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Preliminary

Definition 1

An integer a is called a multiple of an integer b if a = bq for some integer
q. In this case we also say that b is a divisor of a, and we use the
notation b|a.

Axiom. 1 (Well-Ordering Principle)

Every nonempty set of natural numbers contains a smallest element.

Theorem 2 (Division Algorithm)

For any integers a and b, with b > 0, there exist unique integers q (the
quotient) and r (the remainder) such that

a = bq + r , with 0 ≤ r < b.
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Greatest Common Divisor

Definition 3

Let a and b be integers, not both zero. A positive integer d is called the
greatest common divisor of a and b if

1 d is a divisor of both a and b, and

2 any divisor of both a and b is also a divisor of d .

The greatest common divisor of a and b will be denoted by gcd(a, b) or
(a, b).

Definition 4 (shortened version)

If a and b are integers, not both zero, and d is a positive integer, then
d = gcd(a, b) if

1 d |a and d |b, and

2 if c |a and c |b, then c |d .
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Greatest Common Divisor vs. Linear Combination

If a and b are integers, then we will refer to any integer of the form
ma + nb, where m, n ∈ Z, as a linear combination of a and b.

Theorem 5

Let a and b be integers, not both zero. Then a and b have a greatest
common divisor, which can be expressed as the smallest positive linear
combination of a and b.
Moreover, an integer is a linear combination of a and b if and only if it is a
multiple of their greatest common divisor.
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Euclidean algorithm

Given integers a > b > 0, the Euclidean algorithm uses the division
algorithm repeatedly to obtain

a =bq1 + r1 with 0 ≤ r1 < b

b =r1q2 + r2 with 0 ≤ r2 < r1

r1 =r2q3 + r3 with 0 ≤ r3 < r2

etc.

If r1 = 0, then b|a, and so (a, b) = b. Since r1 > r2 > . . ., the remainders
get smaller and smaller, and after a finite number of steps we obtain a
remainder rn+1 = 0. The algorithm ends with the equation

rn−1 = rnqn+1 + 0.

This gives us the greatest common divisor:

(a, b) = (b, r1) = (r1, r2) = . . . = (rn−1, rn) = (rn, 0) = rn.
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Example

In finding (126, 35), we can arrange the work in the following manner:

126 =35 · 3 + 21 (126, 35) = (35, 21)

35 =21 · 1 + 14 (35, 21) = (21, 14)

21 =14 · 1 + 7 (21, 14) = (14, 7)

14 =7 · 2 + 0 (14, 7) = (7, 0) = 7

Find the linear combination of 126 and 35 that gives (126, 35) = 7:
Step 1: Solve for the nonzero remainder in each of the equations

7 =21 + 14 · (−1)

14 =35 + 21 · (−1)

21 =126 + 35 · (−3)

Step 2: Substitute for the intermediate remainders:

7 =21 + (−1) · [35 + 21 · (−1)]

=(−1) · 35 + 2 · [126 + 35 · (−3)]

=2 · 126 + (−7) · 35
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Matrix form of the Euclidean algorithm

To find (a, b): Beginning with the matrix[
1 0 a
0 1 b

]
 

[
1 −q1 r1
0 1 b

]
(a = bq1 + r1)

 

[
1 −q1 r1
−q2 1 + q1q2 r2

]
(b = r1q2 + r2)

...

The procedure is continued until one of the entries in the right-hand
column is zero.

Then the other entry in this column is the greatest
common divisor, and its row contains the coefficients of the desired linear
combination.
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Example revisited

[
1 0 126
0 1 35

]
 

[
1 −3 21
0 1 35

]
(126 = 35 · 3 + 21)

 

[
1 −3 21
−1 4 14

]
(35 = 21 · 1 + 14)

 

[
2 −7 7
−1 4 14

]
(21 = 14 · 1 + 7)

 

[
2 −7 7
−5 18 0

]
(14 = 7 · 2 + 0)

Thus, (126, 35) = 7 and a linear combination is 2 · 126 + (−7) · 35 = 7.

