Some Additional Practice Problems for Final Exam

Review Lecture Slides/Recordings & Homework Assignments

Good luck for the final!

(1) Find gcd(7605, 5733), and express it as a linear combination of 7605 and 5733.

$$\begin{bmatrix} 1 & 0 & 7605 \\ 0 & 1 & 5733 \end{bmatrix} \leadsto \begin{bmatrix} 1 & -1 & 1872 \\ 0 & 1 & 5733 \end{bmatrix} \leadsto \begin{bmatrix} 1 & -1 & 1872 \\ -3 & 4 & 117 \end{bmatrix} \leadsto \begin{bmatrix} 49 & -65 & 0 \\ -3 & 4 & 117 \end{bmatrix}$$

Thus gcd(7605, 5733) = 117, and $117 = (-3) \cdot 7605 + 4 \cdot 5733$.

- (2) Solve the congruence $24x \equiv 168 \pmod{200}$. $d = \gcd(24, 200) = 8|168 \Rightarrow 3x \equiv 21 \pmod{25}$ and we have $3 \cdot 17 \equiv 1 \pmod{25}$. Thus, $x \equiv 21 \cdot 17 \equiv 7 \pmod{25}$, i.e., $x \equiv 7, 32, 57, 82, 107, 132, 157, 182 \pmod{200}$.
- (3) Solve the system of congruences $2x \equiv 9 \pmod{15}$ $x \equiv 8 \pmod{11}$. Since $2 \cdot 8 \equiv 1 \pmod{15}$, $x \equiv 9 \cdot 8 \equiv 12 \pmod{15}$. And $3 \cdot 15 + (-4) \cdot 11 = 1$. By Chinese Remainder Theorem, we have $x \equiv 12 \cdot (-44) + 8 \cdot (45) \pmod{15 \cdot 11}$, i.e., $x \equiv -3 \equiv 162 \pmod{165}$.
- (4) Let $\sigma = (13579)(126)(1253)$. Find its order and its inverse. Is σ even or odd? $\sigma = (163279)(4)(5)(8) = (163279)$. So $o(\sigma) = 6$ and $\sigma^{-1} = (972361) = (197236)$. And it is easy to see that σ is odd.
- (5) Let (G, \cdot) be a group and let $a \in G$. Define a new operation * on the set G by $x * y = x \cdot a \cdot y$, for all $x, y \in G$.

Show that G is a group under the operation *.

- (i) Closure (well-defined): Trivial.
- (ii) Associativity: For all $x, y, z \in G$, we have $(x * y) * z = (x \cdot a \cdot y) * z = (x \cdot a \cdot y) \cdot a \cdot z = x \cdot a \cdot (y \cdot a \cdot z) = x * (y * z).$
- (iii) Identity: The identity element is a^{-1} . In particular, for any $x \in G$ we have $a^{-1} * x = a^{-1} \cdot a \cdot x = x$ and $x * a^{-1} = x \cdot a \cdot a^{-1} = x$.
- (iv) Inverses: For any $x \in G$, its inverse is $(a \cdot x \cdot a)^{-1}$. In particular, we have $x*(a\cdot x\cdot a)^{-1} = x\cdot a\cdot a^{-1}\cdot x^{-1}\cdot a^{-1} = a^{-1}$ $(a\cdot x\cdot a)^{-1}*x = a^{-1}\cdot x^{-1}\cdot a^{-1}\cdot a\cdot x = a^{-1}$
- (6) For each binary operation * given below, determine whether or not * defines a group structure on the given set. If not, list the group axioms that fail to hold.
 - (a) Define * on **Z** by $a * b = \min\{a, b\}$.

The operation is associative, but has no identity element.

- (b) Define * on \mathbb{Z}^+ by $a*b = \max\{a,b\}$. The operation is associative, but has no identity element.
- (c) Define * on \mathbb{Z} by $x*y=x^2y^3$. The associative law fails, and there is no identity element.
- (d) Define * on \mathbf{Z}^+ by $x*y=x^y$. The associative law fails, and there is no identity element.
- (e) Define * on \mathbf{R} by x * y = x + y 1. Yes. $(\mathbf{R}, *)$ is a group.
- (f) Define * on \mathbf{R}^{\times} by x * y = xy + 1.

