§1.3, 1.4: Congruences and Integers Modulo n

Shaoyun Yi

MATH 546/701I

University of South Carolina

May 11, 2020

An integer a is called a **multiple** of an integer b if $a = bq$ for some integer q. In this case we also say that b is a **divisor** of a , and we use the notation $b|a$.

An integer a is called a **multiple** of an integer b if $a = bq$ for some integer q. In this case we also say that b is a **divisor** of a , and we use the notation $b|a$.

Axiom. 1 (Well-Ordering Principle)

Every nonempty set of natural numbers contains a smallest element.

An integer a is called a **multiple** of an integer b if $a = bq$ for some integer q. In this case we also say that b is a **divisor** of a, and we use the notation $b|a$.

Axiom. 1 (Well-Ordering Principle)

Every nonempty set of natural numbers contains a smallest element.

Theorem 2 (Division Algorithm)

For any integers a and b, with $b > 0$, there exist unique integers q (the quotient) and r (the remainder) such that

$$
a= bq+r, \quad \text{with } 0 \leq r < b.
$$

Let a and b be integers, not both zero. A positive integer d is called the **greatest common divisor** of a and b if

- \bullet d is a divisor of both a and b, and
- 2 any divisor of both a and b is also a divisor of d.

The greatest common divisor of a and b will be denoted by $gcd(a, b)$ or (a, b) .

Let a and b be integers, not both zero. A positive integer d is called the **greatest common divisor** of a and b if

- \bullet d is a divisor of both a and b, and
- 2 any divisor of both a and b is also a divisor of d.

The greatest common divisor of a and b will be denoted by $gcd(a, b)$ or (a, b) .

Definition 4 (shortened version)

If a and b are integers, not both zero, and d is a positive integer, then $d = \gcd(a, b)$ if

- \bigcirc d|a and d|b, and
- **2** if c|a and c|b, then c|d.

If a and b are integers, then we will refer to any integer of the form $ma + nb$, where $m, n \in \mathbb{Z}$, as a linear combination of a and b.

If a and b are integers, then we will refer to any integer of the form $ma + nb$, where $m, n \in \mathbb{Z}$, as a **linear combination** of a and b.

Theorem 5

Let a and b be integers, not both zero. Then a and b have a greatest common divisor, which can be expressed as the smallest positive linear combination of a and b.

Moreover, an integer is a linear combination of a and b if and only if it is a multiple of their greatest common divisor.

Euclidean algorithm

Given integers $a > b > 0$, the **Euclidean algorithm** uses the division algorithm repeatedly to obtain

If $r_1 = 0$, then $b|a$, and so $(a, b) = b$. Since $r_1 > r_2 > ...$, the remainders get smaller and smaller, and after a finite number of steps we obtain a remainder $r_{n+1} = 0$. The algorithm ends with the equation

$$
r_{n-1}=r_nq_{n+1}+0.
$$

Euclidean algorithm

Given integers $a > b > 0$, the **Euclidean algorithm** uses the division algorithm repeatedly to obtain

If $r_1 = 0$, then $b|a$, and so $(a, b) = b$. Since $r_1 > r_2 > ...$, the remainders get smaller and smaller, and after a finite number of steps we obtain a remainder $r_{n+1} = 0$. The algorithm ends with the equation

$$
r_{n-1}=r_nq_{n+1}+0.
$$

This gives us the greatest common divisor:

$$
(a,b)=(b,r_1)=(r_1,r_2)=\ldots=(r_{n-1},r_n)=(r_n,0)=r_n.
$$

In finding (126, 35), we can arrange the work in the following manner:

In finding (126, 35), we can arrange the work in the following manner:

In finding (126, 35), we can arrange the work in the following manner:

Find the linear combination of 126 and 35 that gives $(126, 35) = 7$:

In finding (126, 35), we can arrange the work in the following manner:

Find the linear combination of 126 and 35 that gives $(126, 35) = 7$: **Step 1:** Solve for the nonzero remainder in each of the equations

$$
7 = 21 + 14 \cdot (-1)
$$

$$
14 = 35 + 21 \cdot (-1)
$$

$$
21 = 126 + 35 \cdot (-3)
$$

In finding (126, 35), we can arrange the work in the following manner:

Find the linear combination of 126 and 35 that gives $(126, 35) = 7$: **Step 1:** Solve for the nonzero remainder in each of the equations

> $7 = 21 + 14 \cdot (-1)$ $14 = 35 + 21 \cdot (-1)$ $21 = 126 + 35 \cdot (-3)$

Step 2: Substitute for the intermediate remainders:

$$
7 = 21 + (-1) \cdot [35 + 21 \cdot (-1)]
$$

= (-1) \cdot 35 + 2 \cdot [126 + 35 \cdot (-3)]
= 2 \cdot 126 + (-7) \cdot 35

To find (a, b) : Beginning with the matrix

$$
\begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \end{bmatrix}
$$

\n
$$
\rightsquigarrow \begin{bmatrix} 1 & -q_1 & r_1 \\ 0 & 1 & b \end{bmatrix} \qquad (a = bq_1 + r_1)
$$

\n
$$
\rightsquigarrow \begin{bmatrix} 1 & -q_1 & r_1 \\ -q_2 & 1 + q_1 q_2 & r_2 \end{bmatrix} \qquad (b = r_1 q_2 + r_2)
$$

\n
$$
\vdots
$$

The procedure is continued until one of the entries in the right-hand column is zero.

To find (a, b) : Beginning with the matrix

$$
\begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \end{bmatrix}
$$

\n
$$
\rightsquigarrow \begin{bmatrix} 1 & -q_1 & r_1 \\ 0 & 1 & b \end{bmatrix} \qquad (a = bq_1 + r_1)
$$

\n
$$
\rightsquigarrow \begin{bmatrix} 1 & -q_1 & r_1 \\ -q_2 & 1 + q_1 q_2 & r_2 \end{bmatrix} \qquad (b = r_1 q_2 + r_2)
$$

\n
$$
\vdots
$$

The procedure is continued until one of the entries in the right-hand column is zero. Then the other entry in this column is the greatest common divisor, and its row contains the coefficients of the desired linear combination.

Example revisited

$$
\begin{bmatrix} 1 & 0 & 126 \ 0 & 1 & 35 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & -3 & 21 \ 0 & 1 & 35 \end{bmatrix}
$$
 (126 = 35 · 3 + 21)
\n
$$
\begin{bmatrix} 1 & -3 & 21 \ -1 & 4 & 14 \end{bmatrix}
$$
 (35 = 21 · 1 + 14)
\n
$$
\begin{bmatrix} 2 & -7 & 7 \ -1 & 4 & 14 \end{bmatrix}
$$
 (21 = 14 · 1 + 7)
\n
$$
\begin{bmatrix} 2 & -7 & 7 \ -5 & 18 & 0 \end{bmatrix}
$$
 (14 = 7 · 2 + 0)

Thus, $(126, 35) = 7$ and a linear combination is $2 \cdot 126 + (-7) \cdot 35 = 7$.

Example revisited

$$
\begin{bmatrix} 1 & 0 & 126 \ 0 & 1 & 35 \end{bmatrix}
$$

\n
$$
\rightarrow \begin{bmatrix} 1 & -3 & 21 \ 0 & 1 & 35 \end{bmatrix}
$$
 (126 = 35 · 3 + 21)
\n
$$
\rightarrow \begin{bmatrix} 1 & -3 & 21 \ -1 & 4 & 14 \end{bmatrix}
$$
 (35 = 21 · 1 + 14)
\n
$$
\rightarrow \begin{bmatrix} 2 & -7 & 7 \ -1 & 4 & 14 \end{bmatrix}
$$
 (21 = 14 · 1 + 7)
\n
$$
\rightarrow \begin{bmatrix} 2 & -7 & 7 \ -5 & 18 & 0 \end{bmatrix}
$$
 (14 = 7 · 2 + 0)

Thus, $(126, 35) = 7$ and a linear combination is $2 \cdot 126 + (-7) \cdot 35 = 7$. Moreover, we can see that $(-5) \cdot 126 + 18 \cdot 35 = 0$ from the other row.

Definition 6

The nonzero integers a and b are said to be **relatively prime** if $(a, b) = 1$.

Definition 6

The nonzero integers a and b are said to be **relatively prime** if $(a, b) = 1$.

Proposition. 1

 $(a, b) = 1$ if and only if there exist integers m, n such that ma + nb = 1.

Definition 6

The nonzero integers a and b are said to be **relatively prime** if $(a, b) = 1$.

Proposition. 1

 $(a, b) = 1$ if and only if there exist integers m, n such that ma + nb = 1.

Proposition. 2

Let
$$
a, b, c
$$
 be integers, where $a \neq 0$ or $b \neq 0$.

(a) If b|ac, then $b|(a, b) \cdot c$.

(b) If
$$
b \mid ac
$$
 and $(a, b) = 1$, then $b \mid c$.

- (c) If $b|a, c|a$ and $(b, c) = 1$, then $bc|a$.
- (d) $(a, bc) = 1$ if and only if $(a, b) = 1$ and $(a, c) = 1$.

Definition 6

The nonzero integers a and b are said to be **relatively prime** if $(a, b) = 1$.

Proposition. 1

 $(a, b) = 1$ if and only if there exist integers m, n such that ma $+nb = 1$.

Proposition. 2

Let
$$
a, b, c
$$
 be integers, where $a \neq 0$ or $b \neq 0$.

(a) If
$$
b \mid ac
$$
, then $b \mid (a, b) \cdot c$.

(b) If
$$
b \mid ac
$$
 and $(a, b) = 1$, then $b \mid c$.

(c) If
$$
b|a, c|a
$$
 and $(b, c) = 1$, then $bc|a$.

(d) $(a, bc) = 1$ if and only if $(a, b) = 1$ and $(a, c) = 1$.

(a): Write $(a, b) = am + bn$; (b) follows from (a).

Definition 6

The nonzero integers a and b are said to be **relatively prime** if $(a, b) = 1$.

Proposition. 1

 $(a, b) = 1$ if and only if there exist integers m, n such that ma + nb = 1.

Proposition. 2

Let
$$
a, b, c
$$
 be integers, where $a \neq 0$ or $b \neq 0$.

(a) If b|ac, then $b|(a, b) \cdot c$.

(b) If
$$
b \mid ac
$$
 and $(a, b) = 1$, then $b \mid c$.

- (c) If $b|a, c|a$ and $(b, c) = 1$, then $bc|a$.
- (d) $(a, bc) = 1$ if and only if $(a, b) = 1$ and $(a, c) = 1$.

