Some Additional Practice Problems for Final Exam

Review Lecture Slides/Recordings & Homework Assignments

Good luck for the final !

(1) Find ged(7605,5733), and express it as a linear combination of 7605 and 5733.

1 0 7605 — 1 -1 1872 . 1 —1 1872 — 49 —65 0
0 1 5733 0 1 5733 -3 4 117 -3 4 117
Thus ged(7605,5733) = 117, and 117 = (—3) - 7605 4 4 - 5733.
(2) Solve the congruence 24x = 168 (mod 200).
d = ged(24,200) = 8|168 = 3z = 21 (mod 25) and we have 3 - 17 = 1 (mod 25).
Thus, x =21-17 =7 (mod 25), i.e., z = 7,32,57,82,107, 132, 157, 182 (mod 200).
(3) Solve the system of congruences 2x =9 (mod 15) z =8 (mod 11).
Since 2-8 =1 (mod 15), x =9-8 = 12 (mod 15). And 3-15+ (—4)-11 = 1. By
Chinese Remainder Theorem, we have x = 12 - (—44) 4+ 8 - (45) (mod 15 - 11), i.e.,
r=—3 =162 (mod 165).

(4) Let 0 = (13579)(126)(1253). Find its order and its inverse. Is ¢ even or odd?
o = (163279)(4)(5)(8) = (163279). So o(c) = 6 and o' = (972361) = (197236).
And it is easy to see that ¢ is odd.
(5) Let (G, -) be a group and let a € G. Define a new operation * on the set G by
xxy==x-a-y, forall z,y € G.
Show that G is a group under the operation x.
(i) Closure (well-defined): Trivial.
(ii) Associativity: For all z,y,z € G, we have
(x*xy)xz=(r-a-y)*xz=(x-a-y)-a-z=z-a-(y-a-2)=xx(y*z2).

(iii) Identity: The identity element is . In particular, for any x € G we have

altxzr=a" l—g.a-a =2

ca-x=x and zxa”
(iv) Inverses: For any x € G, its inverse is (a -z - a)~!. In particular, we have

1 1 1 -1 1

xx(a-z-a)'=x-a-at-xtat =a”
1, -1, -1 1

(a-x-a)txz=atl 2l a7t a-v=0a

(6) For each binary operation * given below, determine whether or not % defines a group
structure on the given set. If not, list the group axioms that fail to hold.

(a) Define % on Z by a * b = min{a, b}.
The operation is associative, but has no identity element.
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(b) Define * on Z* by a x b = max{a, b}.

The operation is associative, but has no identity element.
(c) Define * on Z by = x y = x5

The associative law fails, and there is no identity element.
(d) Define * on Z* by z %y = av.

The associative law fails, and there is no identity element.
(e) Define x on Rby zxy=x+y— 1.

Yes. (R, ) is a group.
(f) Define * on R* by x xy = zy + 1.

The operation is not a binary operation (since closure fails).

(7) Show that if |G| = pq, where p # ¢ are prime numbers, then every proper nontrivial
subgroup of G is cyclic.

Proof. Let H be a proper nontrivial subgroup of G. By Lagrange’s Theorem, |H |
has to be p or g since H is a proper nontrivial subgroup. And so H is cyclic. [

(8) Let K be the following subset of GLy(R).

K= {{‘; g} € GLQ(R)‘a —d,c= —2b}

Show that K is a subgroup of GLy(R).

(i) Nonempty: [(1) (3] e K.

(ii) For any [ C;lb bl} ; [ 4 bﬂ € K, to show [
—20

aq —2b2 a9

ay by a2 by - . 1 ay by ay —by
—2b1 aq —2b2 as 7@% + Qb% —2b1 aq 2b2 a9
. 1 a1ao + 2b1b2 —a1b2 + (lle
a3 4203 | —2a9by + 2a1by  ayag + 2b1by

-1
aq b1 (05} b2
—2[)1 CL1:| |:—2b2 a2:| € K.

} c K
(9) List all of the generators of the cyclic group Zs x Zs.

(als, [b]3), where a € {1,2,3,4} and b € {1,2}.
(10) Find the order of the element ([9]12, [15]1s) in the group Zjs X Zs.

12 6, o(([9], [15)1s)) =

Since 0([9]12) = m = 4 and o([15]15) = m

lem[4, 6] = 12.

(11) Show that if p > 2 is a prime, then any group of order 2p has an element of order
2 and an element of order p.

Proof. By Lagrange’s theorem, an element can have order 1,2, p or 2p.
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(i) If G has an element of order 2p, then it is cyclic. It implies that G = Z,, =

Zy x Z,, and so it has an element of order 2 and at least one element (in fact,
p — 1 elements) of order p since p > 2 is a prime.

