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Review

Division Algorithm99K The Euclidean Algorithm (Matrix form)

gcd(a, b) vs. lcm[a, b]99K gcd(a, b) · lcm[a, b] = ab

(a, b)|(am + bn), linear combination of a and b

Relatively prime (a, b) = 1⇔am + bn = 1 for some m, n ∈ Z

a ≡ b (mod n)⇔n|(a− b)⇔a = b + nq for some q ∈ Z

If ac ≡ ad (mod n) and (a, n) = 1 (a ∈ Z×
n )⇒ c ≡ d (mod n)

Linear congruences ax ≡ b (mod n) has a solution ⇔ (a, n)|b
System of congruences: Chinese Remainder Theorem

[a]n = [b]n⇔a ≡ b (mod n)

Divisor of zero vs. Unit in Zn (Cancellation law X)

For (a, n) = 1, find [a]−1
n :

(i) the Euclidean algorithm; (ii) successive powers; (iii) trial and error

Euler’s totient function ϕ(n) = |Z×
n |

Euler’s theorem 99K Fermat’s “little” theorem
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Definitions and Notations

Definition 1

Let S be a set. A function σ : S → S is called a permutation of S if σ is
one-to-one and onto.
The set of all permutations of S will be denoted by Sym(S).
The set of all permutations of the set {1, 2, . . . , n} will be denoted by Sn.

Proposition. 1

(i) if σ, τ ∈ Sym(S), then τσ ∈ Sym(S);

(ii) 1S ∈ Sym(S);

(iii) if σ ∈ Sym(S), then σ−1 ∈ Sym(S).

Notation: Given σ ∈ Sn,

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
,

where under each integer i we write the image of i .
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Example

Example. 1

If S = {1, 2, 3} and σ : S → S is given by σ(1) = 2, σ(2) = 3, σ(3) = 1 :

σ =

(
1 2 3
2 3 1

)

Proposition. 2

Sn has n! elements.

Proof.

Sn =

{
σ
∣∣∣ σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.

}
For σ(1), there are n choices.
For σ(2), there are n− 1 choices since the element that is assigned to σ(1)
cannot be used again.
For σ(3), there are n− 2 choices, etc. |Sn| = n · (n− 1) · · · · 2 · 1 = n!.
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Composition

Suppose that

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
and τ =

(
1 2 · · · n

τ(1) τ(2) · · · τ(n)

)
.

Then to compute the composition

στ =

(
1 2 · · · n

σ(τ(1)) σ(τ(2)) · · · σ(τ(n))

)
.

Example. 2

Let σ =

(
1 2 3 4
4 3 1 2

)
and τ =

(
1 2 3 4
2 3 4 1

)
. Compute στ and τσ.

στ(1) : 1
τ−→ 2

σ−→ 3⇒ στ(1) = 3, etc. We obtain στ =

(
1 2 3 4
3 1 2 4

)
.

τσ(1) : 1
σ−→ 4

τ−→ 1⇒ στ(1) = 1, etc. We obtain τσ =

(
1 2 3 4
1 4 2 3

)
.
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τ−→ 1⇒ στ(1) = 1, etc. We obtain τσ =

(
1 2 3 4
1 4 2 3

)
.
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Inverse

Given σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
in Sn, it is easy to compute σ−1.

Key idea: If σ(i) = j , then i = σ−1(j). This can be accomplished easily by
simply turning the two rows of σ upside down and then rearranging terms.

Example. 3

If σ =

(
1 2 3 4
4 3 1 2

)
, then σ−1 =

(
4 3 1 2
1 2 3 4

)
=

(
1 2 3 4
3 4 2 1

)
.
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Cycle

Another notation: For example, consider σ =

(
1 2 3 4 5
3 1 4 2 5

)
∈ S5.

Now writing σ = (1342) since σ(1) = 3, σ(3) = 4, σ(4) = 2, and σ(2) = 1.
In the new notation we do not need to mention σ(5) since σ(5) = 5.

