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Review

@ Division Algorithm--» The Euclidean Algorithm (Matrix form)
e gcd(a, b) vs. lemla, b]--» ged(a, b) - lem[a, b] = ab
e (a, b)|(am + bn), linear combination of a and b

o Relatively prime (a, b) = 1<>am + bn =1 for some m,n € Z
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Review

@ Division Algorithm--» The Euclidean Algorithm (Matrix form)
gcd(a, b) vs. lem|a, b]--+ ged(a, b) - lem|a, b] = ab
(a, b)|(am + bn), linear combination of a and b

Relatively prime (a, b) = 1<am + bn = 1 for some m,n € Z

a = b (mod n)<n|(a— b)<a= b+ nq for some q € Z
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Review

@ Division Algorithm--» The Euclidean Algorithm (Matrix form)
gcd(a, b) vs. lem|a, b]--+ ged(a, b) - lem|a, b] = ab

(a, b)|(am + bn), linear combination of a and b

Relatively prime (a, b) = 1<am + bn = 1 for some m,n € Z

a = b (mod n)<n|(a— b)<a= b+ nq for some q € Z

If ac = ad (mod n) and (a,n) =1 (a€ Z))= c=d (mod n)
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Review

@ Division Algorithm--» The Euclidean Algorithm (Matrix form)
gcd(a, b) vs. lem|a, b]--+ ged(a, b) - lem|a, b] = ab

(a, b)|(am + bn), linear combination of a and b

Relatively prime (a, b) = 1<am + bn = 1 for some m,n € Z

a = b (mod n)<n|(a— b)<a= b+ nq for some q € Z

If ac = ad (mod n) and (a,n) =1 (a€ Z))= c=d (mod n)

Linear congruences ax = b (mod n) has a solution < (a, n)|b

Yi Permutations May 12, 2020 2/17



Review

@ Division Algorithm--» The Euclidean Algorithm (Matrix form)
gcd(a, b) vs. lem|a, b]--+ ged(a, b) - lem|a, b] = ab

(a, b)|(am + bn), linear combination of a and b

Relatively prime (a, b) = 1<am + bn = 1 for some m,n € Z

a = b (mod n)<n|(a— b)<a= b+ nq for some q € Z

If ac = ad (mod n) and (a,n) =1 (a€ Z))= c=d (mod n)

Linear congruences ax = b (mod n) has a solution < (a, n)|b

System of congruences: Chinese Remainder Theorem
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Review

@ Division Algorithm--» The Euclidean Algorithm (Matrix form)
gcd(a, b) vs. lem|a, b]--+ ged(a, b) - lem|a, b] = ab

(a, b)|(am + bn), linear combination of a and b

Relatively prime (a, b) = 1<am + bn = 1 for some m,n € Z

a = b (mod n)<n|(a— b)<a= b+ nq for some q € Z

If ac = ad (mod n) and (a,n) =1 (a€ Z))= c=d (mod n)
Linear congruences ax = b (mod n) has a solution < (a, n)|b
System of congruences: Chinese Remainder Theorem

[a]n = [b]n<=a = b (mod n)
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Review

@ Division Algorithm--» The Euclidean Algorithm (Matrix form)

e gcd(a, b) vs. lem|a, b]--+ gecd(a, b) - lem(a, b] = ab

e (a, b)|(am + bn), linear combination of a and b

o Relatively prime (a, b) = 1<<am + bn = 1 for some m,n € Z

@ a= b (mod n)<n|(a— b)<a= b+ nq for some g€ Z

e If ac = ad (mod n) and (a,n) =1 (a€ Z)) = ¢ = d (mod n)
@ Linear congruences ax = b (mod n) has a solution < (a, n)|b

@ System of congruences: Chinese Remainder Theorem
e [a], = [b]n=a = b (mod n)
@ Divisor of zero vs. Unit in Z,, (Cancellation law v")
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Review

Division Algorithm--» The Euclidean Algorithm (Matrix form)
gcd(a, b) vs. lem|a, b]--+ ged(a, b) - lem|a, b] = ab

(a, b)|(am + bn), linear combination of a and b

Relatively prime (a, b) = 1<am + bn = 1 for some m,n € Z

a = b (mod n)<n|(a— b)<a= b+ nq for some q € Z

If ac = ad (mod n) and (a,n) =1 (a€ Z))= c=d (mod n)
Linear congruences ax = b (mod n) has a solution < (a, n)|b
System of congruences: Chinese Remainder Theorem

[a]n = [b]n<=a = b (mod n)

Divisor of zero vs. Unit in Z, (Cancellation law v')

For (a,n) = 1, find [a]; 1

(i) the Euclidean algorithm; (ii) successive powers; (iii) trial and error
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Review

Division Algorithm--» The Euclidean Algorithm (Matrix form)
gcd(a, b) vs. lem|a, b]--+ ged(a, b) - lem|a, b] = ab

(a, b)|(am + bn), linear combination of a and b

Relatively prime (a, b) = 1<am + bn = 1 for some m,n € Z

a = b (mod n)<n|(a— b)<a= b+ nq for some q € Z

If ac = ad (mod n) and (a,n) =1 (a€ Z))= c=d (mod n)
Linear congruences ax = b (mod n) has a solution < (a, n)|b
System of congruences: Chinese Remainder Theorem

[a]n = [b]n<=a = b (mod n)

Divisor of zero vs. Unit in Z, (Cancellation law v')

For (a,n) = 1, find [a]; 1

(i) the Euclidean algorithm; (ii) successive powers; (iii) trial and error
Euler’s totient function ¢(n) = |Z)|

Yi Permutations May 12, 2020 2/17



Review

Division Algorithm--» The Euclidean Algorithm (Matrix form)
gcd(a, b) vs. lem|a, b]--+ ged(a, b) - lem|a, b] = ab

(a, b)|(am + bn), linear combination of a and b

Relatively prime (a, b) = 1<am + bn = 1 for some m,n € Z

a = b (mod n)<n|(a— b)<a= b+ nq for some q € Z

If ac = ad (mod n) and (a,n) =1 (a€ Z))= c=d (mod n)
Linear congruences ax = b (mod n) has a solution < (a, n)|b
System of congruences: Chinese Remainder Theorem

[a]n = [b]n<=a = b (mod n)

Divisor of zero vs. Unit in Z, (Cancellation law v')

For (a,n) = 1, find [a]; 1

(i) the Euclidean algorithm; (ii) successive powers; (iii) trial and error
Euler’s totient function ¢(n) = |Z)|

Euler's theorem --+ Fermat's “little” theorem
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Definitions and Notations

Definition 1

Let S be a set. A function o : S — S is called a permutation of S if o is
one-to-one and onto.