Moreover, we can see that (−5) · 126 + 18 · 35 = 0 from the other row.
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Relatively prime

Definition 6

The nonzero integers a and b are said to be relatively prime if (a, b) = 1.

Proposition. 1

(a, b) = 1 if and only if there exist integers m, n such that ma + nb = 1.

Proposition. 2

Let a, b, c be integers, where a 6= 0 or b 6= 0.

(a) If b|ac, then b|(a, b) · c.

(b) If b|ac and (a, b) = 1, then b|c.

(c) If b|a, c |a and (b, c) = 1, then bc|a.

(d) (a, bc) = 1 if and only if (a, b) = 1 and (a, c) = 1.

(a): Write (a, b) = am + bn; (b) follows from (a).
(c): Write a = bq, so c|bq and (b, c) = 1. Thus c |q follows from (b).
(d): “⇐:” am1 + bn1 = 1, am2 + cn2 = 1⇒ (am1 + bn1)(am2 + cn2) = 1.
“⇒:” Write am + bcn = 1, then am + b(cn) = am + c(bn) = 1 & Prop. 1.
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Least Common Multiple

Definition 7

A positive integer m is called the least common multiple of the nonzero
integers a and b if

1 m is a multiple of both a and b, and

2 any multiple of both a and b is also a multiple of m.

We will use the notation lcm[a, b] or [a, b] for the least common multiple
of a and b.

Definition 8 (shortened version)

If a and b are nonzero integers, and m is a positive integer, then
m = lcm[a, b] if

1 a|m and b|m, and

2 if a|c and b|c, then m|c .

Note that gcd(a, b) · lcm[a, b] = ab.
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Congruences

Definition 9

Let n be a positive integer. Integers a and b are said to be congruent
modulo n if they have the same remainder when divided by n. This is
denoted by writing a ≡ b (mod n).

Write a = nq + r , where 0 ≤ r < n, then r = n · 0 + r . It follows that

a ≡ r (mod n).

Any integer is congruent modulo n to one of the integers 0, 1, 2, . . . , n− 1.

Proposition. 3

Let a, b, n ∈ Z and n > 0. Then a ≡ b (mod n) if and only if n|(a− b).

(⇒) : Write a = nq1 + r and b = nq2 + r , thus a− b = n(q1 − q2).

(⇐) : Write a− b = nk for some k ∈ Z, hence a = nk + b.
Apply the division algorithm to write a = nq + r , with 0 ≤ r < n, then
b = a− nk = n(q − k) + r . Thus, a and b have the same remainder r .
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Properties of congruences

When working with congruence modulo n, the integer n is called the modulus.

Let a, b, c be integers. Then

(i) a ≡ a (mod n);

(ii) if a ≡ b (mod n), then b ≡ a (mod n);

(iii) if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

Proposition. 4

Let n > 0 be an integer. Then the following hold for all integers a, b, c , d:

1 If a ≡ c (mod n) and b ≡ d (mod n), then a± b ≡ c ± d (mod n),
and ab ≡ cd (mod n).

2 If a + c ≡ a + d (mod n), then c ≡ d (mod n).

3 If ac ≡ ad (mod n) and (a, n) = 1, then c ≡ d (mod n).

The first two assertions easily follow from the previous proposition.
For the third one: If ac ≡ ad (mod n), then n|a(c − d), and since
(n, a) = 1, it follows from Proposition. 2 (b) that n|(c − d).

Yi Congruences and Integers Modulo n May 11, 2020 12 / 31



Properties of congruences

When working with congruence modulo n, the integer n is called the modulus.

Let a, b, c be integers. Then

(i) a ≡ a (mod n);

(ii) if a ≡ b (mod n), then b ≡ a (mod n);

(iii) if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

Proposition. 4

Let n > 0 be an integer. Then the following hold for all integers a, b, c , d:

1 If a ≡ c (mod n) and b ≡ d (mod n), then a± b ≡ c ± d (mod n),
and ab ≡ cd (mod n).

2 If a + c ≡ a + d (mod n), then c ≡ d (mod n).

3 If ac ≡ ad (mod n) and (a, n) = 1, then c ≡ d (mod n).

The first two assertions easily follow from the previous proposition.
For the third one: If ac ≡ ad (mod n), then n|a(c − d), and since
(n, a) = 1, it follows from Proposition. 2 (b) that n|(c − d).