Definition 2

Let S be a set, and let σ ∈ Sym(S). Then σ is called a cycle of length k
if there exist elements a1, a2, . . . , ak ∈ S such that
σ(a1) = a2, σ(a2) = a3, . . . , σ(ak−1) = ak , σ(ak) = a1, and
σ(x) = x for all other elements x ∈ S with x 6= ai for i = 1, 2, . . . , k .
In this case we write σ = (a1a2 · · · ak).

We can also write σ = (a2a3 · · · aka1) or σ = (a3 · · · aka1a2), etc.
The notation for a cycle of length k ≥ 2 can thus be written in k different
ways, depending on the starting point.

We will use (1) to denote the identity permutation (or just use 1S).
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Examples

Example. 4

σ =

(
1 2 3 4 5
3 2 4 1 5

)
∈ S5 is a cycle of length 3, written (134).

σ =

(
1 2 3 4 5
3 5 4 1 2

)
∈ S5 is not a cycle, written (134)(25).

Example. 5

Let σ = (1425) and τ = (263) be cycles in S6. Compute the product στ .
1

τ−→ 1
σ−→ 4⇒ στ(1) = 4, etc. =⇒ στ = (1425)(263) = (142635).

It is NOT true in general that the product of two cycles is again a cycle.

Example. 6

Consider (1425) ∈ S6, we have (1425)(1425) = (12)(3)(45)(6) = (12)(45).
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Disjoint cycles

Definition 3

Let σ = (a1a2 · · · ak) and τ = (b1b2 · · · bm) be cycles in Sym(S), for a set
S . Then σ and τ are said to be disjoint if ai 6= bj for all i , j .

Remark. 1

It often happens that στ 6= τσ for two permutations σ, τ .
For example, in S3 we have (12)(13) = (132) 6=(123) = (13)(12).
If στ = τσ, then we say that σ and τ commute.

Proposition. 3

Let S be any set. If σ and τ are disjoint cycles in Sym(S), then στ = τσ.

Proof. Let σ = (a1 · · · ak) and τ = (b1 · · · bm) be disjoint. For j < k, then

στ(aj) = σ(aj) = aj+1 = τ(aj+1) = τ(σ(aj)) because τ leaves a1, . . . , ak fixed.

In case j = k, we use σ(aj) = a1 = τ(a1). A similar computation can be
given for bj . If i appears in neither cycle, then both σ and τ leave it fixed.

Yi Permutations May 12, 2020 9 / 17



Disjoint cycles

Definition 3

Let σ = (a1a2 · · · ak) and τ = (b1b2 · · · bm) be cycles in Sym(S), for a set
S . Then σ and τ are said to be disjoint if ai 6= bj for all i , j .

Remark. 1

It often happens that στ 6= τσ for two permutations σ, τ .
For example, in S3 we have (12)(13) = (132) 6=(123) = (13)(12).
If στ = τσ, then we say that σ and τ commute.

Proposition. 3

Let S be any set. If σ and τ are disjoint cycles in Sym(S), then στ = τσ.

Proof. Let σ = (a1 · · · ak) and τ = (b1 · · · bm) be disjoint. For j < k, then

στ(aj) = σ(aj) = aj+1 = τ(aj+1) = τ(σ(aj)) because τ leaves a1, . . . , ak fixed.

In case j = k, we use σ(aj) = a1 = τ(a1). A similar computation can be
given for bj . If i appears in neither cycle, then both σ and τ leave it fixed.

Yi Permutations May 12, 2020 9 / 17



Disjoint cycles

Definition 3

Let σ = (a1a2 · · · ak) and τ = (b1b2 · · · bm) be cycles in Sym(S), for a set
S . Then σ and τ are said to be disjoint if ai 6= bj for all i , j .

Remark. 1

It often happens that στ 6= τσ for two permutations σ, τ .
For example, in S3 we have (12)(13) = (132) 6=(123) = (13)(12).
If στ = τσ, then we say that σ and τ commute.

Proposition. 3

Let S be any set. If σ and τ are disjoint cycles in Sym(S), then στ = τσ.

Proof. Let σ = (a1 · · · ak) and τ = (b1 · · · bm) be disjoint. For j < k, then

στ(aj) = σ(aj) = aj+1 = τ(aj+1) = τ(σ(aj)) because τ leaves a1, . . . , ak fixed.