The set of all permutations of S will be denoted by Sym(S).

The set of all permutations of the set {1,2,...,n} will be denoted by S,,.
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Definitions and Notations

Definition 1

Let S be a set. A function o : S — S is called a permutation of S if o is
one-to-one and onto.

The set of all permutations of S will be denoted by Sym(S).

The set of all permutations of the set {1,2,...,n} will be denoted by S,,. )

Proposition. 1
(i) ifo,7 € Sym(S), then To € Sym(S);
(ii) 1s € Sym(S);

(iii) if o € Sym(S), then o=t € Sym(S).

v
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Definitions and Notations

Definition 1

Let S be a set. A function o : S — S is called a permutation of S if o is
one-to-one and onto.

The set of all permutations of S will be denoted by Sym(S).

The set of all permutations of the set {1,2,...,n} will be denoted by S,,. )

Proposition. 1
(i) ifo,7 € Sym(S), then To € Sym(S);
(ii) 1s € Sym(S);

(iii) if o € Sym(S), then o=t € Sym(S).

v

Notation: Given o € S,

(1 2 ... n
7o) o2 - o(n)
where under each integer i we write the image of i.
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IfS={1,2,3} ando : S — S is given by (1) =2,0(2) =3,0(3) =1:

(123
7= \2 3 1
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IfS={1,2,3} ando : S — S is given by (1) =2,0(2) =3,0(3) =1:

(123
7= \2 3 1

Proposition. 2
S, has n! elements.
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IfS={1,2,3} ando : S — S is given by o(1) = 2,0(2)

(1 2 3
7= \2 3 1

Proposition. 2
S, has n! elements.

Proof.

v
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IfS={1,2,3} ando : S — S is given by o(1) = 2,0(2)

(1 2 3
7= \2 3 1

Proposition. 2
S, has n! elements.

Proof.

For o(1), there are n choices.

v
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IfS={1,2,3} ando : S — S is given by o(1) = 2,0(2)

(1 2 3
7= \2 3 1

Proposition. 2
S, has n! elements.

S,,:{U‘U: <U(11) 0(22) U(n”)>}

For o(1), there are n choices.
For 0(2), there are n — 1 choices since the element that is assigned to o(1)
cannot be used again.

Proof.

v
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IfS={1,2,3} ando : S — S is given by o(1) = 2,0(2)

(1 2 3
7= \2 3 1

Proposition. 2
S, has n! elements.

S,,:{U‘U: <U(11) 0(22) U(n”)>}

For o(1), there are n choices.

For 0(2), there are n — 1 choices since the element that is assigned to o(1)
cannot be used again.

For 0(3), there are n — 2 choices, etc. |Sp|=n-(n—1)----2-1=nl. [

Proof.

v
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Suppose that

T e )

Then to compute the composition

7= (oot o) - o)
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Suppose that

T e (i)

Then to compute the composition

7= (oot o) - o)

Example. 2

1 2
Leta—<4 31 2) and7'—<2 3 4 1>.Computea7'and7'a.

—
N
w
N
w
N

v
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Suppose that

T e (i)

Then to compute the composition

UT_( 1 2 n >
- \a(r7(1)) o(r(2) - o(r(n))”
Example. 2

1 2 3 4 1 2 3 4
Leta—<4 31 2) and7'—<2 3 4 1>.Computea7'and7'a.

or(1):1 -2 -2 3= o7(1) = 3, etc. We obtain o1 = (1 23 4) :

31 2 4

v
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Suppose that

T e (i)

Then to compute the composition

7= (oot o) - o)

Example. 2
1 2 3 4 1 2 3 4
Let o0 = <4 31 2) and T = (2 3 4 1). Compute o7 and 10.
T o . 1 2 3 4
o7(1):1 — 2 — 3= 07(1) =3, etc. We obtain o7 = (3 1 o 4> .
o T . 1 2 3 4
70(l):1—4 — 1= 07(1) =1, etc. We obtain 7o = (1 4 2 3) .

v
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Inverse

2 n . . 1
in S, it is easy to compute o7

] _ 1
leeno—<a(1) o(2) - on)
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Inverse

Given o = 1 2 n in S, it is easy to compute o}
o) 0@ - o(m) " Y P |

Key idea: If (i) = j, then i = c~1(j). This can be accomplished easily by
simply turning the two rows of o upside down and then rearranging terms.
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Inverse

1 2 - n
o(1) o(2) -+ o(n)

Key idea: If (i) = j, then i = c~1(j). This can be accomplished easily by
simply turning the two rows of o upside down and then rearranging terms.

1

Given o = < > in S, it is easy to compute o7

o (1234 (4312 (1234
7=\4 31 2)""% T\1 23 4) 342 1)
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. . 1 2 3 45

Another notation: For example, consider o = 31 4 9 5> € Ss.
Now writing o = (1342) since o(1) = 3,0(3) = 4,0(4) =2, and 0(2) = 1.
In the new notation we do not need to mention o(5) since o(5) = 5.
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2
1 >€55

()]

. , 1 4
Another notation: For example, consider o = 3 z )

()]

Now writing o = (1342) since (1) = 3,0(3) = 4,0(4) =2, and 0(2) = 1.
In the new notation we do not need to mention o(5) since o(5) = 5.