(a): Write $(a, b) = am + bn$; (b) follows from (a). (c): Write $a = bq$, so $c|bq$ and $(b, c) = 1$. Thus $c|q$ follows from (b) .

Definition 6

The nonzero integers a and b are said to be **relatively prime** if $(a, b) = 1$.

Proposition. 1

 $(a, b) = 1$ if and only if there exist integers m, n such that ma + nb = 1.

Proposition. 2

Let
$$
a, b, c
$$
 be integers, where $a \neq 0$ or $b \neq 0$.

(a) If b|ac, then $b|(a, b) \cdot c$.

(b) If
$$
b \mid ac
$$
 and $(a, b) = 1$, then $b \mid c$.

- (c) If $b|a, c|a$ and $(b, c) = 1$, then $bc|a$.
- (d) $(a, bc) = 1$ if and only if $(a, b) = 1$ and $(a, c) = 1$.

\n- (a): Write
$$
(a, b) = am + bn
$$
; (b) follows from (a).
\n- (c): Write $a = bq$, so $c|bq$ and $(b, c) = 1$. Thus $c|q$ follows from (b).
\n- (d): " \Leftarrow ." $am_1 + bn_1 = 1$, $am_2 + cn_2 = 1 \Rightarrow (am_1 + bn_1)(am_2 + cn_2) = 1$.
\n

Definition 6

The nonzero integers a and b are said to be **relatively prime** if $(a, b) = 1$.

Proposition. 1

 $(a, b) = 1$ if and only if there exist integers m, n such that ma + nb = 1.

Proposition. 2

Let
$$
a, b, c
$$
 be integers, where $a \neq 0$ or $b \neq 0$.

(a) If
$$
b \mid ac
$$
, then $b \mid (a, b) \cdot c$.

(b) If
$$
b \mid ac
$$
 and $(a, b) = 1$, then $b \mid c$.

(c) If
$$
b|a, c|a
$$
 and $(b, c) = 1$, then $bc|a$.

(d)
$$
(a, bc) = 1
$$
 if and only if $(a, b) = 1$ and $(a, c) = 1$.

\n- (a): Write
$$
(a, b) = am + bn
$$
; (b) follows from (a).
\n- (c): Write $a = bq$, so $c|bq$ and $(b, c) = 1$. Thus $c|q$ follows from (b).
\n- (d): " \Leftarrow ." $am_1 + bn_1 = 1$, $am_2 + cn_2 = 1 \Rightarrow (am_1 + bn_1)(am_2 + cn_2) = 1$. " \Rightarrow ." Write $am + bcn = 1$, then $am + b(cn) = am + c(bn) = 1$ & Prop. 1.
\n

Least Common Multiple

Definition 7

A positive integer m is called the **least common multiple** of the nonzero integers a and b if

- \bullet m is a multiple of both a and b, and
- 2 any multiple of both a and b is also a multiple of m.

We will use the notation $\text{lcm}[a, b]$ or [a, b] for the least common multiple of a and b .

A positive integer m is called the **least common multiple** of the nonzero integers a and b if

- \bullet m is a multiple of both a and b, and
- 2 any multiple of both a and b is also a multiple of m.

We will use the notation $\text{lcm}[a, b]$ or [a, b] for the least common multiple of a and b .

Definition 8 (shortened version)

If a and b are nonzero integers, and m is a positive integer, then $m = \text{lcm}[a, b]$ if

- \bullet a|m and b|m, and
- **2** if a|c and b|c, then $m|c$.

A positive integer m is called the **least common multiple** of the nonzero integers a and b if

- \bullet m is a multiple of both a and b, and
- 2 any multiple of both a and b is also a multiple of m.

We will use the notation $\text{lcm}[a, b]$ or [a, b] for the least common multiple of a and b .

Definition 8 (shortened version)

If a and b are nonzero integers, and m is a positive integer, then $m = \text{lcm}[a, b]$ if

- \bullet a|m and b|m, and
- **2** if a|c and b|c, then $m|c$.

Note that $gcd(a, b) \cdot \text{lcm}[a, b] = ab$.

Congruences

Definition 9

Let n be a positive integer. Integers a and b are said to be congruent **modulo** n if they have the same remainder when divided by n . This is denoted by writing $a \equiv b \pmod{n}$.

Let n be a positive integer. Integers a and b are said to be **congruent modulo** n if they have the same remainder when divided by n . This is denoted by writing $a \equiv b \pmod{n}$.

Write $a = nq + r$, where $0 \le r \le n$, then $r = n \cdot 0 + r$. It follows that

 $a \equiv r \pmod{n}$.

Any integer is congruent modulo *n* to one of the integers $0, 1, 2, \ldots, n - 1$.

Let n be a positive integer. Integers a and b are said to be **congruent modulo** n if they have the same remainder when divided by n . This is denoted by writing $a \equiv b \pmod{n}$.

Write $a = nq + r$, where $0 \le r \le n$, then $r = n \cdot 0 + r$. It follows that

 $a \equiv r \pmod{n}$.

Any integer is congruent modulo *n* to one of the integers $0, 1, 2, \ldots, n-1$.

Proposition. 3

Let a, b, $n \in \mathbb{Z}$ and $n > 0$. Then $a \equiv b \pmod{n}$ if and only if $n|(a - b)$.

Let n be a positive integer. Integers a and b are said to be **congruent modulo** n if they have the same remainder when divided by n . This is denoted by writing $a \equiv b \pmod{n}$.

Write $a = nq + r$, where $0 \le r \le n$, then $r = n \cdot 0 + r$. It follows that

 $a \equiv r \pmod{n}$.

Any integer is congruent modulo *n* to one of the integers $0, 1, 2, \ldots, n-1$.

Proposition. 3

Let a, b, $n \in \mathbb{Z}$ and $n > 0$. Then $a \equiv b \pmod{n}$ if and only if $n|(a - b)$.

$$
(\Rightarrow)
$$
: Write $a = nq_1 + r$ and $b = nq_2 + r$, thus $a - b = n(q_1 - q_2)$.

Let n be a positive integer. Integers a and b are said to be **congruent modulo** n if they have the same remainder when divided by n . This is denoted by writing $a \equiv b \pmod{n}$.

Write $a = nq + r$, where $0 \le r \le n$, then $r = n \cdot 0 + r$. It follows that

 $a \equiv r \pmod{n}$.

Any integer is congruent modulo *n* to one of the integers $0, 1, 2, \ldots, n-1$.

Proposition. 3

Let a, b, $n \in \mathbb{Z}$ and $n > 0$. Then $a \equiv b \pmod{n}$ if and only if $n|(a - b)$.

$$
(\Rightarrow)
$$
: Write $a = nq_1 + r$ and $b = nq_2 + r$, thus $a - b = n(q_1 - q_2)$.

 (\Leftarrow) : Write $a - b = nk$ for some $k \in \mathbb{Z}$, hence $a = nk + b$.

Let n be a positive integer. Integers a and b are said to be **congruent modulo** n if they have the same remainder when divided by n . This is denoted by writing $a \equiv b \pmod{n}$.

Write $a = nq + r$, where $0 \le r \le n$, then $r = n \cdot 0 + r$. It follows that

 $a \equiv r \pmod{n}$.

Any integer is congruent modulo *n* to one of the integers $0, 1, 2, \ldots, n-1$.

Proposition. 3

Let a, b, $n \in \mathbb{Z}$ and $n > 0$. Then $a \equiv b \pmod{n}$ if and only if $n|(a - b)$.

$$
(\Rightarrow)
$$
: Write $a = nq_1 + r$ and $b = nq_2 + r$, thus $a - b = n(q_1 - q_2)$.

 (\Leftarrow) : Write $a - b = nk$ for some $k \in \mathbb{Z}$, hence $a = nk + b$. Apply the division algorithm to write $a = nq + r$, with $0 \le r \le n$, then $b = a - nk = n(q - k) + r$. Thus, a and b have the same remainder r.

Properties of congruences

When working with congruence modulo n , the integer n is called the **modulus**.
When working with congruence modulo n , the integer n is called the **modulus**. Let a, b, c be integers. Then

- (i) $a \equiv a \pmod{n}$;
- (ii) if $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$;
- (iii) if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

When working with congruence modulo n, the integer n is called the **modulus**. Let a, b, c be integers. Then

(i)
$$
a \equiv a \pmod{n}
$$
;

(ii) if
$$
a \equiv b \pmod{n}
$$
, then $b \equiv a \pmod{n}$;

(iii) if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Proposition. 4

Let $n > 0$ be an integer. Then the following hold for all integers a, b, c, d:

- **1** If $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, then $a \pm b \equiv c \pm d \pmod{n}$, and ab \equiv cd (mod n).
- **2** If $a + c \equiv a + d \pmod{n}$, then $c \equiv d \pmod{n}$.
- **3** If ac \equiv ad (mod n) and $(a, n) = 1$, then $c \equiv d \pmod{n}$.

When working with congruence modulo n, the integer n is called the **modulus**. Let a, b, c be integers. Then

(i)
$$
a \equiv a \pmod{n}
$$
;

(ii) if
$$
a \equiv b \pmod{n}
$$
, then $b \equiv a \pmod{n}$;

(iii) if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Proposition. 4

Let $n > 0$ be an integer. Then the following hold for all integers a, b, c, d:

- **1** If $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, then $a \pm b \equiv c \pm d \pmod{n}$, and ab \equiv cd (mod n).
- **2** If $a + c \equiv a + d \pmod{n}$, then $c \equiv d \pmod{n}$.
- **3** If ac \equiv ad (mod n) and $(a, n) = 1$, then $c \equiv d \pmod{n}$.

The first two assertions easily follow from the previous proposition.

When working with congruence modulo n, the integer n is called the **modulus**. Let a, b, c be integers. Then

(i)
$$
a \equiv a \pmod{n}
$$
;

(ii) if
$$
a \equiv b \pmod{n}
$$
, then $b \equiv a \pmod{n}$;

(iii) if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Proposition. 4

Let $n > 0$ be an integer. Then the following hold for all integers a, b, c, d:

- **1** If $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, then $a \pm b \equiv c \pm d \pmod{n}$, and ab \equiv cd (mod n).
- **2** If $a + c \equiv a + d \pmod{n}$, then $c \equiv d \pmod{n}$.
- **3** If ac \equiv ad (mod n) and $(a, n) = 1$, then $c \equiv d \pmod{n}$.