In case j = k, we use σ(aj) = a1 = τ(a1). A similar computation can be
given for bj . If i appears in neither cycle, then both σ and τ leave it fixed.

Yi Permutations May 12, 2020 9 / 17



Disjoint cycles

Definition 3

Let σ = (a1a2 · · · ak) and τ = (b1b2 · · · bm) be cycles in Sym(S), for a set
S . Then σ and τ are said to be disjoint if ai 6= bj for all i , j .

Remark. 1

It often happens that στ 6= τσ for two permutations σ, τ .
For example, in S3 we have (12)(13) = (132) 6=(123) = (13)(12).
If στ = τσ, then we say that σ and τ commute.

Proposition. 3

Let S be any set. If σ and τ are disjoint cycles in Sym(S), then στ = τσ.

Proof. Let σ = (a1 · · · ak) and τ = (b1 · · · bm) be disjoint.

For j < k, then

στ(aj) = σ(aj) = aj+1 = τ(aj+1) = τ(σ(aj)) because τ leaves a1, . . . , ak fixed.

In case j = k, we use σ(aj) = a1 = τ(a1). A similar computation can be
given for bj . If i appears in neither cycle, then both σ and τ leave it fixed.

Yi Permutations May 12, 2020 9 / 17



Disjoint cycles

Definition 3

Let σ = (a1a2 · · · ak) and τ = (b1b2 · · · bm) be cycles in Sym(S), for a set
S . Then σ and τ are said to be disjoint if ai 6= bj for all i , j .

Remark. 1

It often happens that στ 6= τσ for two permutations σ, τ .
For example, in S3 we have (12)(13) = (132) 6=(123) = (13)(12).
If στ = τσ, then we say that σ and τ commute.

Proposition. 3

Let S be any set. If σ and τ are disjoint cycles in Sym(S), then στ = τσ.

Proof. Let σ = (a1 · · · ak) and τ = (b1 · · · bm) be disjoint. For j < k, then

στ(aj) = σ(aj) = aj+1 = τ(aj+1) = τ(σ(aj)) because τ leaves a1, . . . , ak fixed.

In case j = k, we use σ(aj) = a1 = τ(a1).

A similar computation can be
given for bj . If i appears in neither cycle, then both σ and τ leave it fixed.

Yi Permutations May 12, 2020 9 / 17



Disjoint cycles

Definition 3

Let σ = (a1a2 · · · ak) and τ = (b1b2 · · · bm) be cycles in Sym(S), for a set
S . Then σ and τ are said to be disjoint if ai 6= bj for all i , j .

Remark. 1

It often happens that στ 6= τσ for two permutations σ, τ .
For example, in S3 we have (12)(13) = (132) 6=(123) = (13)(12).
If στ = τσ, then we say that σ and τ commute.

Proposition. 3

Let S be any set. If σ and τ are disjoint cycles in Sym(S), then στ = τσ.

Proof. Let σ = (a1 · · · ak) and τ = (b1 · · · bm) be disjoint. For j < k, then

στ(aj) = σ(aj) = aj+1 = τ(aj+1) = τ(σ(aj)) because τ leaves a1, . . . , ak fixed.

In case j = k, we use σ(aj) = a1 = τ(a1). A similar computation can be
given for bj .

If i appears in neither cycle, then both σ and τ leave it fixed.

Yi Permutations May 12, 2020 9 / 17



Disjoint cycles

Definition 3

Let σ = (a1a2 · · · ak) and τ = (b1b2 · · · bm) be cycles in Sym(S), for a set
S . Then σ and τ are said to be disjoint if ai 6= bj for all i , j .

Remark. 1

It often happens that στ 6= τσ for two permutations σ, τ .
For example, in S3 we have (12)(13) = (132) 6=(123) = (13)(12).
If στ = τσ, then we say that σ and τ commute.

Proposition. 3

Let S be any set. If σ and τ are disjoint cycles in Sym(S), then στ = τσ.

Proof. Let σ = (a1 · · · ak) and τ = (b1 · · · bm) be disjoint. For j < k, then

στ(aj) = σ(aj) = aj+1 = τ(aj+1) = τ(σ(aj)) because τ leaves a1, . . . , ak fixed.