Definition 2

Let S be a set, and let 0 € Sym(S). Then o is called a cycle of length k
if there exist elements a1, ap,...,ax € S such that

0'(31) = 32,0'(32) = as,... ,a(ak,l) = ak,a(ak) = a1, and

o(x) = x for all other elements x € S with x # a; for i =1,2,... k.

In this case we write o = (a1a2 - - - ak).
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1 3

31 4 > € S5
Now writing o = (1342) since (1) = 3,0(3) = 4,0(4) =2, and 0(2) = 1.
In the new notation we do not need to mention o(5) since o(5) = 5.

()]

. . 2 4
Another notation: For example, consider o = 1 5

()]

Definition 2

Let S be a set, and let 0 € Sym(S). Then o is called a cycle of length k
if there exist elements a1, ap,...,ax € S such that

0'(31) = 32,0'(32) = as,... ,a(ak,l) = ak,a(ak) = a1, and

o(x) = x for all other elements x € S with x # a; for i =1,2,... k.

In this case we write o = (a1a2 - - - ak).

We can also write o = (a2asz - --axai) or 0 = (a3 - - - axaiaz), etc.
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>€55

()]

. . 2 4
Another notation: For example, consider o = 1 z )

1
3

()]

Now writing o = (1342) since (1) = 3,0(3) = 4,0(4) =2, and 0(2) = 1.
In the new notation we do not need to mention o(5) since o(5) = 5.

Definition 2

Let S be a set, and let 0 € Sym(S). Then o is called a cycle of length k
if there exist elements a1, ap,...,ax € S such that

0'(31) = 32,0'(32) = as,... ,a(ak,l) = ak,a(ak) = a1, and

o(x) = x for all other elements x € S with x # a; for i =1,2,... k.

In this case we write o = (a1a2 - - - ak).

We can also write o = (a2asz - --axai) or 0 = (a3 - - - axaiaz), etc.
The notation for a cycle of length k > 2 can thus be written in k different
ways, depending on the starting point.
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1 2 3

31 4 > € S5
Now writing o = (1342) since (1) = 3,0(3) = 4,0(4) =2, and 0(2) = 1.
In the new notation we do not need to mention o(5) since o(5) = 5.

()]

. . 4
Another notation: For example, consider o = 5

()]

Definition 2

Let S be a set, and let 0 € Sym(S). Then o is called a cycle of length k
if there exist elements a1, ap,...,ax € S such that

0'(31) = 32,0'(32) = as,... ,a(ak,l) = ak,a(ak) = a1, and

o(x) = x for all other elements x € S with x # a; for i =1,2,... k.

In this case we write o = (a1a2 - - - ak).

We can also write o = (a2asz - --axai) or 0 = (a3 - - - axaiaz), etc.
The notation for a cycle of length k > 2 can thus be written in k different
ways, depending on the starting point.

We will use (1) to denote the identity permutation (or just use 1g).
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Example. 4

123 45 , _
G = <3 5 4 1 5) € Ss is a cycle of length 3, written (134).
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Example. 4

o= (!
(1
7= \3

g) € Ss is a cycle of length 3, written (134).

TN NN
A~ W AW
= B~ = B

g) € Ss is not a cycle, written (134)(25).

Example. 5

Let o = (1425) and 7 = (263) be cycles in S¢. Compute the product oT.
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Example. 4

2 3 45
o= <3 5 4 1 5) € Ss is a cycle of length 3, written (134).
1 2 3 45 . .
o= (3 5 4 1 2) € Ss is not a cycle, written (134)(25).
Example. 5
Let o = (1425) and 7 = (263) be cycles in S¢. Compute the product oT.
115 4=01(1) =4, etc. = o7 = (1425)(263) = (142635).
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Example. 4

2 3 45
o= <3 5 4 1 5) € Ss is a cycle of length 3, written (134).
1 2 3 45 . .
o= (3 5 4 1 2) € Ss is not a cycle, written (134)(25).
Example. 5
Let o = (1425) and 7 = (263) be cycles in S¢. Compute the product oT.
115 4=01(1) =4, etc. = o7 = (1425)(263) = (142635).

It is NOT true in general that the product of two cycles is again a cycle.
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Examples

Example. 4

= (3
=

Example. 5

g) € Ss is a cycle of length 3, written (134).

N NN
A~ W AW
= B~ = B

g) € Ss is not a cycle, written (134)(25).

Let o = (1425) and 7 = (263) be cycles in S¢. Compute the product oT.
1-51-54=07(1) =4, etc. = or = (1425)(263) = (142635).

It is NOT true in general that the product of two cycles is again a cycle.

Example. 6
Consider (1425) € Sg, we have (1425)(1425) = (12)(3)(45)(6) = (12)(45).
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Disjoint cycles

Definition 3

Let 0 = (a1ax---ak) and 7 = (b1by - - - by) be cycles in Sym(S), for a set
S. Then o and 7 are said to be disjoint if a; # b; for all 7, ;.
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Disjoint cycles

Let 0 = (a1ax---ak) and 7 = (b1by - - - by) be cycles in Sym(S), for a set
S. Then o and 7 are said to be disjoint if a; # b; for all 7, ;.

Remark. 1

It often happens that ot # 1o for two permutations o, T.
For example, in S3 we have (12)(13) = (132)#(123) = (13)(12).
If ot = 70, then we say that o and T commute.
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Disjoint cycles

Let 0 = (a1ax---ak) and 7 = (b1by - - - by) be cycles in Sym(S), for a set
S. Then o and 7 are said to be disjoint if a; # b; for all 7, ;.

It often happens that ot # 1o for two permutations o, T.
For example, in S3 we have (12)(13) = (132)#(123) = (13)(12).
If ot = 70, then we say that o and T commute.