Yi Congruences and Integers Modulo n May 11, 2020 12 / 31



Properties of congruences

When working with congruence modulo n, the integer n is called the modulus.

Let a, b, c be integers. Then

(i) a ≡ a (mod n);

(ii) if a ≡ b (mod n), then b ≡ a (mod n);

(iii) if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

Proposition. 4

Let n > 0 be an integer. Then the following hold for all integers a, b, c , d:

1 If a ≡ c (mod n) and b ≡ d (mod n), then a± b ≡ c ± d (mod n),
and ab ≡ cd (mod n).

2 If a + c ≡ a + d (mod n), then c ≡ d (mod n).

3 If ac ≡ ad (mod n) and (a, n) = 1, then c ≡ d (mod n).

The first two assertions easily follow from the previous proposition.
For the third one: If ac ≡ ad (mod n), then n|a(c − d), and since
(n, a) = 1, it follows from Proposition. 2 (b) that n|(c − d).

Yi Congruences and Integers Modulo n May 11, 2020 12 / 31



Properties of congruences

When working with congruence modulo n, the integer n is called the modulus.

Let a, b, c be integers. Then

(i) a ≡ a (mod n);

(ii) if a ≡ b (mod n), then b ≡ a (mod n);

(iii) if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

Proposition. 4

Let n > 0 be an integer. Then the following hold for all integers a, b, c , d:

1 If a ≡ c (mod n) and b ≡ d (mod n), then a± b ≡ c ± d (mod n),
and ab ≡ cd (mod n).

2 If a + c ≡ a + d (mod n), then c ≡ d (mod n).

3 If ac ≡ ad (mod n) and (a, n) = 1, then c ≡ d (mod n).

The first two assertions easily follow from the previous proposition.

For the third one: If ac ≡ ad (mod n), then n|a(c − d), and since
(n, a) = 1, it follows from Proposition. 2 (b) that n|(c − d).

Yi Congruences and Integers Modulo n May 11, 2020 12 / 31



Properties of congruences

When working with congruence modulo n, the integer n is called the modulus.

Let a, b, c be integers. Then

(i) a ≡ a (mod n);

(ii) if a ≡ b (mod n), then b ≡ a (mod n);

(iii) if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

Proposition. 4

Let n > 0 be an integer. Then the following hold for all integers a, b, c , d:

1 If a ≡ c (mod n) and b ≡ d (mod n), then a± b ≡ c ± d (mod n),
and ab ≡ cd (mod n).

2 If a + c ≡ a + d (mod n), then c ≡ d (mod n).

3 If ac ≡ ad (mod n) and (a, n) = 1, then c ≡ d (mod n).

The first two assertions easily follow from the previous proposition.
For the third one: If ac ≡ ad (mod n), then n|a(c − d), and since
(n, a) = 1, it follows from Proposition. 2 (b) that n|(c − d).

Yi Congruences and Integers Modulo n May 11, 2020 12 / 31



Examples

I. You may divide both sides of a congruence by an integer a only if
(a, n) = 1.

Example. 1

30 ≡ 6 (mod 8), but dividing both sides by 6 gives 5 ≡ 1 (mod 8), which
is certainly false because (6, 8) = 2 6= 1. On the other hand, since
(3, 8) = 1, we may divide both sides by 3 to get 10 ≡ 2 (mod 8).

II. Proposition. 4 shows that the remainder upon division by n of a + b or
ab can be found by adding or multiplying the remainders of a and b when
divided by n and then dividing by n again if necessary.

Example. 2

101 ≡ 5 (mod 8) and 142 ≡ 6 (mod 8)⇒ 101 · 142 ≡ 5 · 6 ≡ 6 (mod 8).

Example. 3

22 ≡ 4 (mod 7), 23 ≡ 222 ≡ 4·2 ≡ 1 (mod 7), 24 ≡ 232 ≡ 1·2 ≡ 2 (mod 7).
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Linear congruences, I

Proposition. 5

Let a and n > 1 be integers. There exists an integer b such that
ab ≡ 1 (mod n) if and only if (a, n) = 1.

