
Some Additional Practice Problems for Final Exam

Review Lecture Slides/Recordings & Homework Assignments

Good luck for the final !

(1) Find gcd(7605, 5733), and express it as a linear combination of 7605 and 5733.

[
1 0 7605
0 1 5733

]
 

[
1 −1 1872
0 1 5733

]
 

[
1 −1 1872
−3 4 117

]
 

[
49 −65 0
−3 4 117

]
Thus gcd(7605, 5733) = 117, and 117 = (−3) · 7605 + 4 · 5733.

(2) Solve the congruence 24x ≡ 168 (mod 200).

d = gcd(24, 200) = 8|168 ⇒ 3x ≡ 21 (mod 25) and we have 3 · 17 ≡ 1 (mod 25).
Thus, x ≡ 21 · 17 ≡ 7 (mod 25), i.e., x ≡ 7, 32, 57, 82, 107, 132, 157, 182 (mod 200).

(3) Solve the system of congruences 2x ≡ 9 (mod 15) x ≡ 8 (mod 11).

Since 2 · 8 ≡ 1 (mod 15), x ≡ 9 · 8 ≡ 12 (mod 15). And 3 · 15 + (−4) · 11 = 1. By
Chinese Remainder Theorem, we have x ≡ 12 · (−44) + 8 · (45) (mod 15 · 11), i.e.,

x ≡ −3 ≡ 162 (mod 165).

(4) Let σ = (13579)(126)(1253). Find its order and its inverse. Is σ even or odd?

σ = (163279)(4)(5)(8) = (163279). So o(σ) = 6 and σ−1 = (972361) = (197236).
And it is easy to see that σ is odd.

(5) Let (G, ·) be a group and let a ∈ G. Define a new operation ∗ on the set G by

x ∗ y = x · a · y, for all x, y ∈ G.

Show that G is a group under the operation ∗.
(i) Closure (well-defined): Trivial.

(ii) Associativity: For all x, y, z ∈ G, we have

(x ∗ y) ∗ z = (x · a · y) ∗ z = (x · a · y) · a · z = x · a · (y · a · z) = x ∗ (y ∗ z).

(iii) Identity: The identity element is a−1. In particular, for any x ∈ G we have

a−1 ∗ x = a−1 · a · x = x and x ∗ a−1 = x · a · a−1 = x.

(iv) Inverses: For any x ∈ G, its inverse is (a · x · a)−1. In particular, we have

x ∗ (a · x · a)−1 = x · a · a−1 · x−1 · a−1 = a−1

(a · x · a)−1 ∗ x = a−1 · x−1 · a−1 · a · x = a−1

(6) For each binary operation ∗ given below, determine whether or not ∗ defines a group
structure on the given set. If not, list the group axioms that fail to hold.

(a) Define ∗ on Z by a ∗ b = min{a, b}.
The operation is associative, but has no identity element.
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(b) Define ∗ on Z+ by a ∗ b = max{a, b}.
The operation is associative, but has no identity element.

(c) Define ∗ on Z by x ∗ y = x2y3.

The associative law fails, and there is no identity element.

(d) Define ∗ on Z+ by x ∗ y = xy.

The associative law fails, and there is no identity element.

(e) Define ∗ on R by x ∗ y = x+ y − 1.

Yes. (R, ∗) is a group.
(f) Define ∗ on R× by x ∗ y = xy + 1.

The operation is not a binary operation (since closure fails).

(7) Show that if |G| = pq, where p 6= q are prime numbers, then every proper nontrivial
subgroup of G is cyclic.

Proof. Let H be a proper nontrivial subgroup of G. By Lagrange’s Theorem, |H|
has to be p or q since H is a proper nontrivial subgroup. And so H is cyclic. �

(8) Let K be the following subset of GL2(R).

K =

{[
a b
c d

]
∈ GL2(R)

∣∣∣a = d, c = −2b

}
Show that K is a subgroup of GL2(R).

(i) Nonempty:

[
1 0
0 1

]
∈ K.