\

Proposition. 3
Let S be any set. If o and T are disjoint cycles in Sym(S), then o1 = 70.
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Disjoint cycles

Let 0 = (a1ax---ak) and 7 = (b1by - - - by) be cycles in Sym(S), for a set
S. Then o and 7 are said to be disjoint if a; # b; for all 7, ;.

It often happens that ot # 1o for two permutations o, T.
For example, in S3 we have (12)(13) = (132)#(123) = (13)(12).
If ot = 70, then we say that o and T commute.

\

Proposition. 3

Let S be any set. If o and T are disjoint cycles in Sym(S), then o1 = 70.

Proof. Let o = (a1---ax) and 7 = (by - - - byy) be disjoint.
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Disjoint cycles

Let 0 = (a1ax---ak) and 7 = (b1by - - - by) be cycles in Sym(S), for a set
S. Then o and 7 are said to be disjoint if a; # b; for all 7, ;.

It often happens that ot # 1o for two permutations o, T.
For example, in S3 we have (12)(13) = (132)#(123) = (13)(12).
If ot = 70, then we say that o and T commute.

\

Proposition. 3

Let S be any set. If o and T are disjoint cycles in Sym(S), then o1 = 70.

Proof. Let o = (a1---ax) and 7 = (by - - - byy) be disjoint. For j < k, then
o7(aj) = o(aj) = aj+1 = 7(aj+1) = 7(0(aj)) because 7 leaves ay, ..., a fixed.

In case j = k, we use o(a;) = a1 = 7(a1).
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Disjoint cycles

Let 0 = (a1ax---ak) and 7 = (b1by - - - by) be cycles in Sym(S), for a set
S. Then o and 7 are said to be disjoint if a; # b; for all 7, ;.

v

It often happens that ot # 1o for two permutations o, T.
For example, in S3 we have (12)(13) = (132)#(123) = (13)(12).
If ot = 70, then we say that o and T commute.

\

Proposition. 3

Let S be any set. If o and T are disjoint cycles in Sym(S), then o1 = 70.

Proof. Let o = (a1---ax) and 7 = (by - - - byy) be disjoint. For j < k, then
o7(aj) = o(aj) = aj+1 = 7(aj+1) = 7(0(aj)) because 7 leaves ay, ..., a fixed.

In case j = k, we use o(a;) = a1 = 7(a1). A similar computation can be
given for b;.
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Disjoint cycles

Let 0 = (a1ax---ak) and 7 = (b1by - - - by) be cycles in Sym(S), for a set
S. Then o and 7 are said to be disjoint if a; # b; for all 7, ;.

Remark. 1

It often happens that ot # 1o for two permutations o, T.
For example, in S3 we have (12)(13) = (132)#(123) = (13)(12).
If ot = 70, then we say that o and T commute.

\

Proposition. 3

Let S be any set. If o and T are disjoint cycles in Sym(S), then o1 = 70.

Proof. Let o = (a1---ax) and 7 = (by - - - byy) be disjoint. For j < k, then
o7(aj) = o(aj) = aj+1 = 7(aj+1) = 7(0(aj)) because 7 leaves ay, ..., a fixed.

In case j = k, we use o(a;) = a1 = 7(a1). A similar computation can be
given for b;. If i appears in neither cycle, then both o and 7 leave it fixed. [
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Permutation in S,

For any set S, let o € Sym(S). Taking the composition of o with itself
any number of times still gives us a permutation; i.e., ¢' =00 ---0.
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Permutation in S,

For any set S, let o € Sym(S). Taking the composition of o with itself
any number of times still gives us a permutation; i.e., ¢' =00 ---0.
Define 0° = (1) = 15 and 0" = (¢") L. For all integers m, n, we have

Mg = gmtn and (c™" =™

Theorem 4

Yi Permutations May 12, 2020 10 / 17



Permutation in S,

For any set S, let o € Sym(S). Taking the composition of o with itself
any number of times still gives us a permutation; i.e., ¢' =00 ---0.

Define 0° = (1) = 15 and 0" = (¢") L. For all integers m, n, we have

Mg = gmtn and (c™" =™

Theorem 4

Every permutation in S, can be written as a product of disjoint cycles.
The cycles of length > 2 that appear in the product are unique.
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Permutation in S,

For any set S, let o € Sym(S). Taking the composition of o with itself
any number of times still gives us a permutation; i.e., ¢' =00 ---0.

Define 0° = (1) = 15 and 0" = (¢") L. For all integers m, n, we have

Mg = gmtn and (c™" =™

Theorem 4

Every permutation in S, can be written as a product of disjoint cycles.
The cycles of length > 2 that appear in the product are unique.

Sketch of proof: Let S = {1,2,...,n} and let 0 € S, = Sym(S).
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Permutation in S,

For any set S, let o € Sym(S). Taking the composition of o with itself
any number of times still gives us a permutation; i.e., ¢' =00 ---0.
Define 0° = (1) = 15 and 0" = (¢") L. For all integers m, n, we have

Mg = gmtn and (c™" =™

Theorem 4

Every permutation in S, can be written as a product of disjoint cycles.
The cycles of length > 2 that appear in the product are unique.

Sketch of proof: Let S = {1,2,...,n} and let 0 € S, = Sym(S).
Consider 1,0(1),0%(1),...: Since S has only n elements, we can find the
least positive exponent r such that o"(1) = 1. Then 1,0(1),...,0" (1)
are all distinct, giving us a cycle of length r: (10(1)0?(1)---0""1(1)).
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Permutation in S,

For any set S, let o € Sym(S). Taking the composition of o with itself
any number of times still gives us a permutation; i.e., ¢' =00 ---0.
Define 0° = (1) = 15 and 0" = (¢") L. For all integers m, n, we have

Mg = gmtn and (c™" =™

Theorem 4

Every permutation in S, can be written as a product of disjoint cycles.
The cycles of length > 2 that appear in the product are unique.