(⇒) : Write ab = 1 + qn, then b · a + (−q) · n = 1, and so (a, n) = 1.
(⇐) : Write sa + tn = 1, for some s, t ∈ Z. Letting b = s and proof is done.

This proposition shows that the congruence

ax ≡ 1 (mod n)

has a solution if and only if (a, n) = 1.
And the solution can be obtained by using the Euclidean algorithm to
write 1 = ab + nq for some b, q ∈ Z, since then 1 ≡ ab (mod n).

Question. 1

How about the solutions of a linear congruence of the form ax ≡ b (mod n)?

We say that two solutions r and s to the congruence ax ≡ b (mod n) are
distinct solutions modulo n if r and s are not congruent modulo n.
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Linear congruences, II

Theorem 10

Let a, b and n > 1 be integers.
(1) The congruence ax ≡ b (mod n) has a solution if and only if b is
divisible by d, where d = (a, n).
(2) If d |b, then there are d distinct solutions modulo n, and these
solutions are congruent modulo n/d.

(1) ax ≡ b (mod n) has a solution if and only if as = b + nq, for some
s, q ∈ Z; i.e., sa+ (−q)n = b. It implies that b can be expressed as a linear
combination of a and n. By Theorem 5 the linear combinations of a and n
are precisely the multiples of d , so there is a solution if and only if d |b.

(2) Let m = n/d . Suppose x1 and x2 are solutions, ⇒ ax1 ≡ ax2 (mod n).
Then n|a(x1 − x2), it follows from Proposition. 2 (a) that n|d(x1 − x2).
Thus m|(x1 − x2), and so x1 ≡ x2 (mod m). On the other hand, if x1 ≡
x2 (mod m)⇒ m|(x1− x2)⇒ n|d(x1− x2)⇒ n|a(x1− x2)⇒ ax1 ≡ ax2 (mod n).

Given one such solution, we can find all others in the set by adding
multiples of n/d , giving a total of d distinct solutions.
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(1) ax ≡ b (mod n) has a solution if and only if as = b + nq, for some
s, q ∈ Z; i.e., sa+ (−q)n = b. It implies that b can be expressed as a linear
combination of a and n. By Theorem 5 the linear combinations of a and n
are precisely the multiples of d , so there is a solution if and only if d |b.

(2) Let m = n/d . Suppose x1 and x2 are solutions, ⇒ ax1 ≡ ax2 (mod n).
Then n|a(x1 − x2), it follows from Proposition. 2 (a) that n|d(x1 − x2).
Thus m|(x1 − x2), and so x1 ≡ x2 (mod m). On the other hand, if x1 ≡
x2 (mod m)⇒ m|(x1− x2)⇒ n|d(x1− x2)⇒ n|a(x1− x2)⇒ ax1 ≡ ax2 (mod n).

Given one such solution, we can find all others in the set by adding
multiples of n/d , giving a total of d distinct solutions.
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An algorithm for solving linear congruences

To linear congruences of the form ax ≡ b (mod n):

(i) Compute d = (a, n), and if d |b, then we can write ax = b + qn.
(ii) Further, we get a1x = b1 + qm, where a1 = a/d , b1 = b/d ,m = n/d .

This yields the congruence

a1x ≡ b1 (mod m), where (a1,m) = 1.

(iii) Apply the Euclidean algorithm to find c ∈ Z s.t. a1c ≡ 1 (mod m).
(iv) Multiplying both sides of the congruence a1x ≡ b1 (mod m) by c

gives the solution
x ≡ cb1 (mod m).

(v) The solution modulo m determines d distinct solutions modulo n.
In particular, the solutions have the form

s0 + km,

where s0 is any particular solution of x ≡ cb1 (mod m) and k is any
integer.
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Example 1: Homogeneous linear congruences

Consider the special case of a linear homogeneous congruence

ax ≡ 0 (mod n).

(i) Compute d = (a, n).

(ii) Consider a1x ≡ 0 (mod n1), where a1 = a/d and n1 = n/d .