The operation is not a binary operation (since closure fails).

(7) Show that if |G| = pq, where $p \neq q$ are prime numbers, then every proper nontrivial subgroup of G is cyclic.

Proof. Let H be a proper nontrivial subgroup of G. By Lagrange's Theorem, |H| has to be p or q since H is a proper nontrivial subgroup. And so H is cyclic. \square

(8) Let K be the following subset of $GL_2(\mathbf{R})$.

$$K = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{GL}_2(\mathbf{R}) \middle| a = d, c = -2b \right\}$$

Show that K is a subgroup of $GL_2(\mathbf{R})$.

- (i) Nonempty: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in K$.
- (ii) For any $\begin{bmatrix} a_1 & b_1 \\ -2b_1 & a_1 \end{bmatrix}$, $\begin{bmatrix} a_2 & b_2 \\ -2b_2 & a_2 \end{bmatrix} \in K$, to show $\begin{bmatrix} a_1 & b_1 \\ -2b_1 & a_1 \end{bmatrix} \begin{bmatrix} a_2 & b_2 \\ -2b_2 & a_2 \end{bmatrix}^{-1} \in K$.

$$\begin{bmatrix} a_1 & b_1 \\ -2b_1 & a_1 \end{bmatrix} \begin{bmatrix} a_2 & b_2 \\ -2b_2 & a_2 \end{bmatrix}^{-1} = \frac{1}{a_2^2 + 2b_2^2} \begin{bmatrix} a_1 & b_1 \\ -2b_1 & a_1 \end{bmatrix} \begin{bmatrix} a_2 & -b_2 \\ 2b_2 & a_2 \end{bmatrix}$$
$$= \frac{1}{a_2^2 + 2b_2^2} \begin{bmatrix} a_1a_2 + 2b_1b_2 & -a_1b_2 + a_2b_1 \\ -2a_2b_1 + 2a_1b_2 & a_1a_2 + 2b_1b_2 \end{bmatrix} \in K$$

- (9) List all of the generators of the cyclic group $\mathbb{Z}_5 \times \mathbb{Z}_3$ ($[a]_5, [b]_3$), where $a \in \{1, 2, 3, 4\}$ and $b \in \{1, 2\}$.
- (10) Find the order of the element ([9]₁₂, [15]₁₈) in the group $\mathbf{Z}_{12} \times \mathbf{Z}_{18}$.

Since
$$o([9]_{12}) = \frac{12}{\gcd(9, 12)} = 4$$
 and $o([15]_{18}) = \frac{18}{\gcd(15, 18)} = 6$, $o(([9]_{12}, [15]_{18})) =$ lcm $[4, 6] = 12$.

(11) Show that if p > 2 is a prime, then any group of order 2p has an element of order p.

Proof. By Lagrange's theorem, an element can have order 1, 2, p or 2p.

- (i) If G has an element of order 2p, then it is cyclic. It implies that $G \cong \mathbf{Z}_{2p} \cong \mathbf{Z}_2 \times \mathbf{Z}_p$, and so it has an element of order 2 and at least one element (in fact, p-1 elements) of order p since p>2 is a prime.
- (ii) If G is not cyclic, then the only possible orders of elements are 1, 2 or p. Since |G| is even, it has at least one element of order 2 (see Homework 2 # 12). And it must contain an element of order p. (The proof is similar as the proof of Proposition 6 in §3.6.) In particular, suppose that all the non-identity elements have order 2. Then we can always find a subgroup $\{e, a, b, ab\}$ of order 4, which is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$, since |G| = 2p > 4. Thus, we obtain a contradiction since $4 \nmid 2p$, and so it must contain an element of order p.

(12) Prove that

(a) $\mathbf{Z}_{17}^{\times} \cong \mathbf{Z}_{16}$.