Sketch of proof: Let S = {1,2,...,n} and let 0 € S, = Sym(S).
Consider 1,0(1),0%(1),...: Since S has only n elements, we can find the
least positive exponent r such that 6"(1) = 1. Then 1,0(1),...,0"1(1)
are all distinct, giving us a cycle of length r: (10(1)0?(1)---0""1(1)).

e If r < n, let a be the least integer not in (1o(1)0?(1)---0 (1)) and
form the cycle (ao(a)o?(a)---0°"1(a)) in which s is the least positive
integer such that o°(a) = a.
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Permutation in S,

For any set S, let o € Sym(S). Taking the composition of o with itself
any number of times still gives us a permutation; i.e., ¢' =00 ---0.
Define 0° = (1) = 15 and 0" = (¢") L. For all integers m, n, we have

Mg = gmtn and (c™" =™

Theorem 4

Every permutation in S, can be written as a product of disjoint cycles.
The cycles of length > 2 that appear in the product are unique.

Sketch of proof: Let S = {1,2,...,n} and let 0 € S, = Sym(S).
Consider 1,0(1),0%(1),...: Since S has only n elements, we can find the
least positive exponent r such that 6"(1) = 1. Then 1,0(1),...,0"1(1)
are all distinct, giving us a cycle of length r: (10(1)0?(1)---0""1(1)).

e If r < n, let a be the least integer not in (1o(1)0?(1)---0 (1)) and
form the cycle (ao(a)o?(a)---0°"1(a)) in which s is the least positive
integer such that o°(a) = a.

o If r4+ s < n, etc. We continue in this way until we have exhausted S. [
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We have given an algorithm in the proof for finding the necessary cycles.

o1 =
N N
~N W
(o) JF 8
w o1
N

Leta=(

I 8) Applying the algorithm _ (15371(468).
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We have given an algorithm in the proof for finding the necessary cycles.

o 1 2 3 45 6 7 8 Applying the algorithm .
Let o = (5 > 76 3 8 1 4> — o = (1537)(468).
Example. 8

Consider the cycles (25143) and (462) in Se:
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We have given an algorithm in the proof for finding the necessary cycles.

o 1 2 3 45 6 7 8 Applying the algorithm .
Let o = <5 > 76 3 8 1 4> — o = (1537)(468).
Example. 8

Consider the cycles (25143) and (462) in Se: (25143)(462) = (1465)(23).
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Order of a permutation, |

If o = (a1a2---am) is a cycle of length m, then applying o m times to any
aj,i=1,2,...,m gives a;. Thus ¢™ = (1).
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Order of a permutation, |

If o = (a1a2---am) is a cycle of length m, then applying o m times to any
aj,i=1,2,...,m gives a;. Thus ¢™ = (1).

Furthermore, m is the smallest positive power of o that equals the identity,
since 0X(a1) = ak1 for L < k < m.

Definition 5
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Order of a permutation, |

If o = (a1a2---am) is a cycle of length m, then applying o m times to any
aj,i=1,2,...,m gives a;. Thus ¢™ = (1).

Furthermore, m is the smallest positive power of o that equals the identity,
since 0X(a1) = ak1 for L < k < m.

Definition 5

Let o € S,. The least positive integer m such that ¢ = (1) is called the
order of 0.
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Order of a permutation, |

If o = (a1a2---am) is a cycle of length m, then applying o m times to any
aj,i=1,2,...,m gives a;. Thus ¢™ = (1).

Furthermore, m is the smallest positive power of o that equals the identity,
since 0X(a1) = ak1 for L < k < m.

Definition 5

Let o € S,. The least positive integer m such that ¢ = (1) is called the
order of 0.

It follows from the above definition that a cycle of length m has order m.

Proposition. 4
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Order of a permutation, |

If o = (a1a2---am) is a cycle of length m, then applying o m times to any
aj,i=1,2,...,m gives a;. Thus ¢™ = (1).

Furthermore, m is the smallest positive power of o that equals the identity,
since 0X(a1) = ak1 for L < k < m.

Definition 5

Let o € S,. The least positive integer m such that ¢ = (1) is called the
order of 0.

It follows from the above definition that a cycle of length m has order m.

Proposition. 4

Let o € S, have order m. Then for all integers i, j we have o' = o/ if and
only if i = j (mod m).
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Order of a permutation, |

If o = (a1a2---am) is a cycle of length m, then applying o m times to any
aj,i=1,2,...,m gives a;. Thus ¢™ = (1).

Furthermore, m is the smallest positive power of o that equals the identity,
since 0X(a1) = ak1 for L < k < m.

Definition 5

Let o € S,. The least positive integer m such that ¢ = (1) is called the
order of 0.

It follows from the above definition that a cycle of length m has order m.

Proposition. 4

Let o € S, have order m. Then for all integers i, j we have o' = o/ if and
only if i = j (mod m).

Proof:(<=) i = j+ mt for some t € Z. Hence o/ = /™™ = oJ(0™)t = o/,
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Order of a permutation, |

If o = (a1a2---am) is a cycle of length m, then applying o m times to any
aj,i=1,2,...,m gives a;. Thus ¢™ = (1).

Furthermore, m is the smallest positive power of o that equals the identity,
since 0X(a1) = ak1 for L < k < m.

Definition 5

Let o € S,. The least positive integer m such that ¢ = (1) is called the
order of 0.

It follows from the above definition that a cycle of length m has order m.

Proposition. 4

Let o € S, have order m. Then for all integers i, j we have o' = o/ if and
only if i = j (mod m).

Proof:(<=) i = j+ mt for some t € Z. Hence o/ = /™™ = oJ(0™)t = o/,
(=)o =(1),writei—j=mq+r. So (1) =M =¢"=r=0. [J
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Order of a permutation, Il

Proposition. 5
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Order of a permutation, Il

Proposition. 5

Let o € S, be written as a product of disjoint cycles. Then the order of o
is the least common multiple of the lengths of its disjoint cycles.
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Order of a permutation, Il

Proposition. 5

Let o € S, be written as a product of disjoint cycles. Then the order of o
is the least common multiple of the lengths of its disjoint cycles.