(iii) Since (a1, n1) = 1, by Proposition. 4 (3) we can cancel a1 to obtain

x ≡ 0 (mod n1), with n1 =
n

gcd(a, n)
.

(iv) We have d distinct solutions modulo n.

Example. 4

28x ≡ 0 (mod 48)⇒ x ≡ 0 (mod 12)⇒ x ≡ 0, 12, 24, 36 (mod 48).
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Example 2

To solve the congruence

60x ≡ 90 (mod 105).

(i) d = (60, 105) = 15,⇒ 15|90 X: There will indeed be a solution.
(ii) Reduces to the congruence

4x ≡ 6 (mod 7).

(iii) Find an integer c with c · 4 ≡ 1 (mod 7).
(a) Euclidean algorithm
(b) trial and error (is quicker for a small modulus) ⇒ c = 2.

(iv) Multiply both sides of the congruence 4x ≡ 6 (mod 7) by 2 to get

x ≡ 12 ≡ 5 (mod 7).

(v) The solutions have the form x = 5 + 7k , so x ≡ 5 + 7k (mod 105).
There are 15 distinct solutions modulo 105, so we have
x ≡ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103 (mod 105).

Yi Congruences and Integers Modulo n May 11, 2020 18 / 31



Example 2

To solve the congruence

60x ≡ 90 (mod 105).

(i) d = (60, 105) = 15,⇒ 15|90 X: There will indeed be a solution.

(ii) Reduces to the congruence

4x ≡ 6 (mod 7).

(iii) Find an integer c with c · 4 ≡ 1 (mod 7).
(a) Euclidean algorithm
(b) trial and error (is quicker for a small modulus) ⇒ c = 2.

(iv) Multiply both sides of the congruence 4x ≡ 6 (mod 7) by 2 to get

x ≡ 12 ≡ 5 (mod 7).

(v) The solutions have the form x = 5 + 7k , so x ≡ 5 + 7k (mod 105).
There are 15 distinct solutions modulo 105, so we have
x ≡ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103 (mod 105).

Yi Congruences and Integers Modulo n May 11, 2020 18 / 31



Example 2

To solve the congruence

60x ≡ 90 (mod 105).

(i) d = (60, 105) = 15,⇒ 15|90 X: There will indeed be a solution.
(ii) Reduces to the congruence

4x ≡ 6 (mod 7).

(iii) Find an integer c with c · 4 ≡ 1 (mod 7).
(a) Euclidean algorithm
(b) trial and error (is quicker for a small modulus) ⇒ c = 2.

(iv) Multiply both sides of the congruence 4x ≡ 6 (mod 7) by 2 to get

x ≡ 12 ≡ 5 (mod 7).

(v) The solutions have the form x = 5 + 7k , so x ≡ 5 + 7k (mod 105).
There are 15 distinct solutions modulo 105, so we have
x ≡ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103 (mod 105).

Yi Congruences and Integers Modulo n May 11, 2020 18 / 31



Example 2

To solve the congruence

60x ≡ 90 (mod 105).

(i) d = (60, 105) = 15,⇒ 15|90 X: There will indeed be a solution.
(ii) Reduces to the congruence

4x ≡ 6 (mod 7).

(iii) Find an integer c with c · 4 ≡ 1 (mod 7).
(a) Euclidean algorithm
(b) trial and error (is quicker for a small modulus) ⇒ c = 2.

(iv) Multiply both sides of the congruence 4x ≡ 6 (mod 7) by 2 to get

x ≡ 12 ≡ 5 (mod 7).

(v) The solutions have the form x = 5 + 7k , so x ≡ 5 + 7k (mod 105).
There are 15 distinct solutions modulo 105, so we have
x ≡ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103 (mod 105).

Yi Congruences and Integers Modulo n May 11, 2020 18 / 31



Example 2

To solve the congruence

60x ≡ 90 (mod 105).

(i) d = (60, 105) = 15,⇒ 15|90 X: There will indeed be a solution.
(ii) Reduces to the congruence

4x ≡ 6 (mod 7).