The first two assertions easily follow from the previous proposition. For the third one: If $ac \equiv ad \pmod{n}$, then $n|a(c-d)$, and since $(n, a) = 1$, it follows from Proposition. 2 (b) that $n|(c - d)$.

I. You may divide both sides of a congruence by an integer a only if $(a, n) = 1.$

I. You may divide both sides of a congruence by an integer a only if $(a, n) = 1.$

Example. 1

 $30 \equiv 6 \pmod{8}$, but dividing both sides by 6 gives $5 \equiv 1 \pmod{8}$, which is certainly false because $(6, 8) = 2 \neq 1$.

I. You may divide both sides of a congruence by an integer a only if $(a, n) = 1.$

Example. 1

 $30 \equiv 6 \pmod{8}$, but dividing both sides by 6 gives $5 \equiv 1 \pmod{8}$, which is certainly false because $(6, 8) = 2 \neq 1$. On the other hand, since $(3, 8) = 1$, we may divide both sides by 3 to get $10 \equiv 2 \pmod{8}$.

I. You may divide both sides of a congruence by an integer a only if $(a, n) = 1.$

Example. 1

 $30 \equiv 6 \pmod{8}$, but dividing both sides by 6 gives $5 \equiv 1 \pmod{8}$, which is certainly false because $(6, 8) = 2 \neq 1$. On the other hand, since $(3, 8) = 1$, we may divide both sides by 3 to get $10 \equiv 2 \pmod{8}$.

II. Proposition. 4 shows that the remainder upon division by *n* of $a + b$ or ab can be found by adding or multiplying the remainders of a and b when divided by n and then dividing by n again if necessary.

I. You may divide both sides of a congruence by an integer a only if $(a, n) = 1.$

Example. 1

 $30 \equiv 6 \pmod{8}$, but dividing both sides by 6 gives $5 \equiv 1 \pmod{8}$, which is certainly false because $(6, 8) = 2 \neq 1$. On the other hand, since $(3, 8) = 1$, we may divide both sides by 3 to get $10 \equiv 2 \pmod{8}$.

II. Proposition. 4 shows that the remainder upon division by *n* of $a + b$ or ab can be found by adding or multiplying the remainders of a and b when divided by n and then dividing by n again if necessary.

Example. 2

$$
101 \equiv 5 \pmod{8}
$$
 and $142 \equiv 6 \pmod{8} \Rightarrow 101 \cdot 142 \equiv 5 \cdot 6 \equiv 6 \pmod{8}$.

I. You may divide both sides of a congruence by an integer a only if $(a, n) = 1.$

Example. 1

 $30 \equiv 6 \pmod{8}$, but dividing both sides by 6 gives $5 \equiv 1 \pmod{8}$, which is certainly false because $(6, 8) = 2 \neq 1$. On the other hand, since $(3, 8) = 1$, we may divide both sides by 3 to get $10 \equiv 2 \pmod{8}$.

II. Proposition. 4 shows that the remainder upon division by *n* of $a + b$ or ab can be found by adding or multiplying the remainders of a and b when divided by n and then dividing by n again if necessary.

Example. 2

$$
101 \equiv 5 \text{ (mod 8) and } 142 \equiv 6 \text{ (mod 8)} \Rightarrow 101 \cdot 142 \equiv 5 \cdot 6 \equiv 6 \text{ (mod 8)}.
$$

Example. 3

 $2^2 \equiv 4 \pmod{7}$, $2^3 \equiv 2^2 2 \equiv 4.2 \equiv 1 \pmod{7}$, $2^4 \equiv 2^3 2 \equiv 1.2 \equiv 2 \pmod{7}$.

Proposition. 5

Let a and $n > 1$ be integers. There exists an integer b such that $ab \equiv 1 \pmod{n}$ if and only if $(a, n) = 1$.

Proposition. 5

Let a and $n > 1$ be integers. There exists an integer b such that $ab \equiv 1 \pmod{n}$ if and only if $(a, n) = 1$.

 (\Rightarrow) : Write $ab = 1 + qn$, then $b \cdot a + (-q) \cdot n = 1$, and so $(a, n) = 1$.

Proposition. 5

Let a and $n > 1$ be integers. There exists an integer b such that $ab \equiv 1 \pmod{n}$ if and only if $(a, n) = 1$.

 (\Rightarrow) : Write $ab = 1 + qn$, then $b \cdot a + (-q) \cdot n = 1$, and so $(a, n) = 1$.

 (\Leftarrow) : Write sa + tn = 1, for some s, t \in **Z**. Letting $b = s$ and proof is done.

Proposition. 5

Let a and $n > 1$ be integers. There exists an integer b such that $ab \equiv 1 \pmod{n}$ if and only if $(a, n) = 1$.

 (\Rightarrow) : Write $ab = 1 + qn$, then $b \cdot a + (-q) \cdot n = 1$, and so $(a, n) = 1$.

 (\Leftarrow) : Write sa + tn = 1, for some s, t ∈ Z. Letting b = s and proof is done.

This proposition shows that the congruence

 $ax \equiv 1 \pmod{n}$

has a solution if and only if $(a, n) = 1$.

Proposition. 5

Let a and $n > 1$ be integers. There exists an integer b such that $ab \equiv 1 \pmod{n}$ if and only if $(a, n) = 1$.

 (\Rightarrow) : Write $ab = 1 + qn$, then $b \cdot a + (-q) \cdot n = 1$, and so $(a, n) = 1$.

 (\Leftarrow) : Write sa + tn = 1, for some s, t ∈ Z. Letting b = s and proof is done.

This proposition shows that the congruence

 $ax \equiv 1 \pmod{n}$

has a solution if and only if $(a, n) = 1$.

And the solution can be obtained by using the **Euclidean algorithm** to write $1 = ab + nq$ for some b, $q \in \mathbb{Z}$, since then $1 \equiv ab \pmod{n}$.

Proposition. 5

Let a and $n > 1$ be integers. There exists an integer b such that $ab \equiv 1 \pmod{n}$ if and only if $(a, n) = 1$.

 (\Rightarrow) : Write $ab = 1 + qn$, then $b \cdot a + (-q) \cdot n = 1$, and so $(a, n) = 1$.

 (\Leftarrow) : Write sa + tn = 1, for some s, t ∈ Z. Letting b = s and proof is done.

This proposition shows that the congruence

 $ax \equiv 1 \pmod{n}$

has a solution if and only if $(a, n) = 1$.

And the solution can be obtained by using the **Euclidean algorithm** to write $1 = ab + nq$ for some b, $q \in \mathbb{Z}$, since then $1 \equiv ab \pmod{n}$.

Question. 1

How about the solutions of a linear congruence of the form $ax \equiv b \pmod{n}$?

Proposition. 5

Let a and $n > 1$ be integers. There exists an integer b such that $ab \equiv 1 \pmod{n}$ if and only if $(a, n) = 1$.

 (\Rightarrow) : Write $ab = 1 + qn$, then $b \cdot a + (-q) \cdot n = 1$, and so $(a, n) = 1$.

 (\Leftarrow) : Write sa + tn = 1, for some s, t ∈ Z. Letting b = s and proof is done.

This proposition shows that the congruence

 $ax \equiv 1 \pmod{n}$

has a solution if and only if $(a, n) = 1$.

And the solution can be obtained by using the **Euclidean algorithm** to write $1 = ab + nq$ for some b, $q \in \mathbb{Z}$, since then $1 \equiv ab \pmod{n}$.

Question. 1

How about the solutions of a linear congruence of the form $ax \equiv b \pmod{n}$?

We say that two solutions r and s to the congruence $ax \equiv b \pmod{n}$ are distinct solutions modulo n if r and s are not congruent modulo n .

Theorem 10

Let a, b and $n > 1$ be integers. (1) The congruence $ax \equiv b \pmod{n}$ has a solution if and only if b is divisible by d, where $d = (a, n)$. (2) If d|b, then there are d distinct solutions modulo n, and these solutions are congruent modulo n/d .

Theorem 10

Let a, b and $n > 1$ be integers.

(1) The congruence $ax \equiv b \pmod{n}$ has a solution if and only if b is divisible by d, where $d = (a, n)$.

 (2) If d|b, then there are d distinct solutions modulo n, and these solutions are congruent modulo n/d .

(1) $ax \equiv b \pmod{n}$ has a solution if and only if $as = b + nq$, for some s, $q \in \mathbb{Z}$; i.e., sa + $(-q)n = b$. It implies that b can be expressed as a linear combination of a and n .

Theorem 10

Let a, b and $n > 1$ be integers.

(1) The congruence $ax \equiv b \pmod{n}$ has a solution if and only if b is divisible by d, where $d = (a, n)$.

 (2) If d|b, then there are d distinct solutions modulo n, and these solutions are congruent modulo n/d .

(1) $ax \equiv b \pmod{n}$ has a solution if and only if $as = b + nq$, for some s, $q \in \mathbb{Z}$; i.e., sa + $(-q)n = b$. It implies that b can be expressed as a linear combination of a and n . By Theorem 5 the linear combinations of a and n are precisely the multiples of d, so there is a solution if and only if $d|b$.

Theorem 10

Let a, b and $n > 1$ be integers.

(1) The congruence $ax \equiv b \pmod{n}$ has a solution if and only if b is divisible by d, where $d = (a, n)$.

 (2) If d|b, then there are d distinct solutions modulo n, and these solutions are congruent modulo n/d .

(1) $ax \equiv b \pmod{n}$ has a solution if and only if $as = b + nq$, for some s, $q \in \mathbb{Z}$; i.e., sa + $(-q)n = b$. It implies that b can be expressed as a linear combination of a and n . By Theorem 5 the linear combinations of a and n are precisely the multiples of d , so there is a solution if and only if $d|b$. (2) Let $m = n/d$. Suppose x_1 and x_2 are solutions, $\Rightarrow ax_1 \equiv ax_2 \pmod{n}$. Then $n|a(x_1 - x_2)$, it follows from Proposition. 2 (a) that $n|d(x_1 - x_2)$. Thus $m|(x_1 - x_2)$, and so $x_1 \equiv x_2 \pmod{m}$.

Theorem 10

Let a, b and $n > 1$ be integers.

(1) The congruence $ax \equiv b \pmod{n}$ has a solution if and only if b is divisible by d, where $d = (a, n)$.

 (2) If d|b, then there are d distinct solutions modulo n, and these solutions are congruent modulo n/d .