Proof. Define $\phi: \mathbf{Z}_{16} \to \mathbf{Z}_{17}^{\times}$ by $\phi([n]_{16}) = [3]_{17}^{n}$. And it is easy to show that ϕ is an isomorphism. The motivation for defining such ϕ is that $\mathbf{Z}_{16} = \langle [1]_{16} \rangle$ and $\mathbf{Z}_{17}^{\times} = \langle [3]_{17} \rangle$. In particular, there is an easier way to show this isomorphism. We can see that $o([3]_{17}) = 16$ in \mathbf{Z}_{17}^{\times} , and so it is cyclic since $|\mathbf{Z}_{17}^{\times}| = 16$. By Theorem 2 (b) in §3.5, we have $\mathbf{Z}_{17}^{\times} \cong \mathbf{Z}_{16}$. To show $o([3]_{17}) = 16$ in \mathbf{Z}_{17}^{\times} :

$$[3]_{17}^2 = 9, \quad [3]_{17}^4 = [-4]_{17}, \quad [3]_{17}^8 = [16]_{17} = [-1]_{17}.$$

This is because the order of an element in \mathbf{Z}_{17}^{\times} must be a divisor of 16.

(b) $\mathbf{Z}_{30} \times \mathbf{Z}_2 \cong \mathbf{Z}_{10} \times \mathbf{Z}_6$.

Proof. $\mathbf{Z}_{30} \times \mathbf{Z}_2 \cong \mathbf{Z}_2 \times \mathbf{Z}_3 \times \mathbf{Z}_5 \times \mathbf{Z}_2$ and $\mathbf{Z}_{10} \times \mathbf{Z}_6 \cong \mathbf{Z}_2 \times \mathbf{Z}_5 \times \mathbf{Z}_2 \times \mathbf{Z}_3$. There is a natural isomorphism between them.

(13) Is \mathbf{Z}_{20}^{\times} cyclic? Is \mathbf{Z}_{50}^{\times} cyclic?

 $\mathbf{Z}_{20}^{\times} = \{\pm 1, \pm 3, \pm 7, \pm 9\}$ is not cyclic since -1 and ± 9 have order 2, while ± 3 and ± 7 have order 4. That is, there is no element of order 8.

 \mathbf{Z}_{50}^{\times} is cyclic since $o([3]_{50}) = 20 = \varphi(50) = |\mathbf{Z}_{50}^{\times}|$. In particular, $[3]_{50}^{2} = [9]_{50}$, $[3]_{50}^{4} = [31]_{50}$, $[3]_{50}^{5} = [93] = [-7]_{50}$, $[3]_{50}^{10} = [49] = [-1]_{50}$. Again it is because that $o([3]_{50})$ must be a divisor of 20:1,2,4,5,10,20.

- (14) (a) In \mathbf{Z}_{30} , find the order of the subgroup $\langle [18]_{30} \rangle$; find the order of $\langle [24]_{30} \rangle$. $\langle [18]_{30} \rangle = \langle [6]_{30} \rangle \Rightarrow$ its order is 5. $\langle [24]_{30} \rangle = \langle [6]_{30} \rangle \Rightarrow$ its order is 5.
 - (b) In \mathbf{Z}_{45} , find all elements of order 15.

$$15 = o([k]_{45}) = \frac{45}{\gcd(k, 45)} \Rightarrow \gcd(k, 45) = 3 \Rightarrow \gcd(\frac{k}{3}, 15) = 1. \text{ Thus, } [k]_{45} = [3]_{45}, [6]_{45}, [12]_{45}, [21]_{45}, [24]_{45}, [33]_{45}, [39]_{45}, [42]_{45}.$$

(15) Prove that if G_1 and G_2 are groups of order 7 and 11, respectively, then the direct product $G_1 \times G_2$ is a cyclic group.

Proof. G_1 and G_2 are cyclic since 7 and 11 are primes. Let o(a) = 7 in G_1 and o(b) = 11 in G_2 . Then o((a,b)) = lcm[7,11] = 77 in $G_1 \times G_2$. Hence proved.

(16) Prove that $D_{12} \ncong D_4 \times \mathbf{Z}_3$.

Proof. In D_{12} , by Proposition 1 in §3.5, we know that $o(a^k) = \frac{12}{\gcd(k, 12)}$. Thus,

It follows from Exam II (6) Part (a) that all the remaining elements of the form a^kb have the order 2 since $a^kb \neq e$. In particular, there are only two elements of order 6 in D_{12} . However, there are $(5 \cdot 2) = 10$ elements of order 6 in $D_4 \times \mathbb{Z}_3$. Since

- In D_4 , the possible orders of elements are 1, 2, 4.
- In \mathbb{Z}_3 , the possible orders of elements are 1, 3.