(ii) If G is not cyclic, then the only possible orders of elements are 1,2 or p. Since

|G| is even, it has at least one element of order 2 (see Homework 2 # 12). And
it must contain an element of order p. (The proof is similar as the proof of
Proposition 6 in §3.6.) In particular, suppose that all the non-identity elements
have order 2. Then we can always find a subgroup {e, a, b, ab} of order 4, which
is isomorphic to Zy X Zs, since |G| = 2p > 4. Thus, we obtain a contradiction

since 4 1 2p, and so it must contain an element of order p.
O

(12) Prove that

(a)

(b)

X

Proof. Define ¢ : Zys — Z3; by ¢([n]is) = [3]1,. And it is easy to show that ¢
is an isomorphism. The motivation for defining such ¢ is that Zs = ([1]16) and
Zy; = ([3]i7). In particular, there is an easier way to show this isomorphism.
We can see that o([3];7) = 16 in Z7,, and so it is cyclic since |Z;;| = 16. By
Theorem 2 (b) in §3.5, we have Z{, = Zjs. To show o([3]17) = 16 in Z;:

Bliz =9, [Blir =[~4hr, Bl = [16lir = [-1]i7.
This is because the order of an element in Z7; must be a divisor of 16. O]

Zgo X 22 = Z10 X Zﬁ.

P’I"OOf. Z30 X ZQ = Z2 X Z3 X Z5 X ZQ and Z10 X Z6 = Z2 X Z5 X Z2 X Z3 There
is a natural isomorphism between them. [

(13) Is Z3, cyclic? Is ZZ, cyclic?

Z5, = {£1,43,£7,49} is not cyclic since —1 and +9 have order 2, while £3 and
+7 have order 4. That is, there is no element of order 8.

7.2, is cyclic since o([3]50) = 20 = p(50) = |ZZ;,|. In particular,

[3]§o = [9]50, [3]§o = [31]50, [3]§o = [93] - [—7]507 [3}%8 = [49] = [—1]50-

Again it is because that o([3]50) must be a divisor of 20 : 1,2, 4,5, 10, 20.

(14) (a)

(b)

In Zs, find the order of the subgroup ([18]39); find the order of ([24]s0).
([18]30) = ([6]30) = its order is 5. ([24]30) = ([6]30) = its order is 5.
In Z4s5, find all elements of order 15.

45
ged(k, 45)
[3)a5, [6]a5, [12]u5, [21]45, [24]s5, [33]4s5, [39]45, [42]u5.

k
15 = O([l{?]45) = = ng(l{?745) =3= ng(g, 15) =1. Thus, [k?]45 =

(15) Prove that if G; and G; are groups of order 7 and 11, respectively, then the direct
product Gy x Gy is a cyclic group.

Proof. Gy and G, are cyclic since 7 and 11 are primes. Let o(a) = 7 in G; and
o(b) =11 in G5. Then o((a, b)) = lem[7,11] = 77 in G; x G5. Hence proved. O
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(16)

(18)

(19)

Prove that D12 % D4 X Z3.

12
Proof. In Dy, by Proposition 1 in §3.5, we know that o(a*) = m Thus,

ak ‘6 a CL2 CL3 CL4 CL5 a6 CL7 CLS a9 6LlO all

0rder‘1126431221234612

It follows from Exam IT (6) Part (a) that all the remaining elements of the form a*b
have the order 2 since a*b # e. In particular, there are only two elements of order
6 in Dyo. However, there are (5-2) = 10 elements of order 6 in Dy x Z3. Since

e In D,, the possible orders of elements are 1,2, 4.

e In Zj3, the possible orders of elements are 1, 3.
6 = lem(2, 3] : Choose (a,b) such that o(a) =2 in D, and o(b) = 3 in Zs.

e Elements of order 2 in Dy are: a?,b,ab, a®b, a®b

e Elements of order 3 in Zj are: [1]s, [2]3

For any elements o, 7 € S, show that oro~177! € A,,.

Proof. 0 and o~ ! have the same number of transpositions in the product. In
particular, we write 0 = pips---pg for pi,pa,...,pr are transpositions. Then
o1 = pp -+ pop1. This also holds for 7. It follows that 7o~ 177! must have even
number of transpositions in the product since the parity of a permutation won’t
change, i.e., oTo 77t € A,. O

Find the formulas for all group homomorphisms from Zs to Zsy.

All group homomorphisms from Zig to Zsy must have the form
Qb : Zlg — Zgo defined by ¢([I]18) = [m.?f]g() for some [m]go € Zgo.

This ¢ is well-defined if and only if 30|18m. This means that 5|3m, and so 5|m since
ng(57 3) =1. Then, all the possible [m]g()’S are [0]30, [5}30, [10]30, [15]30, [20]30, [25]30
Thus, the formulas for all homomorphisms from Zig into Zsq are:

do([7]1s) =[0]30

¢s([x]1s) =[5x]30

b10([x]18) =[102]30
¢15([$]18) :[151’]30
$20([z]18) =[20z]30
¢25([3C]18) :[251’]30

defined for all [z]s € Zqs.