(1) $ax \equiv b \pmod{n}$ has a solution if and only if $as = b + nq$, for some s, $q \in \mathbb{Z}$; i.e., sa + $(-q)n = b$. It implies that b can be expressed as a linear combination of a and n . By Theorem 5 the linear combinations of a and n are precisely the multiples of d, so there is a solution if and only if $d|b$. (2) Let $m = n/d$. Suppose x_1 and x_2 are solutions, $\Rightarrow ax_1 \equiv ax_2 \pmod{n}$. Then $n|a(x_1 - x_2)$, it follows from Proposition. 2 (a) that $n|d(x_1 - x_2)$. Thus $m|(x_1 - x_2)$, and so $x_1 \equiv x_2 \pmod{m}$. On the other hand, if $x_1 \equiv x_2$ $x_2 \pmod{m} \Rightarrow m | (x_1 - x_2) \Rightarrow n | d(x_1 - x_2) \Rightarrow n | a(x_1 - x_2) \Rightarrow a x_1 \equiv a x_2 \pmod{n}.$

Theorem 10

Let a, b and $n > 1$ be integers.

(1) The congruence $ax \equiv b \pmod{n}$ has a solution if and only if b is divisible by d, where $d = (a, n)$.

 (2) If d|b, then there are d distinct solutions modulo n, and these solutions are congruent modulo n/d .

(1) $ax \equiv b \pmod{n}$ has a solution if and only if $as = b + nq$, for some s, $q \in \mathbb{Z}$; i.e., sa + $(-q)n = b$. It implies that b can be expressed as a linear combination of a and n . By Theorem 5 the linear combinations of a and n are precisely the multiples of d, so there is a solution if and only if $d|b$.

(2) Let $m = n/d$. Suppose x_1 and x_2 are solutions, $\Rightarrow ax_1 \equiv ax_2 \pmod{n}$. Then $n|a(x_1 - x_2)$, it follows from Proposition. 2 (a) that $n|d(x_1 - x_2)$. Thus $m|(x_1 - x_2)$, and so $x_1 \equiv x_2 \pmod{m}$. On the other hand, if $x_1 \equiv x_2$ $x_2 \pmod{m} \Rightarrow m | (x_1 - x_2) \Rightarrow n | d(x_1 - x_2) \Rightarrow n | a(x_1 - x_2) \Rightarrow a x_1 \equiv a x_2 \pmod{n}.$ Given one such solution, we can find all others in the set by adding multiples of n/d , giving a total of d distinct solutions.

To linear congruences of the form $ax \equiv b \pmod{n}$:

To linear congruences of the form $ax \equiv b \pmod{n}$:

(i) Compute $d = (a, n)$, and if $d | b$, then we can write $ax = b + qn$.

To linear congruences of the form $ax \equiv b \pmod{n}$:

(i) Compute $d = (a, n)$, and if $d | b$, then we can write $ax = b + qn$.

(ii) Further, we get $a_1x = b_1 + qm$, where $a_1 = a/d$, $b_1 = b/d$, $m = n/d$. This yields the congruence

 $a_1x \equiv b_1 \pmod{m}$, where $(a_1, m) = 1$.

To linear congruences of the form $ax \equiv b \pmod{n}$:

- (i) Compute $d = (a, n)$, and if $d | b$, then we can write $ax = b + qn$.
- (ii) Further, we get $a_1x = b_1 + qm$, where $a_1 = a/d$, $b_1 = b/d$, $m = n/d$. This yields the congruence

 $a_1x \equiv b_1 \pmod{m}$, where $(a_1, m) = 1$.

(iii) Apply the Euclidean algorithm to find $c \in \mathbb{Z}$ s.t. $a_1 c \equiv 1 \pmod{m}$.

To linear congruences of the form $ax \equiv b \pmod{n}$:

- (i) Compute $d = (a, n)$, and if $d | b$, then we can write $ax = b + qn$.
- (ii) Further, we get $a_1x = b_1 + qm$, where $a_1 = a/d$, $b_1 = b/d$, $m = n/d$. This yields the congruence

 $a_1x \equiv b_1 \pmod{m}$, where $(a_1, m) = 1$.

(iii) Apply the Euclidean algorithm to find $c \in \mathbb{Z}$ s.t. $a_1 c \equiv 1 \pmod{m}$. (iv) Multiplying both sides of the congruence $a_1x \equiv b_1 \pmod{m}$ by c gives the solution

 $x \equiv cb_1 \pmod{m}$.

To linear congruences of the form $ax \equiv b \pmod{n}$:

- (i) Compute $d = (a, n)$, and if $d | b$, then we can write $ax = b + qn$.
- (ii) Further, we get $a_1x = b_1 + qm$, where $a_1 = a/d$, $b_1 = b/d$, $m = n/d$. This yields the congruence

 $a_1x \equiv b_1 \pmod{m}$, where $(a_1, m) = 1$.

(iii) Apply the Euclidean algorithm to find $c \in \mathbb{Z}$ s.t. $a_1 c \equiv 1 \pmod{m}$. (iv) Multiplying both sides of the congruence $a_1x \equiv b_1 \pmod{m}$ by c gives the solution

 $x \equiv cb_1 \pmod{m}$.

 (v) The solution modulo m determines d distinct solutions modulo n. In particular, the solutions have the form

$$
s_0 + km,
$$

where s₀ is any particular solution of $x \equiv cb_1 \pmod{m}$ and k is any integer.

Consider the special case of a linear homogeneous congruence

 $ax \equiv 0 \pmod{n}$.

Consider the special case of a linear homogeneous congruence

 $ax \equiv 0 \pmod{n}$.

(i) Compute
$$
d = (a, n)
$$
.

Consider the special case of a linear homogeneous congruence

 $ax \equiv 0 \pmod{n}$.

(i) Compute $d = (a, n)$. (ii) Consider $a_1x \equiv 0 \pmod{n_1}$, where $a_1 = a/d$ and $n_1 = n/d$.

Consider the special case of a linear homogeneous congruence

 $ax \equiv 0 \pmod{n}$.

(i) Compute $d = (a, n)$. (ii) Consider $a_1x \equiv 0 \pmod{n_1}$, where $a_1 = a/d$ and $n_1 = n/d$. (iii) Since $(a_1, n_1) = 1$, by Proposition. 4 (3) we can cancel a_1 to obtain $x \equiv 0 \pmod{n_1}$, with $n_1 = \frac{n}{\cosh(n_1)}$ $\frac{n}{\gcd(a, n)}$.

Consider the special case of a linear homogeneous congruence

 $ax \equiv 0 \pmod{n}$.

(i) Compute $d = (a, n)$. (ii) Consider $a_1x \equiv 0 \pmod{n_1}$, where $a_1 = a/d$ and $n_1 = n/d$. (iii) Since $(a_1, n_1) = 1$, by Proposition. 4 (3) we can cancel a_1 to obtain $x \equiv 0 \pmod{n_1}$, with $n_1 = \frac{n}{\cosh(n_1)}$ $\frac{n}{\gcd(a, n)}$.

 (iv) We have d distinct solutions modulo n.

Consider the special case of a linear homogeneous congruence

 $ax \equiv 0 \pmod{n}$.

\n- (i) Compute
$$
d = (a, n)
$$
.
\n- (ii) Consider $a_1x \equiv 0 \pmod{n_1}$, where $a_1 = a/d$ and $n_1 = n/d$.
\n- (iii) Since $(a_1, n_1) = 1$, by Proposition 4 (3) we can cancel a_1 to obtain $x \equiv 0 \pmod{n_1}$, with $n_1 = \frac{n}{\gcd(a, n)}$.
\n

 (iv) We have d distinct solutions modulo n.

Example. 4

$$
28x \equiv 0 \pmod{48} \Rightarrow x \equiv 0 \pmod{12} \Rightarrow x \equiv 0, 12, 24, 36 \pmod{48}.
$$

To solve the congruence

 $60x \equiv 90 \pmod{105}$.
To solve the congruence

 $60x \equiv 90 \pmod{105}$.

(i) $d = (60, 105) = 15 \Rightarrow 15|90 \checkmark$: There will indeed be a solution.

To solve the congruence

$$
60x \equiv 90 \text{ (mod 105)}.
$$

(i) $d = (60, 105) = 15 \Rightarrow 15|90 \checkmark$: There will indeed be a solution. (ii) Reduces to the congruence

 $4x \equiv 6 \pmod{7}$.

To solve the congruence

$$
60x \equiv 90 \text{ (mod 105)}.
$$

(i) $d = (60, 105) = 15 \Rightarrow 15|90 \checkmark$: There will indeed be a solution. (ii) Reduces to the congruence

$$
4x \equiv 6 \pmod{7}.
$$

(iii) Find an integer c with $c \cdot 4 \equiv 1 \pmod{7}$. (a) Euclidean algorithm (b) trial and error (is quicker for a small modulus) $\Rightarrow c = 2$.

To solve the congruence

$$
60x \equiv 90 \pmod{105}.
$$

(i) $d = (60, 105) = 15 \Rightarrow 15|90 \checkmark$: There will indeed be a solution. (ii) Reduces to the congruence

$$
4x \equiv 6 \pmod{7}.
$$

- (iii) Find an integer c with $c \cdot 4 \equiv 1 \pmod{7}$.
	- (a) Euclidean algorithm
	- (b) trial and error (is quicker for a small modulus) $\Rightarrow c = 2$.
- (iv) Multiply both sides of the congruence $4x \equiv 6 \pmod{7}$ by 2 to get

$$
x\equiv 12\equiv 5~(\text{mod}~7).
$$

To solve the congruence

$$
60x \equiv 90 \text{ (mod 105)}.
$$

(i) $d = (60, 105) = 15 \Rightarrow 15|90 \checkmark$: There will indeed be a solution. (ii) Reduces to the congruence

$$
4x \equiv 6 \pmod{7}.
$$

- (iii) Find an integer c with $c \cdot 4 \equiv 1 \pmod{7}$.
	- (a) Euclidean algorithm
	- (b) trial and error (is quicker for a small modulus) $\Rightarrow c = 2$.
- (iv) Multiply both sides of the congruence $4x \equiv 6 \pmod{7}$ by 2 to get

$$
x \equiv 12 \equiv 5 \text{ (mod 7)}.
$$

(v) The solutions have the form $x = 5 + 7k$, so $x \equiv 5 + 7k$ (mod 105).