Proof: Let o = (a1 - - - am) with order m. And 0% = (1) if and only if m|k.
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Order of a permutation, Il

Proposition. 5

Let o € S, be written as a product of disjoint cycles. Then the order of o
is the least common multiple of the lengths of its disjoint cycles.

Proof: Let o = (a1 - - - am) with order m. And 0% = (1) if and only if m|k.

If o = (a1a2---am)(b1bz--- by) is a product of two disjoint cycles, then
o/ = (a1 am)(b1--- b)Y since (a1 ---am) commutes with (by - - - b;).
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Order of a permutation, Il

Proposition. 5

Let o € S, be written as a product of disjoint cycles. Then the order of o
is the least common multiple of the lengths of its disjoint cycles.

Proof: Let o = (a1 - - - am) with order m. And 0% = (1) if and only if m|k.

If o = (a1a2---am)(b1bz--- by) is a product of two disjoint cycles, then
o/ = (a1 am)(b1--- b)Y since (a1 ---am) commutes with (by - - - b;).

If o/ = (1), then (a1---am) = (b1--- b)Y = (1) since (ar---am) fixes
each b; and (by --- b, ) fixes each a;.
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Order of a permutation, Il

Proposition. 5

Let o € S, be written as a product of disjoint cycles. Then the order of o
is the least common multiple of the lengths of its disjoint cycles.

Proof: Let o = (a1 - - - am) with order m. And 0% = (1) if and only if m|k.

If o = (a1a2---am)(b1bz--- by) is a product of two disjoint cycles, then
o/ = (a1 am)(b1--- b)Y since (a1 ---am) commutes with (by - - - b;).

If o/ = (1), then (a1---am) = (b1--- b)Y = (1) since (ar---am) fixes
each b; and (by --- b, Y fixes each a;. This holds if and only if m|j and r|j,
and then [m, r]|;.
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Order of a permutation, Il

Proposition. 5

Let o € S, be written as a product of disjoint cycles. Then the order of o
is the least common multiple of the lengths of its disjoint cycles.

Proof: Let o = (a1 - - - am) with order m. And 0% = (1) if and only if m|k.

If o = (a1a2---am)(b1bz--- by) is a product of two disjoint cycles, then
o/ = (a1 am)(b1--- b)Y since (a1 ---am) commutes with (by - - - b;).

If o/ = (1), then (a1---am) = (b1--- b)Y = (1) since (ar---am) fixes
each b; and (by --- b, Y fixes each a;. This holds if and only if m|j and r|j,
and then [m, r]|j. The smallest such j is thus [m, r]. --» the general case.
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Order of a permutation, Il

Proposition. 5

Let o € S, be written as a product of disjoint cycles. Then the order of o
is the least common multiple of the lengths of its disjoint cycles.

Proof: Let o = (a1 - - - am) with order m. And 0% = (1) if and only if m|k.

If o = (a1a2---am)(b1bz--- by) is a product of two disjoint cycles, then
o/ = (a1 am)(b1--- b)Y since (a1 ---am) commutes with (by - - - b;).
If o/ = (1), then (a1---am) = (b1--- b)Y = (1) since (ar---am) fixes
each b; and (by --- b, ) fixes each a;. This holds if and only if m|j and r|j,
and then [m, r]|j. The smallest such j is thus [m, r]. --» the general case.

Example. 9
(1537)(284) has order 12 in Sg. (153)(284697) has order 6 in Sg.
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Inverse revisited

We merely reverse the order of the cycle to compute the inverse of a cycle:

(a132---a,)(arar—1---a1) = (1).
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Inverse revisited

We merely reverse the order of the cycle to compute the inverse of a cycle:

(a132---a,)(arar—1---a1) = (1).

1 1

The inverse of the product o7 of two permutations is 77 0~ " since
(er)(r o ) =c(rr o t=0(l)o =007t = (1)
and similarly

(r7 o Y (oT) = (1).
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Inverse revisited

We merely reverse the order of the cycle to compute the inverse of a cycle:

(a132---a,)(arar—1---a1) = (1).

The inverse of the product o7 of two permutations is 77 1o 1 since
(er)(r o ) =c(rr o t=0(l)o =007t = (1)

and similarly

Thus we have
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Inverse revisited

We merely reverse the order of the cycle to compute the inverse of a cycle:

(a132---a,)(arar—1---a1) = (1).
The inverse of the product o7 of two permutations is 77 1o 1 since

(or)(r o) = o(rr ot = o(1)ot = 007t = (1)
and similarly
(to ) (or) = (1)
Thus we have
[(ar---a)(br- bm)] "t = (bm---b1)(a, - a1).

Note that if the cycles are disjoint, then they commute, and so the
inverses do not need to be written in reverse order.
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Transposition
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Transposition

Definition 6
A cycle (aiap) of length two is called a transposition.

Proposition. 6
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Definition 6

A cycle (aiap) of length two is called a transposition.

Proposition. 6

Any permutation in S,,, where n > 2, can be written as a product of
transpositions.

Yi Permutations May 12, 2020 15 / 17



Definition 6

A cycle (aiap) of length two is called a transposition.

Proposition. 6

Any permutation in S,,, where n > 2, can be written as a product of
transpositions.

Proof: Any o can be expressed as a product of disjoint cycles = only need
to show that any cycle can be expressed as a product of transpositions.
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Transposition

Definition 6
A cycle (aiap) of length two is called a transposition.

Proposition. 6
Any permutation in S,,, where n > 2, can be written as a product of
transpositions.

Proof: Any o can be expressed as a product of disjoint cycles = only need
to show that any cycle can be expressed as a product of transpositions.
The identity (1) = (12)(21).
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Transposition

Definition 6
A cycle (aiap) of length two is called a transposition.

Proposition. 6

Any permutation in S,,, where n > 2, can be written as a product of
transpositions.

Proof: Any o can be expressed as a product of disjoint cycles = only need

to show that any cycle can be expressed as a product of transpositions.