(iii) Find an integer c with c · 4 ≡ 1 (mod 7).
(a) Euclidean algorithm
(b) trial and error (is quicker for a small modulus) ⇒ c = 2.

(iv) Multiply both sides of the congruence 4x ≡ 6 (mod 7) by 2 to get

x ≡ 12 ≡ 5 (mod 7).

(v) The solutions have the form x = 5 + 7k , so x ≡ 5 + 7k (mod 105).
There are 15 distinct solutions modulo 105, so we have
x ≡ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103 (mod 105).

Yi Congruences and Integers Modulo n May 11, 2020 18 / 31



Example 2

To solve the congruence

60x ≡ 90 (mod 105).

(i) d = (60, 105) = 15,⇒ 15|90 X: There will indeed be a solution.
(ii) Reduces to the congruence

4x ≡ 6 (mod 7).

(iii) Find an integer c with c · 4 ≡ 1 (mod 7).
(a) Euclidean algorithm
(b) trial and error (is quicker for a small modulus) ⇒ c = 2.

(iv) Multiply both sides of the congruence 4x ≡ 6 (mod 7) by 2 to get

x ≡ 12 ≡ 5 (mod 7).

(v) The solutions have the form x = 5 + 7k , so x ≡ 5 + 7k (mod 105).

There are 15 distinct solutions modulo 105, so we have
x ≡ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103 (mod 105).

Yi Congruences and Integers Modulo n May 11, 2020 18 / 31



Example 2

To solve the congruence

60x ≡ 90 (mod 105).

(i) d = (60, 105) = 15,⇒ 15|90 X: There will indeed be a solution.
(ii) Reduces to the congruence

4x ≡ 6 (mod 7).

(iii) Find an integer c with c · 4 ≡ 1 (mod 7).
(a) Euclidean algorithm
(b) trial and error (is quicker for a small modulus) ⇒ c = 2.

(iv) Multiply both sides of the congruence 4x ≡ 6 (mod 7) by 2 to get

x ≡ 12 ≡ 5 (mod 7).

(v) The solutions have the form x = 5 + 7k , so x ≡ 5 + 7k (mod 105).
There are 15 distinct solutions modulo 105, so we have
x ≡ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103 (mod 105).

Yi Congruences and Integers Modulo n May 11, 2020 18 / 31



Chinese Remainder Theorem

Theorem 11 (Chinese Remainder Theorem)

Let n and m be positive integers, with (n,m) = 1. Then the system of
congruences

x ≡ a (mod n) x ≡ b (mod m)

has a solution. Moreover, any two solutions are congruent modulo mn.

Since (n,m) = 1, there exist integers r and s such that rm + sn = 1. Then
rm ≡ 1 (mod n) and sn ≡ 1 (mod m). Let

x = arm + bsn.

Then a direct computation verifies that x is a desired solution.

If x is solution, then adding any multiple of mn is obviously still a solution.
Conversely, if x1 and x2 are two solutions, then they must be congruent
modulo n and modulo m. Thus n|(x1 − x2) and m|(x1 − x2)., so
mn|(x1 − x2) since (n,m) = 1. Therefore x1 ≡ x2 (mod mn).
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Example

Solve the system of congruences

x ≡ 7 (mod 8) x ≡ 3 (mod 5).

(a) Use the Euclidean algorithm to write 2 · 8 + (−3) · 5 = 1.

(b) Then x = 7(−3)5 + 3(2)(8) = −57 is a solution.

(c) The general solution is x = −57 + 40t. The smallest nonnegative
solution is therefore 23, so we have

x ≡ 23 (mod 40).
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Another proof of the existence of a solution in CRT

Given the congruences

x ≡ a (mod n) x ≡ b (mod m).

(i) Rewrite the first congruence as x = a + qn for some q ∈ Z.

(ii) Substitute this expression for x in the second congruence, giving

a + qn ≡ b (mod m), or qn ≡ b − a (mod m).

(iii) Since (n,m) = 1, we can solve the congruence nz ≡ 1 (mod m).