(ii) For any

[
a1 b1
−2b1 a1

]
,

[
a2 b2
−2b2 a2

]
∈ K, to show

[
a1 b1
−2b1 a1

] [
a2 b2
−2b2 a2

]−1

∈ K.[
a1 b1
−2b1 a1

] [
a2 b2
−2b2 a2

]−1

=
1

a22 + 2b22

[
a1 b1
−2b1 a1

] [
a2 −b2
2b2 a2

]
=

1

a22 + 2b22

[
a1a2 + 2b1b2 −a1b2 + a2b1
−2a2b1 + 2a1b2 a1a2 + 2b1b2

]
∈ K

(9) List all of the generators of the cyclic group Z5 × Z3.

([a]5, [b]3), where a ∈ {1, 2, 3, 4} and b ∈ {1, 2}.
(10) Find the order of the element ([9]12, [15]18) in the group Z12 × Z18.

Since o([9]12) =
12

gcd(9, 12)
= 4 and o([15]18) =

18

gcd(15, 18)
= 6, o(([9]12, [15]18)) =

lcm[4, 6] = 12.

(11) Show that if p > 2 is a prime, then any group of order 2p has an element of order
2 and an element of order p.

Proof. By Lagrange’s theorem, an element can have order 1, 2, p or 2p.
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(i) If G has an element of order 2p, then it is cyclic. It implies that G ∼= Z2p
∼=

Z2×Zp, and so it has an element of order 2 and at least one element (in fact,
p− 1 elements) of order p since p > 2 is a prime.

(ii) If G is not cyclic, then the only possible orders of elements are 1, 2 or p. Since
|G| is even, it has at least one element of order 2 (see Homework 2 # 12). And
it must contain an element of order p. (The proof is similar as the proof of
Proposition 6 in §3.6.) In particular, suppose that all the non-identity elements
have order 2. Then we can always find a subgroup {e, a, b, ab} of order 4, which
is isomorphic to Z2×Z2, since |G| = 2p > 4. Thus, we obtain a contradiction
since 4 - 2p, and so it must contain an element of order p.

�

(12) Prove that

(a) Z×
17
∼= Z16.

Proof. Define φ : Z16 → Z×
17 by φ([n]16) = [3]n17. And it is easy to show that φ

is an isomorphism. The motivation for defining such φ is that Z16 = 〈[1]16〉 and
Z×

17 = 〈[3]17〉. In particular, there is an easier way to show this isomorphism.
We can see that o([3]17) = 16 in Z×

17, and so it is cyclic since |Z×
17| = 16. By

Theorem 2 (b) in §3.5, we have Z×
17
∼= Z16. To show o([3]17) = 16 in Z×

17:

[3]217 = 9, [3]417 = [−4]17, [3]817 = [16]17 = [−1]17.

This is because the order of an element in Z×
17 must be a divisor of 16. �

(b) Z30 × Z2
∼= Z10 × Z6.

Proof. Z30×Z2
∼= Z2×Z3×Z5×Z2 and Z10×Z6

∼= Z2×Z5×Z2×Z3. There
is a natural isomorphism between them. �

(13) Is Z×
20 cyclic? Is Z×

50 cyclic?

Z×
20 = {±1,±3,±7,±9} is not cyclic since −1 and ±9 have order 2, while ±3 and
±7 have order 4. That is, there is no element of order 8.

Z×
50 is cyclic since o([3]50) = 20 = ϕ(50) = |Z×

50|. In particular,

[3]250 = [9]50, [3]450 = [31]50, [3]550 = [93] = [−7]50, [3]1050 = [49] = [−1]50.

Again it is because that o([3]50) must be a divisor of 20 : 1, 2, 4, 5, 10, 20.

(14) (a) In Z30, find the order of the subgroup 〈[18]30〉; find the order of 〈[24]30〉.
〈[18]30〉 = 〈[6]30〉 ⇒ its order is 5. 〈[24]30〉 = 〈[6]30〉 ⇒ its order is 5.

(b) In Z45, find all elements of order 15.

15 = o([k]45) =
45

gcd(k, 45)
⇒ gcd(k, 45) = 3⇒ gcd(

k

3
, 15) = 1. Thus, [k]45 =

[3]45, [6]45, [12]45, [21]45, [24]45, [33]45, [39]45, [42]45.

(15) Prove that if G1 and G2 are groups of order 7 and 11, respectively, then the direct
product G1 ×G2 is a cyclic group.