The identity (1) = (12)(21).

For any other permutation, we can give an explicit computation:
(araz---ar—1ar) =(ar—1ar)(ar—2ar) - - - (azar)(azar)(aiar)

=(a1a2)(a2a3) - - (ar—2ar-1)(ar-12ar).

Example. 10
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Transposition

Definition 6
A cycle (aiap) of length two is called a transposition.

Proposition. 6
Any permutation in S,,, where n > 2, can be written as a product of
transpositions.

Proof: Any o can be expressed as a product of disjoint cycles = only need

to show that any cycle can be expressed as a product of transpositions.

The identity (1) = (12)(21).

For any other permutation, we can give an explicit computation:
(araz---ar—1ar) =(ar—1ar)(ar—2ar) - - - (azar)(azar)(aiar)

=(a1a2)(a2a3) - - (ar—2ar-1)(ar-12ar).

Example. 10
(25378) = (78)(38)(58)(28) = (25)(53)(37)(78).
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Transposition

Definition 6
A cycle (aiap) of length two is called a transposition.

Proposition. 6
Any permutation in S,,, where n > 2, can be written as a product of
transpositions.

Proof: Any o can be expressed as a product of disjoint cycles = only need

to show that any cycle can be expressed as a product of transpositions.

The identity (1) = (12)(21).

For any other permutation, we can give an explicit computation:
(araz---ar—1ar) =(ar—1ar)(ar—2ar) - - - (azar)(azar)(aiar)

=(a1a2)(a2a3) - - (ar—2ar-1)(ar-12ar).

Example. 10
(25378) = (78)(38)(58)(28) = (25)(53)(37)(78).
(1) —(123)(132) = (12)(23)(13)(32) = (23)(13)(32)(12).
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Even permutation vs. Odd permutation
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Even permutation vs. Odd permutation

(123) = (23)(13) or (123) = (12)(23); also (123) = (12)(13)(12)(13).

_
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Even permutation vs. Odd permutation

(123) = (23)(13) or (123) = (12)(23); also (123) = (12)(13)(12)(13).

If a permutation is written as a product of transpositions in two ways, then
the number of transpositions is either even or odd in both cases.

v

Definition 8
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Even permutation vs. Odd permutation

(123) = (23)(13) or (123) = (12)(23); also (123) = (12)(13)(12)(13).

If a permutation is written as a product of transpositions in two ways, then
the number of transpositions is either even or odd in both cases.

A permutation o is called
even if it can be written as a product of an even number of transpositions.
odd if it can be written as a product of an odd number of transpositions.

_
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Even permutation vs. Odd permutation

(123) = (23)(13) or (123) = (12)(23); also (123) = (12)(13)(12)(13).

Theorem 7

If a permutation is written as a product of transpositions in two ways, then
the number of transpositions is either even or odd in both cases.

Definition 8

A permutation o is called

even if it can be written as a product of an even number of transpositions.
odd if it can be written as a product of an odd number of transpositions.

|

v

(12), (4321) are odd, and (123),(25378) are even.
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Even permutation vs. Odd permutation

(123) = (23)(13) or (123) = (12)(23); also (123) = (12)(13)(12)(13).

Theorem 7

If a permutation is written as a product of transpositions in two ways, then
the number of transpositions is either even or odd in both cases.

Definition 8

A permutation o is called

even if it can be written as a product of an even number of transpositions.
odd if it can be written as a product of an odd number of transpositions.

|

v

(12), (4321) are odd, and (123), (25378) are even. The identity (1) is even.
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Even permutation vs. Odd permutation

(123) = (23)(13) or (123) = (12)(23); also (123) = (12)(13)(12)(13).

Theorem 7

If a permutation is written as a product of transpositions in two ways, then
the number of transpositions is either even or odd in both cases.

Definition 8

A permutation o is called

even if it can be written as a product of an even number of transpositions.
odd if it can be written as a product of an odd number of transpositions.

|

v

(12), (4321) are odd, and (123), (25378) are even. The identity (1) is even.

Note that a cycle of odd length is even and a cycle of even length is odd.
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Even permutation vs. Odd permutation

(123) = (23)(13) or (123) = (12)(23); also (123) = (12)(13)(12)(13).

Theorem 7

If a permutation is written as a product of transpositions in two ways, then
the number of transpositions is either even or odd in both cases.

Definition 8

A permutation o is called
even if it can be written as a product of an even number of transpositions.
odd if it can be written as a product of an odd number of transpositions.

v

|

(12), (4321) are odd, and (123), (25378) are even. The identity (1) is even.

Note that a cycle of odd length is even and a cycle of even length is odd.
If o is an even (resp. odd) permutation, then o1 is also even (resp. odd).
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Even permutation vs. Odd permutation

(123) = (23)(13) or (123) = (12)(23); also (123) = (12)(13)(12)(13).

Theorem 7

If a permutation is written as a product of transpositions in two ways, then
the number of transpositions is either even or odd in both cases.

Definition 8

A permutation o is called
even if it can be written as a product of an even number of transpositions.
odd if it can be written as a product of an odd number of transpositions.

v

|

(12), (4321) are odd, and (123), (25378) are even. The identity (1) is even.

Note that a cycle of odd length is even and a cycle of even length is odd.
If o is an even (resp. odd) permutation, then o1 is also even (resp. odd).
The product of two even (or odd) permutations is again even;
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Even permutation vs. Odd permutation

(123) = (23)(13) or (123) = (12)(23); also (123) = (12)(13)(12)(13).

Theorem 7

If a permutation is written as a product of transpositions in two ways, then
the number of transpositions is either even or odd in both cases.

Definition 8

A permutation o is called
even if it can be written as a product of an even number of transpositions.
odd if it can be written as a product of an odd number of transpositions.

v

|

(12), (4321) are odd, and (123), (25378) are even. The identity (1) is even.