To solve the congruence

$$
60x \equiv 90 \text{ (mod 105)}.
$$

(i) $d = (60, 105) = 15 \Rightarrow 15|90 \checkmark$: There will indeed be a solution. (ii) Reduces to the congruence

$$
4x \equiv 6 \pmod{7}.
$$

- (iii) Find an integer c with $c \cdot 4 \equiv 1 \pmod{7}$.
	- (a) Euclidean algorithm
	- (b) trial and error (is quicker for a small modulus) $\Rightarrow c = 2$.
- (iv) Multiply both sides of the congruence $4x \equiv 6 \pmod{7}$ by 2 to get

$$
x \equiv 12 \equiv 5 \pmod{7}.
$$

(v) The solutions have the form $x = 5 + 7k$, so $x \equiv 5 + 7k$ (mod 105). There are 15 distinct solutions modulo 105, so we have $x \equiv 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103 \pmod{105}$.

Chinese Remainder Theorem

Theorem 11 (Chinese Remainder Theorem)

Let n and m be positive integers, with $(n, m) = 1$. Then the system of congruences

$$
x \equiv a \pmod{n} \qquad x \equiv b \pmod{m}
$$

has a solution. Moreover, any two solutions are congruent modulo mn.

Theorem 11 (Chinese Remainder Theorem)

Let n and m be positive integers, with $(n, m) = 1$. Then the system of congruences

$$
x \equiv a \pmod{n} \qquad x \equiv b \pmod{m}
$$

has a solution. Moreover, any two solutions are congruent modulo mn.

Since $(n, m) = 1$, there exist integers r and s such that $rm + sn = 1$. Then $rm \equiv 1 \pmod{n}$ and $sn \equiv 1 \pmod{m}$. Let

 $x = arm + bsn$.

Then a direct computation verifies that x is a desired solution.

Theorem 11 (Chinese Remainder Theorem)

Let n and m be positive integers, with $(n, m) = 1$. Then the system of congruences

$$
x \equiv a \pmod{n} \qquad x \equiv b \pmod{m}
$$

has a solution. Moreover, any two solutions are congruent modulo mn.

Since $(n, m) = 1$, there exist integers r and s such that $rm + sn = 1$. Then $rm \equiv 1 \pmod{n}$ and $sn \equiv 1 \pmod{m}$. Let

 $x = arm + bsn$.

Then a direct computation verifies that x is a desired solution.

If x is solution, then adding any multiple of mn is obviously still a solution.

Theorem 11 (Chinese Remainder Theorem)

Let n and m be positive integers, with $(n, m) = 1$. Then the system of congruences

$$
x \equiv a \pmod{n} \qquad x \equiv b \pmod{m}
$$

has a solution. Moreover, any two solutions are congruent modulo mn.

Since $(n, m) = 1$, there exist integers r and s such that $rm + sn = 1$. Then $rm \equiv 1 \pmod{n}$ and $sn \equiv 1 \pmod{m}$. Let

 $x = arm + bsn$.

Then a direct computation verifies that x is a desired solution.

If x is solution, then adding any multiple of mn is obviously still a solution. Conversely, if x_1 and x_2 are two solutions, then they must be congruent modulo *n* and modulo *m*. Thus $n|(x_1 - x_2)$ and $m|(x_1 - x_2)$., so $mn|(x_1 - x_2)$ since $(n, m) = 1$. Therefore $x_1 \equiv x_2 \pmod{mn}$.

$$
x \equiv 7 \pmod{8} \qquad x \equiv 3 \pmod{5}.
$$

$$
x \equiv 7 \pmod{8} \qquad x \equiv 3 \pmod{5}.
$$

(a) Use the Euclidean algorithm to write $2 \cdot 8 + (-3) \cdot 5 = 1$.

$$
x \equiv 7 \pmod{8} \qquad x \equiv 3 \pmod{5}.
$$

(a) Use the Euclidean algorithm to write $2 \cdot 8 + (-3) \cdot 5 = 1$. (b) Then $x = 7(-3)5 + 3(2)(8) = -57$ is a solution.

$$
x \equiv 7 \pmod{8} \qquad x \equiv 3 \pmod{5}.
$$

(a) Use the Euclidean algorithm to write $2 \cdot 8 + (-3) \cdot 5 = 1$. (b) Then $x = 7(-3)5 + 3(2)(8) = -57$ is a solution.

(c) The general solution is $x = -57 + 40t$.

$$
x \equiv 7 \pmod{8} \qquad x \equiv 3 \pmod{5}.
$$

(a) Use the Euclidean algorithm to write $2 \cdot 8 + (-3) \cdot 5 = 1$.

(b) Then $x = 7(-3)5 + 3(2)(8) = -57$ is a solution.

(c) The general solution is $x = -57 + 40t$. The smallest nonnegative solution is therefore 23, so we have

$$
x \equiv 23 \pmod{40}.
$$

Given the congruences

$$
x \equiv a \pmod{n} \qquad x \equiv b \pmod{m}.
$$

Given the congruences

$$
x \equiv a \pmod{n} \qquad x \equiv b \pmod{m}.
$$

(i) Rewrite the first congruence as $x = a + qn$ for some $q \in \mathbb{Z}$.

Given the congruences

$$
x \equiv a \pmod{n} \qquad x \equiv b \pmod{m}.
$$

(i) Rewrite the first congruence as $x = a + qn$ for some $q \in \mathbb{Z}$. (ii) Substitute this expression for x in the second congruence, giving

$$
a + qn \equiv b \pmod{m}, \text{ or } qn \equiv b - a \pmod{m}.
$$

Given the congruences

$$
x \equiv a \pmod{n} \qquad x \equiv b \pmod{m}.
$$

(i) Rewrite the first congruence as $x = a + qn$ for some $q \in \mathbb{Z}$. (ii) Substitute this expression for x in the second congruence, giving

$$
a + qn \equiv b \pmod{m}, \text{ or } qn \equiv b - a \pmod{m}.
$$

(iii) Since $(n, m) = 1$, we can solve the congruence $nz \equiv 1 \pmod{m}$.

Given the congruences

$$
x \equiv a \pmod{n} \qquad x \equiv b \pmod{m}.
$$

(i) Rewrite the first congruence as $x = a + qn$ for some $q \in \mathbb{Z}$. (ii) Substitute this expression for x in the second congruence, giving

$$
a + qn \equiv b \pmod{m}, \quad \text{or} \quad qn \equiv b - a \pmod{m}.
$$

(iii) Since $(n, m) = 1$, we can solve the congruence $nz \equiv 1 \pmod{m}$.

(iv) Using this solution we can solve for q in $qn \equiv b - a \pmod{m}$. In particular, $q \equiv (b - a)z \pmod{m} \Rightarrow x = a + ((b - a)z + km)n$. That is,

$$
x \equiv a + (b - a)zn \pmod{mn}.
$$

$$
x \equiv 7 \pmod{8} \qquad x \equiv 3 \pmod{5}.
$$

$$
x \equiv 7 \pmod{8} \qquad x \equiv 3 \pmod{5}.
$$

(i) $x = 7 + 8q$.

$$
x \equiv 7 \pmod{8} \qquad x \equiv 3 \pmod{5}.
$$

\n- (i)
$$
x = 7 + 8q
$$
.
\n- (ii) $7 + 8q \equiv 3 \pmod{5} \Leftrightarrow 3q \equiv -4 \equiv 1 \pmod{5}$.
\n

$$
x \equiv 7 \pmod{8} \qquad x \equiv 3 \pmod{5}.
$$

\n- (i)
$$
x = 7 + 8q
$$
.
\n- (ii) $7 + 8q \equiv 3 \pmod{5} \Leftrightarrow 3q \equiv -4 \equiv 1 \pmod{5}$.
\n- (iii) Trial and error: $q \equiv 2 \pmod{5}$.
\n

$$
x \equiv 7 \pmod{8} \qquad x \equiv 3 \pmod{5}.
$$

\n- (i)
$$
x = 7 + 8q
$$
.
\n- (ii) $7 + 8q \equiv 3 \pmod{5} \Leftrightarrow 3q \equiv -4 \equiv 1 \pmod{5}$.
\n- (iii) Trial and error: $q \equiv 2 \pmod{5}$.
\n- (iv) The particular solution $x = 7 + 8 \cdot 2 = 23$.
\n

$$
x \equiv 7 \pmod{8} \qquad x \equiv 3 \pmod{5}.
$$

\n- (i)
$$
x = 7 + 8q
$$
.
\n- (ii) $7 + 8q \equiv 3 \pmod{5} \Leftrightarrow 3q \equiv -4 \equiv 1 \pmod{5}$.
\n- (iii) Trial and error: $q \equiv 2 \pmod{5}$.
\n- (iv) The particular solution $x = 7 + 8 \cdot 2 = 23$. So we have
\n

$$
x \equiv 23 \pmod{40}.
$$

Let a and $n > 0$ be integers. The set of all integers which have the same remainder as a when divided by n is called the **congruence class of** a **modulo** *n*, and is denoted by $[a]_n$, where

$$
[a]_n = \{x \in \mathbf{Z} \mid x \equiv a \pmod{n}\}.
$$

Let a and $n > 0$ be integers. The set of all integers which have the same remainder as a when divided by n is called the **congruence class of** a **modulo** n, and is denoted by $[a]_n$, where

$$
[a]_n = \{x \in \mathbf{Z} \mid x \equiv a \pmod{n}\}.
$$

The collection of all congruence classes modulo n is called the set of integers modulo *n*, denoted by Z_n .

Let a and $n > 0$ be integers. The set of all integers which have the same remainder as a when divided by n is called the **congruence class of** a **modulo** n, and is denoted by $[a]_n$, where

$$
[a]_n = \{x \in \mathbf{Z} \mid x \equiv a \pmod{n}\}.
$$

The collection of all congruence classes modulo n is called the set of integers modulo *n*, denoted by Z_n .

Note that $[a]_n = [b]_n$ if and only if $a \equiv b \pmod{n}$.

Let a and $n > 0$ be integers. The set of all integers which have the same remainder as a when divided by n is called the **congruence class of** a **modulo** n, and is denoted by $[a]_n$, where

$$
[a]_n = \{x \in \mathbf{Z} \mid x \equiv a \pmod{n}\}.
$$

The collection of all congruence classes modulo n is called the set of integers modulo *n*, denoted by Z_n .

Note that $[a]_n = [b]_n$ if and only if $a \equiv b \pmod{n}$.

We say that an element of $[a]_n$ is a representative of the congruence class. Each congruence class $[a]_n$ has a unique nonnegative representative that is smaller than n , namely, the remainder when a is divided by n .

Let a and $n > 0$ be integers. The set of all integers which have the same remainder as a when divided by n is called the **congruence class of** a **modulo** *n*, and is denoted by $[a]_n$, where

$$
[a]_n = \{x \in \mathbf{Z} \mid x \equiv a \pmod{n}\}.
$$

The collection of all congruence classes modulo n is called the set of integers modulo *n*, denoted by Z_n .