In case j = k, we use σ(aj) = a1 = τ(a1). A similar computation can be
given for bj . If i appears in neither cycle, then both σ and τ leave it fixed.

Yi Permutations May 12, 2020 9 / 17



Permutation in Sn

For any set S , let σ ∈ Sym(S). Taking the composition of σ with itself
any number of times still gives us a permutation; i.e., σi = σσ · · ·σ.

Define σ0 = (1) = 1S and σ−n = (σn)−1. For all integers m, n, we have

σmσn = σm+n and (σm)n = σmn.

Theorem 4

Every permutation in Sn can be written as a product of disjoint cycles.
The cycles of length ≥ 2 that appear in the product are unique.

Sketch of proof : Let S = {1, 2, . . . , n} and let σ ∈ Sn = Sym(S).
Consider 1, σ(1), σ2(1), . . . : Since S has only n elements, we can find the
least positive exponent r such that σr (1) = 1. Then 1, σ(1), . . . , σr−1(1)
are all distinct, giving us a cycle of length r : (1σ(1)σ2(1) · · ·σr−1(1)).
• If r < n, let a be the least integer not in (1σ(1)σ2(1) · · ·σr−1(1)) and
form the cycle (a σ(a)σ2(a) · · ·σs−1(a)) in which s is the least positive
integer such that σs(a) = a.
• If r + s < n, etc. We continue in this way until we have exhausted S .
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integer such that σs(a) = a.

• If r + s < n, etc. We continue in this way until we have exhausted S .
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Permutation in Sn
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Examples

We have given an algorithm in the proof for finding the necessary cycles.

Example. 7

Let σ =

(
1 2 3 4 5 6 7 8
5 2 7 6 3 8 1 4

)
Applying the algorithm−→ σ = (1537)(468).

Example. 8

Consider the cycles (25143) and (462) in S6: (25143)(462) = (1465)(23).
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Order of a permutation, I

If σ = (a1a2 · · · am) is a cycle of length m, then applying σ m times to any
ai , i = 1, 2, . . . ,m gives ai . Thus σm = (1).

Furthermore, m is the smallest positive power of σ that equals the identity,
since σk(a1) = ak+1 for 1 ≤ k < m.

Definition 5

Let σ ∈ Sn. The least positive integer m such that σm = (1) is called the
order of σ.

It follows from the above definition that a cycle of length m has order m.

Proposition. 4

Let σ ∈ Sn have order m. Then for all integers i , j we have σi = σj if and
only if i ≡ j (mod m).

Proof :(⇐) i = j +mt for some t ∈ Z. Hence σi = σj+mt = σj(σm)t = σj .
(⇒) σi−j = (1), write i − j = mq + r . So (1) = σmq+r = σr ⇒ r = 0.
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Order of a permutation, II

Proposition. 5

Let σ ∈ Sn be written as a product of disjoint cycles. Then the order of σ
is the least common multiple of the lengths of its disjoint cycles.

Proof : Let σ = (a1 · · · am) with order m. And σk = (1) if and only if m|k.

If σ = (a1a2 · · · am)(b1b2 · · · br ) is a product of two disjoint cycles, then
σj = (a1 · · · am)j(b1 · · · br )j since (a1 · · · am) commutes with (b1 · · · br ).

If σj = (1), then (a1 · · · am)j = (b1 · · · br )j = (1) since (a1 · · · am)j fixes
each bi and (b1 · · · br )j fixes each ai . This holds if and only if m|j and r |j ,
and then [m, r ]|j . The smallest such j is thus [m, r ]. 99K the general case.

Example. 9

(1537)(284) has order 12 in S8. (153)(284697) has order 6 in S9.
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Inverse revisited

We merely reverse the order of the cycle to compute the inverse of a cycle:

(a1a2 · · · ar )(arar−1 · · · a1) = (1).

The inverse of the product στ of two permutations is τ−1σ−1 since

(στ)(τ−1σ−1) = σ(ττ−1)σ−1 = σ(1)σ−1 = σσ−1 = (1)

and similarly

(τ−1σ−1)(στ) = (1).

Thus we have

[(a1 · · · ar )(b1 · · · bm)]−1 = (bm · · · b1)(ar · · · a1).