(iv) Using this solution we can solve for q in qn ≡ b − a (mod m).
In particular, q ≡ (b − a)z (mod m)⇒ x = a + ((b − a)z + km)n.
That is,

x ≡ a + (b − a)zn (mod mn).
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In particular, q ≡ (b − a)z (mod m)⇒ x = a + ((b − a)z + km)n.
That is,

x ≡ a + (b − a)zn (mod mn).
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Example revisited

Solve the system of congruences

x ≡ 7 (mod 8) x ≡ 3 (mod 5).

(i) x = 7 + 8q.

(ii) 7 + 8q ≡ 3 (mod 5)⇔ 3q ≡ −4 ≡ 1 (mod 5).

(iii) Trial and error: q ≡ 2 (mod 5).

(iv) The particular solution x = 7 + 8 · 2 = 23. So we have

x ≡ 23 (mod 40).
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Congruence classes modulo n

Definition 12

Let a and n > 0 be integers. The set of all integers which have the same
remainder as a when divided by n is called the congruence class of a
modulo n, and is denoted by [a]n, where

[a]n = {x ∈ Z | x ≡ a (mod n)}.

The collection of all congruence classes modulo n is called the set of
integers modulo n, denoted by Zn.

Note that [a]n = [b]n if and only if a ≡ b (mod n).

We say that an element of [a]n is a representative of the congruence
class. Each congruence class [a]n has a unique nonnegative representative
that is smaller than n, namely, the remainder when a is divided by n.

This shows that there are exactly n distinct congruence classes modulo n.
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Example

Example. 5

The congruence classes modulo 3 can be represented by 0, 1, and 2.

[0]3 ={. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}
[1]3 ={. . . ,−8,−5,−2, 1, 4, 7, 10, . . .}
[2]3 ={. . . ,−7,−4,−1, 2, 5, 8, 11, . . .}

In general, each integer belongs to a unique congruence class modulo n.
Hence we have

Zn = {[0]n, [1]n, . . . , [n − 1]n}.
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Addition and Multiplication of congruence classes, I

The set Z2 consists of [0]2 and [1]2, where [0]2 is the set of even numbers
and [1]2 is the set of odd numbers.

Example. 6 (Addition and Multiplication in Z2)

+ [0] [1]

[0] [0] [1]

[1] [1] [0]

· [0] [1]

[0] [0] [0]

[1] [0] [1]

Proposition. 6

Let n be a positive integer, and let a, b be any integers. Then the addition
and multiplication of congruence classes given below are well-defined:

[a]n + [b]n = [a + b]n, [a]n · [b]n = [ab]n.
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Addition and Multiplication of congruence classes, II

For any elements [a]n, [b]n, [c]n ∈ Zn, the following laws hold.

Associativity: ([a]n + [b]n) + [c]n = [a]n + ([b]n + [c]n)

([a]n · [b]n) · [c]n = [a]n · ([b]n · [c]n)

Commutativity: [a]n + [b]n = [b]n + [a]n [a]n · [b]n = [b]n · [a]n

Distributivity: [a]n · ([b]n + [c]n) = [a]n · [b]n + [a]n · [c]n

Identities: [a]n + [0]n = [a]n [a]n · [1]n = [a]n

Additive inverses: [a]n + [−a]n = [0]n

Proof of distributive law:

[a]n · ([b]n + [c]n) =[a]n · ([b + c]n) = [a(b + c)]n

=[ab + ac]n = [ab]n + [ac]n

=[a]n · [b]n + [a]n · [c]n.

No cancellation law: For example, [6]8 · [5]8 = [6]8 · [1]8, but [5]8 6= [1]8.
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Divisor of zero vs. Unit in Zn, I

Definition 13

If [a]n ∈ Zn, and [a]n[b]n = [0]n for some nonzero congruence class [b]n,
then [a]n is called a divisor of zero.

If [a]n is not a divisor of zero, then [a]n[b]n = [a]n[c]n ⇒ [b]n = [c]n.
Proof: [a]n([b]n − [c]n) = [a]n[b − c]n = [0]n ⇒ [b]n − [c]n must be zero.