Note that $[a]_n = [b]_n$ if and only if $a \equiv b \pmod{n}$.

We say that an element of $[a]_n$ is a representative of the congruence class. Each congruence class $[a]_n$ has a unique nonnegative representative that is smaller than n , namely, the remainder when a is divided by n .

This shows that there are exactly n distinct congruence classes modulo n .

The congruence classes modulo 3 can be represented by 0, 1, and 2.

$$
[0]_3 = \{ \ldots, -9, -6, -3, 0, 3, 6, 9, \ldots \}
$$

\n
$$
[1]_3 = \{ \ldots, -8, -5, -2, 1, 4, 7, 10, \ldots \}
$$

\n
$$
[2]_3 = \{ \ldots, -7, -4, -1, 2, 5, 8, 11, \ldots \}
$$

The congruence classes modulo 3 can be represented by 0, 1, and 2.

$$
[0]_3 = \{ \ldots, -9, -6, -3, 0, 3, 6, 9, \ldots \}
$$

\n
$$
[1]_3 = \{ \ldots, -8, -5, -2, 1, 4, 7, 10, \ldots \}
$$

\n
$$
[2]_3 = \{ \ldots, -7, -4, -1, 2, 5, 8, 11, \ldots \}
$$

In general, each integer belongs to a unique congruence class modulo n. Hence we have

$$
\mathbf{Z}_n = \{ [0]_n, [1]_n, \ldots, [n-1]_n \}.
$$

Addition and Multiplication of congruence classes, I

The set \mathbb{Z}_2 consists of $[0]_2$ and $[1]_2$, where $[0]_2$ is the set of even numbers and $[1]_2$ is the set of odd numbers.

Addition and Multiplication of congruence classes, I

The set \mathbb{Z}_2 consists of $[0]_2$ and $[1]_2$, where $[0]_2$ is the set of even numbers and $[1]_2$ is the set of odd numbers.

Addition and Multiplication of congruence classes, I

The set \mathbb{Z}_2 consists of $[0]_2$ and $[1]_2$, where $[0]_2$ is the set of even numbers and $[1]_2$ is the set of odd numbers.

Addition and Multiplication of congruence classes, I

The set \mathbb{Z}_2 consists of $[0]_2$ and $[1]_2$, where $[0]_2$ is the set of even numbers and $[1]_2$ is the set of odd numbers.

Proposition. 6

Let n be a positive integer, and let a, b be any integers. Then the addition and multiplication of congruence classes given below are well-defined:

$$
[a]_n + [b]_n = [a+b]_n, \qquad [a]_n \cdot [b]_n = [ab]_n.
$$

Addition and Multiplication of congruence classes, II

For any elements $[a]_n, [b]_n, [c]_n \in \mathbb{Z}_n$, the following laws hold. Associativity: $([a]_n + [b]_n) + [c]_n = [a]_n + ([b]_n + [c]_n)$ $([a]_n \cdot [b]_n) \cdot [c]_n = [a]_n \cdot ([b]_n \cdot [c]_n)$ Commutativity: $[a]_n + [b]_n = [b]_n + [a]_n$ $[a]_n \cdot [b]_n = [b]_n \cdot [a]_n$ Distributivity: $[a]_n \cdot ([b]_n + [c]_n) = [a]_n \cdot [b]_n + [a]_n \cdot [c]_n$ Identities: $[a]_n + [0]_n = [a]_n$ $[a]_n \cdot [1]_n = [a]_n$ Additive inverses: $[a]_n + [-a]_n = [0]_n$

Addition and Multiplication of congruence classes, II

For any elements $[a]_n$, $[b]_n$, $[c]_n \in \mathbb{Z}_n$, the following laws hold. Associativity: $([a]_n + [b]_n) + [c]_n = [a]_n + ([b]_n + [c]_n)$ $([a]_n \cdot [b]_n) \cdot [c]_n = [a]_n \cdot ([b]_n \cdot [c]_n)$ Commutativity: $[a]_n + [b]_n = [b]_n + [a]_n$ $[a]_n \cdot [b]_n = [b]_n \cdot [a]_n$ Distributivity: $[a]_n \cdot ([b]_n + [c]_n) = [a]_n \cdot [b]_n + [a]_n \cdot [c]_n$ Identities: $[a]_n + [0]_n = [a]_n$ $[a]_n \cdot [1]_n = [a]_n$ Additive inverses: $[a]_n + [-a]_n = [0]_n$

Proof of distributive law:

$$
[a]_n \cdot ([b]_n + [c]_n) = [a]_n \cdot ([b + c]_n) = [a(b + c)]_n
$$

$$
= [ab + ac]_n = [ab]_n + [ac]_n
$$

$$
= [a]_n \cdot [b]_n + [a]_n \cdot [c]_n.
$$

Addition and Multiplication of congruence classes, II

For any elements $[a]_n, [b]_n, [c]_n \in \mathbb{Z}_n$, the following laws hold. Associativity: $([a]_n + [b]_n) + [c]_n = [a]_n + ([b]_n + [c]_n)$ $([a]_n \cdot [b]_n) \cdot [c]_n = [a]_n \cdot ([b]_n \cdot [c]_n)$ Commutativity: $[a]_n + [b]_n = [b]_n + [a]_n$ $[a]_n \cdot [b]_n = [b]_n \cdot [a]_n$ Distributivity: $[a]_n \cdot ([b]_n + [c]_n) = [a]_n \cdot [b]_n + [a]_n \cdot [c]_n$ Identities: $[a]_n + [0]_n = [a]_n$ $[a]_n \cdot [1]_n = [a]_n$ Additive inverses: $[a]_n + [-a]_n = [0]_n$

Proof of distributive law:

$$
[a]_n \cdot ([b]_n + [c]_n) = [a]_n \cdot ([b + c]_n) = [a(b + c)]_n
$$

$$
= [ab + ac]_n = [ab]_n + [ac]_n
$$

$$
= [a]_n \cdot [b]_n + [a]_n \cdot [c]_n.
$$

No cancellation law: For example, $[6]_8 \cdot [5]_8 = [6]_8 \cdot [1]_8$, but $[5]_8 \neq [1]_8$.

Divisor of zero vs. Unit in Z_n , I

Definition 13

If $[a]_n \in \mathbb{Z}_n$, and $[a]_n[b]_n = [0]_n$ for some nonzero congruence class $[b]_n$, then $[a]_n$ is called a **divisor of zero**.

Divisor of zero vs. Unit in \mathbb{Z}_n , I

Definition 13

If $[a]_n \in \mathbb{Z}_n$, and $[a]_n[b]_n = [0]_n$ for some nonzero congruence class $[b]_n$, then $[a]_n$ is called a **divisor of zero**.

If $[a]_n$ is not a divisor of zero, then $[a]_n[b]_n = [a]_n[c]_n \Rightarrow [b]_n = [c]_n$.

Divisor of zero vs. Unit in \mathbb{Z}_n , I

Definition 13

If $[a]_n \in \mathbb{Z}_n$, and $[a]_n[b]_n = [0]_n$ for some nonzero congruence class $[b]_n$, then $[a]_n$ is called a **divisor of zero**.

If $[a]_n$ is not a divisor of zero, then $[a]_n[b]_n = [a]_n[c]_n \Rightarrow [b]_n = [c]_n$. Proof: $[a]_n([b]_n - [c]_n) = [a]_n[b - c]_n = [0]_n \Rightarrow [b]_n - [c]_n$ must be zero.

If $[a]_n \in \mathbb{Z}_n$, and $[a]_n[b]_n = [0]_n$ for some nonzero congruence class $[b]_n$, then $[a]_n$ is called a **divisor of zero**.

If $[a]_n$ is not a divisor of zero, then $[a]_n[b]_n = [a]_n[c]_n \Rightarrow [b]_n = [c]_n$. Proof: $[a]_n([b]_n - [c]_n) = [a]_n[b - c]_n = [0]_n \Rightarrow [b]_n - [c]_n$ must be zero.

Definition 14

If $[a]_n \in \mathbb{Z}_n$, and $[a]_n[b]_n = [1]_n$ for some congruence class $[b]_n$, then $[b]_n$ is called a **multiplicative inverse** of $[a]_n$ and is denoted by $[a]_n^{-1}$. In this case, we say that $[a]_n$ is an **invertible** element of \mathbb{Z}_n , or a unit of \mathbb{Z}_n .

If $[a]_n \in \mathbb{Z}_n$, and $[a]_n[b]_n = [0]_n$ for some nonzero congruence class $[b]_n$, then $[a]_n$ is called a **divisor of zero**.

If $[a]_n$ is not a divisor of zero, then $[a]_n[b]_n = [a]_n[c]_n \Rightarrow [b]_n = [c]_n$. Proof: $[a]_n([b]_n - [c]_n) = [a]_n[b - c]_n = [0]_n \Rightarrow [b]_n - [c]_n$ must be zero.

Definition 14

If $[a]_n \in \mathbb{Z}_n$, and $[a]_n[b]_n = [1]_n$ for some congruence class $[b]_n$, then $[b]_n$ is called a **multiplicative inverse** of $[a]_n$ and is denoted by $[a]_n^{-1}$. In this case, we say that $[a]_n$ is an **invertible** element of \mathbb{Z}_n , or a unit of \mathbb{Z}_n .

From this point on, if the meaning is clear from the context we will omit the subscript on congruence classes.

If $[a]_n \in \mathbb{Z}_n$, and $[a]_n[b]_n = [0]_n$ for some nonzero congruence class $[b]_n$, then $[a]_n$ is called a **divisor of zero**.

If $[a]_n$ is not a divisor of zero, then $[a]_n[b]_n = [a]_n[c]_n \Rightarrow [b]_n = [c]_n$. Proof: $[a]_n([b]_n - [c]_n) = [a]_n[b - c]_n = [0]_n \Rightarrow [b]_n - [c]_n$ must be zero.

Definition 14

If $[a]_n \in \mathbb{Z}_n$, and $[a]_n[b]_n = [1]_n$ for some congruence class $[b]_n$, then $[b]_n$ is called a **multiplicative inverse** of $[a]_n$ and is denoted by $[a]_n^{-1}$. In this case, we say that $[a]_n$ is an **invertible** element of \mathbb{Z}_n , or a unit of \mathbb{Z}_n .

From this point on, if the meaning is clear from the context we will omit the subscript on congruence classes.

In Z_n , if [a] has a multiplicative inverse, then it cannot be a divisor of zero.