Note that if the cycles are disjoint, then they commute, and so the
inverses do not need to be written in reverse order.
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Transposition

Definition 6

A cycle (a1a2) of length two is called a transposition.

Proposition. 6

Any permutation in Sn, where n ≥ 2, can be written as a product of
transpositions.

Proof : Any σ can be expressed as a product of disjoint cycles ⇒ only need
to show that any cycle can be expressed as a product of transpositions.
The identity (1) = (12)(21).
For any other permutation, we can give an explicit computation:

(a1a2 · · · ar−1ar ) =(ar−1ar )(ar−2ar ) · · · (a3ar )(a2ar )(a1ar )

=(a1a2)(a2a3) · · · (ar−2ar−1)(ar−1ar ).

Example. 10

(25378) = (78)(38)(58)(28) = (25)(53)(37)(78).
(1) =(123)(132) = (12)(23)(13)(32) = (23)(13)(32)(12).
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(1) =(123)(132) = (12)(23)(13)(32) = (23)(13)(32)(12).

Yi Permutations May 12, 2020 15 / 17



Transposition

Definition 6

A cycle (a1a2) of length two is called a transposition.

Proposition. 6

Any permutation in Sn, where n ≥ 2, can be written as a product of
transpositions.

Proof : Any σ can be expressed as a product of disjoint cycles ⇒ only need
to show that any cycle can be expressed as a product of transpositions.
The identity (1) = (12)(21).
For any other permutation, we can give an explicit computation:

(a1a2 · · · ar−1ar ) =(ar−1ar )(ar−2ar ) · · · (a3ar )(a2ar )(a1ar )

=(a1a2)(a2a3) · · · (ar−2ar−1)(ar−1ar ).

Example. 10

(25378) = (78)(38)(58)(28) = (25)(53)(37)(78).
(1) =(123)(132) = (12)(23)(13)(32) = (23)(13)(32)(12).

Yi Permutations May 12, 2020 15 / 17



Even permutation vs. Odd permutation

Example. 11

(123) = (23)(13) or (123) = (12)(23); also (123) = (12)(13)(12)(13).

Theorem 7

If a permutation is written as a product of transpositions in two ways, then
the number of transpositions is either even or odd in both cases.

Definition 8

A permutation σ is called
even if it can be written as a product of an even number of transpositions.
odd if it can be written as a product of an odd number of transpositions.

Example. 12

(12), (4321) are odd, and (123), (25378) are even. The identity (1) is even.

Note that a cycle of odd length is even and a cycle of even length is odd.
If σ is an even (resp. odd) permutation, then σ−1 is also even (resp. odd).
The product of two even (or odd) permutations is again even; o.w. is odd.
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Proof of Theorem 7

Proof by contradiction: Suppose that the conclusion of the thm is false:

σ = τ1 · · · τ2m = δ1 · · · δ2n+1, τ1, . . . τ2m, δ1, . . . , δ2n+1 are transpositions.

Since δj = δ−1
j for 1 ≤ j ≤ 2n + 1, we have σ−1 = δ2n+1 · · · δ1, and so

(1) = σσ−1 = τ1 · · · τ2mδ2n+1 · · · δ1. ⇒ The identity permutation is odd.

Suppose that (1) = ρ1 · · · ρk(k ≥ 3) is the shortest product of an odd
number of transpositions. Suppose that ρ1 = (ab). Then a must appear in
at least one other transposition, say ρi , with i > 1. (o.w. ρ1 · · · ρk(a) = b)
Among all products of length k that are equal to (1), and such that a
appears in the transposition on the extreme left, we assume that ρ1 · · · ρk
has the fewest number of a’s.
Let a, u, v , r be distinct: (uv)(ar) = (ar)(uv) and (uv)(av) = (au)(uv).
Hence we can move a transposition with entry a to the second position
without changing the number of a’s that appear ⇒ say ρ2 = (ac), c 6= a.
If c = b, then ρ1ρ2 = (1), and so (1) = ρ3 · · · ρk . (contradiction)
If c 6= b, (ab)(ac) = (ac)(bc)⇒ (1) = (ac)(bc)ρ3 · · · ρk . (contradiction)
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