Let G be a group. For a,b € G we say that b is conjugate to a, written b ~ a, if
there exists g € G such that b = gag™!. Following part (a), the equivalence classes
of ~ are called the conjugacy classes of G.

(a) Show that ~ is an equivalence relation on G.

Proof. (i) Reflexive: a ~ a since a = eae™!.
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(i) Symmetric: If @ ~ b, then a = gbg~' for some g € G, and so b =
g ta(g™")~!, which shows that b ~ a.

(iii) Transitive: If a ~ b and b ~ ¢, then a = g;bg; ' and b = gycg, * for some

91,92 € G. Thus, a = g1(gacg5 )97 = (9192)c(g192) ", and s0 a ~ c.
O

(b) Show that ¢, : G — G defined by ¢4(z) = gzg~* is an isomorphism of G.
Proof. (i) well-defined: Trivial.

(i) ¢4 is a homomorphism: For any x,y € G, we have
dg(zy) = gryg™" = (929 )(gyg™") = dg(x) g (y).

(iii) ¢, is onto: For any = € G, we have ¢ (g xg) = g(g 'zg)g = .
(iv) ker(¢g) = {z € G | ¢y(x) = grg™' = e} ={z € G |2 =g 'eg} = {e}.
The desired results follow from the fundamental homomorphism theorem. [l

(¢) Show that a subgroup N of the group G is normal in G if and only if N is a
union of conjugacy classes.

Proof. N is normal if and only if gag™' € N for all a € N and g € G. This
implies that b € N if b ~ a, and so N contains the conjugacy class of a. It is
equivalent to say that /N is a union of conjugacy classess since a is an arbitrary
element of N. This completes the proof. 0

(20) (a) List the cosets of ([9]16) in Zjy, and find the order of each coset in Zig/([9]16)-
ZT‘S - [1]167 [3]167 [5]167 [7]167 [9]167 [11]167 [13]167 [15]1@} Then we have
coset of ([9]16) | order reason
{116,916} | 1  trivial
Bli6, [11]16} | 2 [3]Ts = [916
5116, [13]16} | 2 [5]%s = [25]16 = [9]16
(76, (1516} | 2 [7]%s = [49]16 = [L]16

Z3. Is the factor group Zj,/([7]16) cyclic?

([9016) =
+([916)
+([916)
[ J16 - ([9]16)
(b) List the cosets of ([7]1¢) i

||\/

{
{
{

coset of ([7]16) | order reason
<[7]16> = [1]167 [7]16} 1 trivial
316 - ([7he) = {[3]16, [Blie} | 4 [3Jis = [9)16. [3]16 = [L]16
916 - {[7]16) = {[9]16, [L5]16} | 2 [9i6 = [Lie
(11016 - ([7he) = {[11]16, (1316} | 4 [11]36 = [9]16, [11]36 = [1]1s
The factor group is cyclic. In fact, it easily follows from [3)* & ([7]16)-
(21) Let G be the dihedral group Dg and let H be the subset {e,a?®, b, a’b} of G.

(a) Show that H is subgroup of G.

Proof. Tt is easy to see that H is closed under the multiplication. In particular,
ba® = a=*b = a®b. [See Homework 7 (3)-(a)]

This completes the proof since H is a finite subset. OJ
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(b) Is H a normal subgroup of G?
No. Since aH # Ha. In particular, we have
aH = {a,a*, ab,a*b}, while Ha = {a,a*,ba = a®b, a*ba = a?b}.
Hence proved.

(22) Let H and N be normal subgroups of a group G, with N C H. Define
¢:G/N — G/H by ¢(xN) = xH, for all cosets N € G/N.
(a) Show that ¢ is a well-defined onto homomorphism.

Proof. (i) well-defined: If xtN = yN, then y~'x € N C H, and so y 'z € H.
This implies that *tH = yH, ie., p(xN) = ¢(yN).

(ii) ¢ is a homomorphism. For any zN,yN € G/N, we have
¢(xNyN) = ¢(xyN) = 2yH = xHyH = ¢(zN)p(yN).
(ili) ¢ is onto: Trivial.
0
(b) Show that (G/N)/(H/N)=G/H.

Proof. ker(¢) = {xtN € G/N | ¢(zN) =2H = H} = {xN € G/N |z € H}.
This implies that ker(¢) is the left cosets of N in H, i.e., ker(¢) = H/N. It
follows from the fundamental homomorphism theorem that

(G/N)/(H/N) = G/H.

Note that this problem is also called the “Third isomorphism theorem”.
Furthermore, HW9 (10) is also called the “Second isomorphism theorem”.

x % x The solution 1s also available on the course website. * % x
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