If $[a]_n \in \mathbb{Z}_n$, and $[a]_n[b]_n = [0]_n$ for some nonzero congruence class $[b]_n$, then $[a]_n$ is called a **divisor of zero**.

If $[a]_n$ is not a divisor of zero, then $[a]_n[b]_n = [a]_n[c]_n \Rightarrow [b]_n = [c]_n$. Proof: $[a]_n([b]_n - [c]_n) = [a]_n[b - c]_n = [0]_n \Rightarrow [b]_n - [c]_n$ must be zero.

Definition 14

If $[a]_n \in \mathbb{Z}_n$, and $[a]_n[b]_n = [1]_n$ for some congruence class $[b]_n$, then $[b]_n$ is called a **multiplicative inverse** of $[a]_n$ and is denoted by $[a]_n^{-1}$. In this case, we say that $[a]_n$ is an **invertible** element of \mathbb{Z}_n , or a unit of \mathbb{Z}_n .

From this point on, if the meaning is clear from the context we will omit the subscript on congruence classes.

In Z_n , if [a] has a multiplicative inverse, then it cannot be a divisor of zero. Proof: $[a][b] = [0] \Rightarrow [b] = [a]^{-1}[a] \cdot [b] = [a]^{-1}([a][b]) = [a]^{-1}[0] = [0].$

Divisor of zero vs. Unit in Z_n , II

Proposition. 7

(a) $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if $(a, n) = 1$.

(b) A nonzero element of \mathbb{Z}_n is either a unit or a divisor of zero.

Divisor of zero vs. Unit in Z_n , II

Proposition. 7

(a) $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if $(a, n) = 1$.

(b) A nonzero element of \mathbb{Z}_n is either a unit or a divisor of zero.

 $\sigma(\mathsf{a}) \; (\Rightarrow)$ Say $[\mathsf{a}]^{-1} = [\mathsf{b}]$, then $[\mathsf{a}][\mathsf{b}] = [1] \Rightarrow \mathsf{a}\mathsf{b} \equiv 1 \; (\text{mod } \mathsf{n}) \Rightarrow (\mathsf{a},\mathsf{n}) = 1$

Divisor of zero vs. Unit in \mathbb{Z}_n , II

Proposition. 7

(a) $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if $(a, n) = 1$.

(b) A nonzero element of \mathbb{Z}_n is either a unit or a divisor of zero.

 $\sigma(\mathsf{a}) \; (\Rightarrow)$ Say $[\mathsf{a}]^{-1} = [\mathsf{b}]$, then $[\mathsf{a}][\mathsf{b}] = [1] \Rightarrow \mathsf{a}\mathsf{b} \equiv 1 \; (\text{mod } \mathsf{n}) \Rightarrow (\mathsf{a},\mathsf{n}) = 1$ (\Leftarrow) Write $ab+qn=1$ for $b,q\in {\bf Z}.$ So $ab\equiv 1\ ({\rm mod}\,\,n)\Rightarrow [b]=[a]^{-1}.$

Divisor of zero vs. Unit in \mathbb{Z}_n , II

Proposition. 7

(a) $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if $(a, n) = 1$.

(b) A nonzero element of \mathbb{Z}_n is either a unit or a divisor of zero.

 $\sigma(\mathsf{a}) \; (\Rightarrow)$ Say $[\mathsf{a}]^{-1} = [\mathsf{b}]$, then $[\mathsf{a}][\mathsf{b}] = [1] \Rightarrow \mathsf{a}\mathsf{b} \equiv 1 \; (\text{mod } \mathsf{n}) \Rightarrow (\mathsf{a},\mathsf{n}) = 1$ (\Leftarrow) Write $ab+qn=1$ for $b,q\in {\bf Z}.$ So $ab\equiv 1\ ({\rm mod}\,\,n)\Rightarrow [b]=[a]^{-1}.$ (b) "nonzero" \Rightarrow n \nmid a.

Divisor of zero vs. Unit in \mathbb{Z}_n , II

Proposition. 7

(a) $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if $(a, n) = 1$.

(b) A nonzero element of \mathbb{Z}_n is either a unit or a divisor of zero.

 $\sigma(\mathsf{a}) \; (\Rightarrow)$ Say $[\mathsf{a}]^{-1} = [\mathsf{b}]$, then $[\mathsf{a}][\mathsf{b}] = [1] \Rightarrow \mathsf{a}\mathsf{b} \equiv 1 \; (\text{mod } \mathsf{n}) \Rightarrow (\mathsf{a},\mathsf{n}) = 1$ (\Leftarrow) Write $ab+qn=1$ for $b,q\in {\bf Z}.$ So $ab\equiv 1\ ({\rm mod}\,\,n)\Rightarrow [b]=[a]^{-1}.$ (b) "nonzero" \Rightarrow n \nmid a. If $(a, n) = 1$, then [a] is a unit.

Proposition. 7

(a) $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if $(a, n) = 1$.

(b) A nonzero element of \mathbb{Z}_n is either a unit or a divisor of zero.

 $\sigma(\mathsf{a}) \; (\Rightarrow)$ Say $[\mathsf{a}]^{-1} = [\mathsf{b}]$, then $[\mathsf{a}][\mathsf{b}] = [1] \Rightarrow \mathsf{a}\mathsf{b} \equiv 1 \; (\text{mod } \mathsf{n}) \Rightarrow (\mathsf{a},\mathsf{n}) = 1$ (\Leftarrow) Write $ab+qn=1$ for $b,q\in {\bf Z}.$ So $ab\equiv 1\ ({\rm mod}\,\,n)\Rightarrow [b]=[a]^{-1}.$ (b) "nonzero" \Rightarrow n \nmid a. If $(a, n) = 1$, then [a] is a unit. If not, then $(a, n) = d$, where $1 < d < n$.

Proposition. 7

(a) $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if $(a, n) = 1$.

(b) A nonzero element of \mathbb{Z}_n is either a unit or a divisor of zero.

 $\sigma(\mathsf{a}) \; (\Rightarrow)$ Say $[\mathsf{a}]^{-1} = [\mathsf{b}]$, then $[\mathsf{a}][\mathsf{b}] = [1] \Rightarrow \mathsf{a}\mathsf{b} \equiv 1 \; (\text{mod } \mathsf{n}) \Rightarrow (\mathsf{a},\mathsf{n}) = 1$ (\Leftarrow) Write $ab+qn=1$ for $b,q\in {\bf Z}.$ So $ab\equiv 1\ ({\rm mod}\,\,n)\Rightarrow [b]=[a]^{-1}.$ (b) "nonzero" \Rightarrow n \nmid a. If $(a, n) = 1$, then [a] is a unit. If not, then $(a, n) = d$, where $1 < d < n$. Write $n = kd$ and $a = bd$. Then $[k] \neq [0]$ in \mathbf{Z}_n , but $[a][k] = [ak] = [bdk] = [bn] = [0]$. So $[a]$ is a divisor of zero.

Proposition. 7

(a) $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if $(a, n) = 1$.

(b) A nonzero element of \mathbb{Z}_n is either a unit or a divisor of zero.

 $\sigma(\mathsf{a}) \; (\Rightarrow)$ Say $[\mathsf{a}]^{-1} = [\mathsf{b}]$, then $[\mathsf{a}][\mathsf{b}] = [1] \Rightarrow \mathsf{a}\mathsf{b} \equiv 1 \; (\text{mod } \mathsf{n}) \Rightarrow (\mathsf{a},\mathsf{n}) = 1$ (\Leftarrow) Write $ab+qn=1$ for $b,q\in {\bf Z}.$ So $ab\equiv 1\ ({\rm mod}\,\,n)\Rightarrow [b]=[a]^{-1}.$ (b) "nonzero" \Rightarrow n \nmid a. If $(a, n) = 1$, then [a] is a unit. If not, then $(a, n) = d$, where $1 < d < n$. Write $n = kd$ and $a = bd$. Then $[k] \neq [0]$ in \mathbf{Z}_n , but $[a][k] = [ak] = [bdk] = [bn] = [0]$. So $[a]$ is a divisor of zero.

Corollary 15

The following conditions on the modulus $n > 0$ are equivalent.

- (1) The number n is prime.
- (2) \mathbb{Z}_n has no divisors of zero, except $[0]_n$.
- (3) Every nonzero element of Z_n has a multiplicative inverse.

I. Find $[11]^{-1}$ in Z_{16} using the matrix form of the Euclidean algorithm:

I. Find $[11]^{-1}$ in Z_{16} using the matrix form of the Euclidean algorithm: $\begin{bmatrix} 1 & 0 & 16 \\ 0 & 1 & 11 \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} 1 & -1 & 5 \\ 0 & 1 & 11 \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} 1 & -1 & 5 \\ -2 & 3 & 1 \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} 11 & -16 & 0 \\ -2 & 3 & 1 \end{bmatrix}$

Thus $(-2) \cdot 16 + 3 \cdot 11 = 1$, which shows that $[11]_{16}^{-1} = [3]_{16}$.

I. Find $[11]^{-1}$ in Z_{16} using the matrix form of the Euclidean algorithm: $\begin{bmatrix} 1 & 0 & 16 \\ 0 & 1 & 11 \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} 1 & -1 & 5 \\ 0 & 1 & 11 \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} 1 & -1 & 5 \\ -2 & 3 & 1 \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} 11 & -16 & 0 \\ -2 & 3 & 1 \end{bmatrix}$ Thus $(-2) \cdot 16 + 3 \cdot 11 = 1$, which shows that $[11]_{16}^{-1} = [3]_{16}$.

II. Find $[11]^{-1}$ in \mathbf{Z}_{16} by taking successive powers of $[11]$:

I. Find $[11]^{-1}$ in Z_{16} using the matrix form of the Euclidean algorithm:

$$
\begin{bmatrix} 1 & 0 & 16 \\ 0 & 1 & 11 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -1 & 5 \\ 0 & 1 & 11 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -1 & 5 \\ -2 & 3 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 11 & -16 & 0 \\ -2 & 3 & 1 \end{bmatrix}
$$

Thus $(-2) \cdot 16 + 3 \cdot 11 = 1$, which shows that $[11]_{16}^{-1} = [3]_{16}$. **II.** Find $[11]^{-1}$ in \mathbf{Z}_{16} by taking successive powers of $[11]$: List list the powers of [11] : $[11]^2 = [-5]^2 = [25] = [9], \quad [11]^3 = [11]^2 [11] = [99] = [3],$ and $[11]^4 = [11]^3[11] = [33] = [1]$. Thus again we see that $[11]_{16}^{-1} = [3]_{16}$.