6 = lcm[2, 3]: Choose (a, b) such that o(a) = 2 in D_4 and o(b) = 3 in \mathbb{Z}_3 .

- Elements of order 2 in D_4 are: a^2, b, ab, a^2b, a^3b
- Elements of order 3 in \mathbb{Z}_3 are: $[1]_3, [2]_3$
- (17) For any elements $\sigma, \tau \in S_n$, show that $\sigma \tau \sigma^{-1} \tau^{-1} \in A_n$.

Proof. σ and σ^{-1} have the same number of transpositions in the product. In particular, we write $\sigma = \rho_1 \rho_2 \cdots \rho_k$ for $\rho_1, \rho_2, \dots, \rho_k$ are transpositions. Then $\sigma^{-1} = \rho_k \cdots \rho_2 \rho_1$. This also holds for τ . It follows that $\sigma \tau \sigma^{-1} \tau^{-1}$ must have even number of transpositions in the product since the parity of a permutation won't change, i.e., $\sigma \tau \sigma^{-1} \tau^{-1} \in A_n$.

(18) Find the formulas for all group homomorphisms from \mathbf{Z}_{18} to \mathbf{Z}_{30} .

All group homomorphisms from \mathbf{Z}_{18} to \mathbf{Z}_{30} must have the form

$$\phi: \mathbf{Z}_{18} \to \mathbf{Z}_{30}$$
 defined by $\phi([x]_{18}) = [mx]_{30}$ for some $[m]_{30} \in \mathbf{Z}_{30}$.

This ϕ is well-defined if and only if 30|18m. This means that 5|3m, and so 5|m since $\gcd(5,3)=1$. Then, all the possible $[m]_{30}$'s are $[0]_{30}$, $[5]_{30}$, $[10]_{30}$, $[15]_{30}$, $[20]_{30}$, $[25]_{30}$. Thus, the formulas for all homomorphisms from \mathbf{Z}_{18} into \mathbf{Z}_{30} are:

$$\phi_0([x]_{18}) = [0]_{30}$$

$$\phi_5([x]_{18}) = [5x]_{30}$$

$$\phi_{10}([x]_{18}) = [10x]_{30}$$

$$\phi_{15}([x]_{18}) = [15x]_{30}$$

$$\phi_{20}([x]_{18}) = [20x]_{30}$$

$$\phi_{25}([x]_{18}) = [25x]_{30}$$

defined for all $[x]_{18} \in \mathbf{Z}_{18}$.

- (19) Let G be a group. For $a, b \in G$ we say that b is **conjugate** to a, written $b \sim a$, if there exists $g \in G$ such that $b = gag^{-1}$. Following part (a), the equivalence classes of \sim are called the **conjugacy classes** of G.
 - (a) Show that \sim is an equivalence relation on G.

Proof. (i) Reflexive: $a \sim a$ since $a = eae^{-1}$.

- (ii) Symmetric: If $a \sim b$, then $a = gbg^{-1}$ for some $g \in G$, and so $b = g^{-1}a(g^{-1})^{-1}$, which shows that $b \sim a$.
- (iii) Transitive: If $a \sim b$ and $b \sim c$, then $a = g_1bg_1^{-1}$ and $b = g_2cg_2^{-1}$ for some $g_1, g_2 \in G$. Thus, $a = g_1(g_2cg_2^{-1})g_1^{-1} = (g_1g_2)c(g_1g_2)^{-1}$, and so $a \sim c$.
- (b) Show that $\phi_g: G \to G$ defined by $\phi_g(x) = gxg^{-1}$ is an isomorphism of G.

Proof. (i) well-defined: Trivial.

(ii) ϕ_g is a homomorphism: For any $x, y \in G$, we have

$$\phi_q(xy) = gxyg^{-1} = (gxg^{-1})(gyg^{-1}) = \phi_q(x)\phi_q(y).$$

- (iii) ϕ_g is onto: For any $x \in G$, we have $\phi_g(g^{-1}xg) = g(g^{-1}xg)g^{-1} = x$.
- (iv) $\ker(\phi_g) = \{x \in G \mid \phi_g(x) = gxg^{-1} = e\} = \{x \in G \mid x = g^{-1}eg\} = \{e\}.$

The desired results follow from the fundamental homomorphism theorem.