Definition 14

If [a]n ∈ Zn, and [a]n[b]n = [1]n for some congruence class [b]n, then [b]n
is called a multiplicative inverse of [a]n and is denoted by [a]−1

n . In this
case, we say that [a]n is an invertible element of Zn, or a unit of Zn.

From this point on, if the meaning is clear from the context we will omit
the subscript on congruence classes.

In Zn, if [a] has a multiplicative inverse, then it cannot be a divisor of zero.
Proof: [a][b] = [0]⇒ [b] = [a]−1[a] · [b] = [a]−1([a][b]) = [a]−1[0] = [0].
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Divisor of zero vs. Unit in Zn, II

Proposition. 7

(a) [a]n has a multiplicative inverse in Zn if and only if (a, n) = 1.

(b) A nonzero element of Zn is either a unit or a divisor of zero.

(a) (⇒) Say [a]−1 = [b], then [a][b] = [1]⇒ ab ≡ 1 (mod n)⇒ (a, n) = 1
(⇐) Write ab + qn = 1 for b, q ∈ Z. So ab ≡ 1 (mod n)⇒ [b] = [a]−1.
(b) ”nonzero”⇒ n - a. If (a, n) = 1, then [a] is a unit. If not, then
(a, n) = d , where 1 < d < n. Write n = kd and a = bd . Then [k] 6= [0] in
Zn, but [a][k] = [ak] = [bdk] = [bn] = [0]. So [a] is a divisor of zero.

Corollary 15

The following conditions on the modulus n > 0 are equivalent.

(1) The number n is prime.

(2) Zn has no divisors of zero, except [0]n.

(3) Every nonzero element of Zn has a multiplicative inverse.
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Examples: Find the multiplicative inverse [a]−1

I. Find [11]−1 in Z16 using the matrix form of the Euclidean algorithm:

[
1 0 16
0 1 11

]
 

[
1 −1 5
0 1 11

]
 

[
1 −1 5
−2 3 1

]
 

[
11 −16 0
−2 3 1

]
Thus (−2) · 16 + 3 · 11 = 1, which shows that [11]−1

16 = [3]16.

II. Find [11]−1 in Z16 by taking successive powers of [11]:
List list the powers of [11] :
[11]2 = [−5]2 = [25] = [9], [11]3 = [11]2[11] = [99] = [3], and
[11]4 = [11]3[11] = [33] = [1]. Thus again we see that [11]−1

16 = [3]16.

II. Find [11]−1 in Z16 using trial and error (for small numbers):
{(a, 16) = 1, a > 0} = {1, 3, 5, 7, 9, 11, 13, 15}.
It is easier to use the representatives ±1,±3,±5,±7.
[3][5] = [15] = [−1]⇒ [3][−5] = [3][11] = [1] since [11] = [−5].
Thus again we obtain [11]−1

16 = [3]16.
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Euler’s totient function

Definition 16

Let n be a positive integer. The number of positive integers less than or
equal to n which are relatively prime to n will be denoted by ϕ(n).
This function is called Euler’s ϕ-function, or the totient function.

Note that ϕ(1) = 1.

Proposition. 8

If the prime factorization of n is n = pα1
1 pα2

2 · · · p
αk
k , where αi > 0 for

1 ≤ i ≤ k, then

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pk

)
.

Example. 7

ϕ(10) = 10

(
1

2

)(
4

5

)
= 4 and ϕ(36) = 36

(
1

2

)(
2

3

)
= 12.
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The set of units: Z×n
Definition 17

The set of units of Zn, the congruence classes [a] such that (a, n) = 1, will
be denoted by Z×

n .

Proposition. 9

The set Z×
n of units of Zn is closed under multiplication.

Note that the number of elements of Z×
n is given by ϕ(n).

Theorem 18 (Euler)

If (a, n) = 1, then aϕ(n) ≡ 1 (mod n).

Note that if (a, n) = 1, then [a]−1 = [a]ϕ(n)−1.

Corollary 19 (Fermat)

If p is a prime number, then for any integer a we have ap ≡ a (mod p).

If p|a: trivial. If p - a, then (a, p) = 1. ⇒ aϕ(p) ≡ ap−1 ≡ 1 (mod p).
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