I. Find $[11]^{-1}$ in Z_{16} using the matrix form of the Euclidean algorithm:

$$
\begin{bmatrix} 1 & 0 & 16 \\ 0 & 1 & 11 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -1 & 5 \\ 0 & 1 & 11 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -1 & 5 \\ -2 & 3 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 11 & -16 & 0 \\ -2 & 3 & 1 \end{bmatrix}
$$

Thus $(-2) \cdot 16 + 3 \cdot 11 = 1$, which shows that $[11]_{16}^{-1} = [3]_{16}$. **II.** Find $[11]^{-1}$ in \mathbf{Z}_{16} by taking successive powers of $[11]$: List list the powers of [11] : $[11]^2 = [-5]^2 = [25] = [9], \quad [11]^3 = [11]^2 [11] = [99] = [3],$ and $[11]^4 = [11]^3[11] = [33] = [1]$. Thus again we see that $[11]_{16}^{-1} = [3]_{16}$. **II.** Find $[11]^{-1}$ in \mathbf{Z}_{16} using trial and error (for small numbers):

I. Find $[11]^{-1}$ in Z_{16} using the matrix form of the Euclidean algorithm:

$$
\begin{bmatrix} 1 & 0 & 16 \\ 0 & 1 & 11 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -1 & 5 \\ 0 & 1 & 11 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -1 & 5 \\ -2 & 3 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 11 & -16 & 0 \\ -2 & 3 & 1 \end{bmatrix}
$$

Thus $(-2) \cdot 16 + 3 \cdot 11 = 1$, which shows that $[11]_{16}^{-1} = [3]_{16}$. **II.** Find $[11]^{-1}$ in \mathbf{Z}_{16} by taking successive powers of $[11]$: List list the powers of [11] : $[11]^2 = [-5]^2 = [25] = [9], \quad [11]^3 = [11]^2 [11] = [99] = [3],$ and $[11]^4 = [11]^3[11] = [33] = [1]$. Thus again we see that $[11]_{16}^{-1} = [3]_{16}$. **II.** Find $[11]^{-1}$ in \mathbf{Z}_{16} using trial and error (for small numbers): $\{(a, 16) = 1, a > 0\} = \{1, 3, 5, 7, 9, 11, 13, 15\}.$

I. Find $[11]^{-1}$ in Z_{16} using the matrix form of the Euclidean algorithm:

$$
\begin{bmatrix} 1 & 0 & 16 \\ 0 & 1 & 11 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -1 & 5 \\ 0 & 1 & 11 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -1 & 5 \\ -2 & 3 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 11 & -16 & 0 \\ -2 & 3 & 1 \end{bmatrix}
$$

Thus $(-2) \cdot 16 + 3 \cdot 11 = 1$, which shows that $[11]_{16}^{-1} = [3]_{16}$. **II.** Find $[11]^{-1}$ in \mathbf{Z}_{16} by taking successive powers of $[11]$: List list the powers of [11] : $[11]^2 = [-5]^2 = [25] = [9], \quad [11]^3 = [11]^2 [11] = [99] = [3],$ and $[11]^4 = [11]^3[11] = [33] = [1]$. Thus again we see that $[11]_{16}^{-1} = [3]_{16}$. **II.** Find $[11]^{-1}$ in \mathbf{Z}_{16} using trial and error (for small numbers): $\{(a, 16) = 1, a > 0\} = \{1, 3, 5, 7, 9, 11, 13, 15\}.$ It is easier to use the representatives $\pm 1, \pm 3, \pm 5, \pm 7$.

I. Find $[11]^{-1}$ in Z_{16} using the matrix form of the Euclidean algorithm:

$$
\begin{bmatrix} 1 & 0 & 16 \\ 0 & 1 & 11 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -1 & 5 \\ 0 & 1 & 11 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -1 & 5 \\ -2 & 3 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 11 & -16 & 0 \\ -2 & 3 & 1 \end{bmatrix}
$$

Thus $(-2) \cdot 16 + 3 \cdot 11 = 1$, which shows that $[11]_{16}^{-1} = [3]_{16}$. **II.** Find $[11]^{-1}$ in \mathbf{Z}_{16} by taking successive powers of $[11]$: List list the powers of [11] : $[11]^2 = [-5]^2 = [25] = [9], \quad [11]^3 = [11]^2 [11] = [99] = [3],$ and $[11]^4 = [11]^3[11] = [33] = [1]$. Thus again we see that $[11]_{16}^{-1} = [3]_{16}$. **II.** Find $[11]^{-1}$ in \mathbf{Z}_{16} using trial and error (for small numbers): $\{(a, 16) = 1, a > 0\} = \{1, 3, 5, 7, 9, 11, 13, 15\}.$ It is easier to use the representatives $\pm 1, \pm 3, \pm 5, \pm 7$. $[3][5] = [15] = [-1] \Rightarrow [3][-5] = [3][11] = [1]$ since $[11] = [-5]$. Thus again we obtain $[11]_{16}^{-1} = [3]_{16}$.

Euler's totient function

Definition 16

Let n be a positive integer. The number of positive integers less than or equal to *n* which are relatively prime to *n* will be denoted by $\varphi(n)$. This function is called Euler's φ -function, or the totient function.

Note that $\varphi(1) = 1$.

Euler's totient function

Definition 16

Let n be a positive integer. The number of positive integers less than or equal to *n* which are relatively prime to *n* will be denoted by $\varphi(n)$. This function is called Euler's φ -function, or the totient function.

Note that $\varphi(1) = 1$.

Proposition. 8

If the prime factorization of n is $n = p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$, where $\alpha_i > 0$ for $1 \leq i \leq k$, then

$$
\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right).
$$

Euler's totient function

Definition 16

Let n be a positive integer. The number of positive integers less than or equal to *n* which are relatively prime to *n* will be denoted by $\varphi(n)$. This function is called Euler's φ -function, or the totient function.

Note that $\varphi(1) = 1$.

Proposition. 8

If the prime factorization of n is $n = p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$, where $\alpha_i > 0$ for $1 \leq i \leq k$, then

$$
\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right).
$$

Example. 7

$$
\varphi(10) = 10\left(\frac{1}{2}\right)\left(\frac{4}{5}\right) = 4 \qquad \text{and} \qquad \varphi(36) = 36\left(\frac{1}{2}\right)\left(\frac{2}{3}\right) = 12.
$$

Definition 17

The set of units of \mathbb{Z}_n , the congruence classes [a] such that $(a, n) = 1$, will be denoted by \mathbf{Z}_n^{\times} .

Definition 17

The set of units of \mathbb{Z}_n , the congruence classes [a] such that $(a, n) = 1$, will be denoted by \mathbf{Z}_n^{\times} .

Proposition. 9

The set \mathbb{Z}_n^{\times} of units of \mathbb{Z}_n is closed under multiplication.

Definition 17

The set of units of \mathbb{Z}_n , the congruence classes [a] such that $(a, n) = 1$, will be denoted by \mathbf{Z}_n^{\times} .

Proposition. 9

The set \mathbb{Z}_n^{\times} of units of \mathbb{Z}_n is closed under multiplication.

Note that the number of elements of Z_n^\times is given by $\varphi(n).$

Definition 17

The set of units of \mathbb{Z}_n , the congruence classes [a] such that $(a, n) = 1$, will be denoted by \mathbf{Z}_n^{\times} .

Proposition. 9

The set \mathbb{Z}_n^{\times} of units of \mathbb{Z}_n is closed under multiplication.

Note that the number of elements of Z_n^\times is given by $\varphi(n).$

Theorem 18 (Euler)

If $(a, n) = 1$, then $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Definition 17

The set of units of \mathbf{Z}_n , the congruence classes [a] such that $(a, n) = 1$, will be denoted by \mathbf{Z}_n^{\times} .

Proposition. 9

The set \mathbb{Z}_n^{\times} of units of \mathbb{Z}_n is closed under multiplication.

Note that the number of elements of Z_n^\times is given by $\varphi(n).$

Theorem 18 (Euler)

If
$$
(a, n) = 1
$$
, then $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Note that if $(a, n) = 1$, then $[a]^{-1} = [a]^{\varphi(n)-1}$.

Definition 17

The set of units of \mathbf{Z}_n , the congruence classes [a] such that $(a, n) = 1$, will be denoted by \mathbf{Z}_n^{\times} .

Proposition. 9

The set \mathbb{Z}_n^{\times} of units of \mathbb{Z}_n is closed under multiplication.

Note that the number of elements of Z_n^\times is given by $\varphi(n).$

Theorem 18 (Euler)

If
$$
(a, n) = 1
$$
, then $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Note that if $(a, n) = 1$, then $[a]^{-1} = [a]^{\varphi(n)-1}$.

Corollary 19 (Fermat)

If p is a prime number, then for any integer a we have $a^p \equiv a \pmod{p}$.
The set of units: Z_n^{\times} n

Definition 17

The set of units of \mathbf{Z}_n , the congruence classes [a] such that $(a, n) = 1$, will be denoted by \mathbf{Z}_n^{\times} .

Proposition. 9

The set \mathbb{Z}_n^{\times} of units of \mathbb{Z}_n is closed under multiplication.

Note that the number of elements of Z_n^\times is given by $\varphi(n).$

Theorem 18 (Euler)

If
$$
(a, n) = 1
$$
, then $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Note that if
$$
(a, n) = 1
$$
, then $[a]^{-1} = [a]^{\varphi(n)-1}$.

Corollary 19 (Fermat)

If p is a prime number, then for any integer a we have $a^p \equiv a \pmod{p}$.

If $p|a$: trivial.

The set of units: Z_n^{\times} n

Definition 17

The set of units of \mathbf{Z}_n , the congruence classes [a] such that $(a, n) = 1$, will be denoted by \mathbf{Z}_n^{\times} .

Proposition. 9

The set \mathbb{Z}_n^{\times} of units of \mathbb{Z}_n is closed under multiplication.

Note that the number of elements of Z_n^\times is given by $\varphi(n).$

Theorem 18 (Euler)

If
$$
(a, n) = 1
$$
, then $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Note that if
$$
(a, n) = 1
$$
, then $[a]^{-1} = [a]^{\varphi(n)-1}$.

Corollary 19 (Fermat)

If p is a prime number, then for any integer a we have $a^p \equiv a \pmod{p}$.

If
$$
p | a
$$
: trivial. If $p \nmid a$, then $(a, p) = 1$. $\Rightarrow a^{\varphi(p)} \equiv a^{p-1} \equiv 1 \pmod{p}$.