(c) Show that a subgroup N of the group G is normal in G if and only if N is a union of conjugacy classes.

Proof. N is normal if and only if $gag^{-1} \in N$ for all $a \in N$ and $g \in G$. This implies that $b \in N$ if $b \sim a$, and so N contains the conjugacy class of a. It is equivalent to say that N is a union of conjugacy classess since a is an arbitrary element of N. This completes the proof.

(20) (a) List the cosets of $\langle [9]_{16} \rangle$ in \mathbf{Z}_{16}^{\times} , and find the order of each coset in $\mathbf{Z}_{16}^{\times} / \langle [9]_{16} \rangle$. $\mathbf{Z}_{16}^{\times} = \{[1]_{16}, [3]_{16}, [5]_{16}, [7]_{16}, [9]_{16}, [11]_{16}, [13]_{16}, [15]_{16}\}$. Then we have

$$\begin{array}{c|cccc} \operatorname{coset} & \operatorname{coset} & \left\langle [9]_{16} \right\rangle & \operatorname{order} & \operatorname{reason} \\ \hline & \left\langle [9]_{16} \right\rangle = \left\{ [1]_{16}, [9]_{16} \right\} & 1 & \operatorname{trivial} \\ [3]_{16} & \left\langle [9]_{16} \right\rangle = \left\{ [3]_{16}, [11]_{16} \right\} & 2 & [3]_{16}^2 = [9]_{16} \\ [5]_{16} & \left\langle [9]_{16} \right\rangle = \left\{ [5]_{16}, [13]_{16} \right\} & 2 & [5]_{16}^2 = [25]_{16} = [9]_{16} \\ [7]_{16} & \left\langle [9]_{16} \right\rangle = \left\{ [7]_{16}, [15]_{16} \right\} & 2 & [7]_{16}^2 = [49]_{16} = [1]_{16} \end{array}$$

(b) List the cosets of $\langle [7]_{16} \rangle$ in \mathbf{Z}_{16}^{\times} . Is the factor group $\mathbf{Z}_{16}^{\times}/\langle [7]_{16} \rangle$ cyclic?

The factor group is cyclic. In fact, it easily follows from $[3]^2 \notin \langle [7]_{16} \rangle$.

- (21) Let G be the dihedral group D_6 and let H be the subset $\{e, a^3, b, a^3b\}$ of G.
 - (a) Show that H is subgroup of G.

Proof. It is easy to see that H is closed under the multiplication. In particular,

$$ba^3 = a^{-3}b = a^3b$$
. [See Homework 7 (3)-(a)]

This completes the proof since H is a finite subset.

(b) Is H a normal subgroup of G?

No. Since $aH \neq Ha$. In particular, we have

$$aH = \{a, a^4, ab, a^4b\}, \text{ while } Ha = \{a, a^4, ba = a^5b, a^3ba = a^2b\}.$$

Hence proved.

- (22) Let H and N be normal subgroups of a group G, with $N \subseteq H$. Define $\phi: G/N \to G/H$ by $\phi(xN) = xH$, for all cosets $xN \in G/N$.
 - (a) Show that ϕ is a well-defined onto homomorphism.

Proof. (i) well-defined: If xN = yN, then $y^{-1}x \in N \subseteq H$, and so $y^{-1}x \in H$. This implies that xH = yH, i.e., $\phi(xN) = \phi(yN)$.

(ii) ϕ is a homomorphism. For any $xN, yN \in G/N$, we have

$$\phi(xNyN) = \phi(xyN) = xyH = xHyH = \phi(xN)\phi(yN).$$

- (iii) ϕ is onto: Trivial.
- (b) Show that $(G/N)/(H/N) \cong G/H$.

Proof. $\ker(\phi) = \{xN \in G/N \mid \phi(xN) = xH = H\} = \{xN \in G/N \mid x \in H\}$. This implies that $\ker(\phi)$ is the left cosets of N in H, i.e., $\ker(\phi) = H/N$. It follows from the fundamental homomorphism theorem that

$$(G/N)/(H/N) \cong G/H.$$

Note that this problem is also called the "Third isomorphism theorem". Furthermore, HW9 (10) is also called the "Second isomorphism theorem".

*** The solution is also available on the course website. ***

Review Lecture Slides/Recordings & Homework Assignments

Good luck for the final!