defined by the subgroup K determines three equivalence classes:

{(1), (12)}, {(123), (23)}, {(132), (13)}.
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Corollaries

The converse of Lagrange’s theorem is false. (See an example in §3.6.)

Corollary 20

Let G be a finite group of order n.

(a) For any a ∈ G, o(a) is a divisor of n.

(b) For any a ∈ G , an = e.

(a) 〈a〉 is a subgroup and |〈a〉| = o(a)⇒ o(a)|n. (Why?)
(b) It follows from part (a) immediately.

Corollary 21

Any group of prime order is cyclic.

Proof.

Let G be a group of order p, where p is a prime number. Let a ∈ G and
a 6= e. Then |〈a〉| 6= 1, and so |〈a〉| must be p. (Why?)
This implies that 〈a〉 = G , and thus G is cyclic.
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Corollaries
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Examples

Example 22 (Euler’s theorem: If (a, n) = 1, then aϕ(n) ≡ 1 (mod n))

Let G = Z×n , the group of units modulo n. We know that |G | = ϕ(n).
It follows from Corollary 20 (b) that [a]ϕ(n) = [1] for any [a] ∈ G .

Example 23 (aHa−1 is a subgroup of G .)

Let H be any subgroup of G and a fixed element a ∈ G . We will show
that aHa−1 = {g ∈ G | g = aha−1 for some h ∈ H} is a subgroup of G .

(i) Closure: Let gi = ahia
−1, i = {1, 2}.⇒ g1g2 = a(h1h2)a−1 ∈ aHa−1

(ii) Identity: e = aea−1 ∈ aHa−1

(iii) Inverses: g = aha−1 ∈ aHa−1 ⇒ g−1 = ah−1a−1 ∈ aHa−1. (Why?)
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One more example: nth powers

Let G be an abelian group, and let n be a fixed positive integer. Define

N = {g ∈ G | g = an for some a ∈ G}.

We will show that N is a subgroup of G .

Proof.

Use Corollary 7: To show N is nonempty and g1g
−1
2 ∈ N,∀g1, g2 ∈ N.

The identity element e ∈ N since e = en.

Let g1 = an1 and g2 = an2 for some a1, a2 ∈ G . So

g1g
−1
2 = an1(an2)−1 = an1(a−12 )n

!
=(a1a

−1
2 )n ∈ N.

The last equality “
!

= ” holds. (Why?)
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