Note that a cycle of odd length is even and a cycle of even length is odd.
If o is an even (resp. odd) permutation, then o1 is also even (resp. odd).
The product of two even (or odd) permutations is again even; o.w. is odd.
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Proof of Theorem 7

Proof by contradiction: Suppose that the conclusion of the thm is false:

C=T1  Tom=201""" (52n+1, Tly - T2my 01, ... ,52n+1 are transpositions.
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Proof of Theorem 7

Proof by contradiction: Suppose that the conclusion of the thm is false:

C=T1  Tom=201""" (52n+1, Tly - T2my 01, ... ,52n+1 are transpositions.

Since §; = 5]_1 for1 <j<2n+1, we have ol = O2p+1 - 01, and so

(1) = 00" =11 Tombont1---061. = The identity permutation is odd.
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Proof of Theorem 7

Proof by contradiction: Suppose that the conclusion of the thm is false:
O=T1- Tom=01""02p41, Tiy---T2m;01,-..,02n41 are transpositions.
Since §; = 5]_1 for1 <j<2n+1, we have ol = O2p+1 - 01, and so
(1)=00 =71 Tomdang1---01. = The identity permutation is odd.

Suppose that (1) = p1 -+ - pk(k > 3) is the shortest product of an odd
number of transpositions.
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Proof of Theorem 7

Proof by contradiction: Suppose that the conclusion of the thm is false:
O=T1- Tom=01""02p41, Tiy---T2m;01,-..,02n41 are transpositions.
Since §; = 5]_1 for1 <j<2n+1, we have ol = O2p+1 - 01, and so
(1)=00 =71 Tomdang1---01. = The identity permutation is odd.

Suppose that (1) = p1 -+ - pk(k > 3) is the shortest product of an odd
number of transpositions. Suppose that p; = (ab). Then a must appear in
at least one other transposition, say p;, with i > 1. (o.w. p1---pk(a) = b)
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Proof of Theorem 7

Proof by contradiction: Suppose that the conclusion of the thm is false:
O=T1- Tom=01""02p41, Tiy---T2m;01,-..,02n41 are transpositions.

Since §; = 5]_1 for1 <j<2n+1, we have ol = d2p+1 - 01, and so

(1) = 00" =11 Tombont1---061. = The identity permutation is odd.

Suppose that (1) = p1 -+ - pk(k > 3) is the shortest product of an odd
number of transpositions. Suppose that p; = (ab). Then a must appear in
at least one other transposition, say p;, with i > 1. (o.w. p1---pk(a) = b)
Among all products of length k that are equal to (1), and such that a
appears in the transposition on the extreme left, we assume that p1 - - - px
has the fewest number of a's.
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Proof of Theorem 7

Proof by contradiction: Suppose that the conclusion of the thm is false:
O=T1- Tom=01""02p41, Tiy---T2m;01,-..,02n41 are transpositions.
Since §; = 5]_1 for1 <j<2n+1, we have ol = d2p+1 - 01, and so
(1)=00 =71 Tomdang1---01. = The identity permutation is odd.

Suppose that (1) = p1 -+ - pk(k > 3) is the shortest product of an odd
number of transpositions. Suppose that p; = (ab). Then a must appear in
at least one other transposition, say p;, with i > 1. (o.w. p1---pk(a) = b)
Among all products of length k that are equal to (1), and such that a
appears in the transposition on the extreme left, we assume that p1 - - - px
has the fewest number of a's.

Let a, u, v, r be distinct:
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Proof of Theorem 7

Proof by contradiction: Suppose that the conclusion of the thm is false:
O=T1- Tom=01""02p41, Tiy---T2m;01,-..,02n41 are transpositions.
Since §; = 5]_1 for1 <j<2n+1, we have ol = d2p+1 - 01, and so
(1)=00 =71 Tomdang1---01. = The identity permutation is odd.

Suppose that (1) = p1 -+ - pk(k > 3) is the shortest product of an odd
number of transpositions. Suppose that p; = (ab). Then a must appear in
at least one other transposition, say p;, with i > 1. (o.w. p1---pk(a) = b)
Among all products of length k that are equal to (1), and such that a
appears in the transposition on the extreme left, we assume that p1 - - - px
has the fewest number of a's.

Let a, u, v, r be distinct: (uv)(ar) = (ar)(uv) and (uv)(av) = (au)(uv).
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Proof of Theorem 7

Proof by contradiction: Suppose that the conclusion of the thm is false:
O=T1- Tom=01""02p41, Tiy---T2m;01,-..,02n41 are transpositions.

Since §; = 51-_1 for1 <j<2n+1, we have ol = d2p+1 - 01, and so

(1) = 00" =11 Tombont1---061. = The identity permutation is odd.

Suppose that (1) = p1 -+ - pk(k > 3) is the shortest product of an odd
number of transpositions. Suppose that p; = (ab). Then a must appear in
at least one other transposition, say p;, with i > 1. (o.w. p1---pk(a) = b)
Among all products of length k that are equal to (1), and such that a
appears in the transposition on the extreme left, we assume that p1 - - - px
has the fewest number of a’s.

Let a, u, v, r be distinct: (uv)(ar) = (ar)(uv) and (uv)(av) = (au)(uv).
Hence we can move a transposition with entry a to the second position
without changing the number of a's that appear = say p» = (ac), ¢ # a.
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at least one other transposition, say p;, with i > 1. (o.w. p1---pk(a) = b)
Among all products of length k that are equal to (1), and such that a
appears in the transposition on the extreme left, we assume that p1 - - - px
has the fewest number of a’s.

Let a, u, v, r be distinct: (uv)(ar) = (ar)(uv) and (uv)(av) = (au)(uv).
Hence we can move a transposition with entry a to the second position
without changing the number of a's that appear = say p» = (ac), ¢ # a.
If ¢ = b, then p1p2 = (1), and so (1) = p3 - - - pk. (contradiction)

If ¢ # b, (ab)(ac) = (ac)(bc) = (1) = (ac)(bc)ps - - - pk. (contradiction)
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