Proof. G1 and G2 are cyclic since 7 and 11 are primes. Let o(a) = 7 in G1 and
o(b) = 11 in G2. Then o((a, b)) = lcm[7, 11] = 77 in G1 ×G2. Hence proved. �
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(16) Prove that D12 6∼= D4 × Z3.

Proof. In D12, by Proposition 1 in §3.5, we know that o(ak) =
12

gcd(k, 12)
. Thus,

ak e a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

order 1 12 6 4 3 12 2 12 3 4 6 12

It follows from Exam II (6) Part (a) that all the remaining elements of the form akb
have the order 2 since akb 6= e. In particular, there are only two elements of order
6 in D12. However, there are (5 · 2) = 10 elements of order 6 in D4 × Z3. Since
• In D4, the possible orders of elements are 1, 2, 4.
• In Z3, the possible orders of elements are 1, 3.

6 = lcm[2, 3] : Choose (a, b) such that o(a) = 2 in D4 and o(b) = 3 in Z3.
• Elements of order 2 in D4 are: a2, b, ab, a2b, a3b
• Elements of order 3 in Z3 are: [1]3, [2]3

�

(17) For any elements σ, τ ∈ Sn, show that στσ−1τ−1 ∈ An.

Proof. σ and σ−1 have the same number of transpositions in the product. In
particular, we write σ = ρ1ρ2 · · · ρk for ρ1, ρ2, . . . , ρk are transpositions. Then
σ−1 = ρk · · · ρ2ρ1. This also holds for τ . It follows that στσ−1τ−1 must have even
number of transpositions in the product since the parity of a permutation won’t
change, i.e., στσ−1τ−1 ∈ An. �

(18) Find the formulas for all group homomorphisms from Z18 to Z30.

All group homomorphisms from Z18 to Z30 must have the form

φ : Z18 → Z30 defined by φ([x]18) = [mx]30 for some [m]30 ∈ Z30.

This φ is well-defined if and only if 30|18m. This means that 5|3m, and so 5|m since
gcd(5, 3) = 1. Then, all the possible [m]30’s are [0]30, [5]30, [10]30, [15]30, [20]30, [25]30.
Thus, the formulas for all homomorphisms from Z18 into Z30 are:

φ0([x]18) =[0]30

φ5([x]18) =[5x]30

φ10([x]18) =[10x]30

φ15([x]18) =[15x]30

φ20([x]18) =[20x]30

φ25([x]18) =[25x]30

defined for all [x]18 ∈ Z18.

(19) Let G be a group. For a, b ∈ G we say that b is conjugate to a, written b ∼ a, if
there exists g ∈ G such that b = gag−1. Following part (a), the equivalence classes
of ∼ are called the conjugacy classes of G.

(a) Show that ∼ is an equivalence relation on G.

Proof. (i) Reflexive: a ∼ a since a = eae−1.
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(ii) Symmetric: If a ∼ b, then a = gbg−1 for some g ∈ G, and so b =
g−1a(g−1)−1, which shows that b ∼ a.

(iii) Transitive: If a ∼ b and b ∼ c, then a = g1bg
−1
1 and b = g2cg

−1
2 for some

g1, g2 ∈ G. Thus, a = g1(g2cg
−1
2 )g−1

1 = (g1g2)c(g1g2)
−1, and so a ∼ c.

�

(b) Show that φg : G→ G defined by φg(x) = gxg−1 is an isomorphism of G.

Proof. (i) well-defined: Trivial.

(ii) φg is a homomorphism: For any x, y ∈ G, we have

φg(xy) = gxyg−1 = (gxg−1)(gyg−1) = φg(x)φg(y).

(iii) φg is onto: For any x ∈ G, we have φg(g
−1xg) = g(g−1xg)g−1 = x.

(iv) ker(φg) = {x ∈ G | φg(x) = gxg−1 = e} = {x ∈ G | x = g−1eg} = {e}.
The desired results follow from the fundamental homomorphism theorem. �

(c) Show that a subgroup N of the group G is normal in G if and only if N is a
union of conjugacy classes.

Proof. N is normal if and only if gag−1 ∈ N for all a ∈ N and g ∈ G. This
implies that b ∈ N if b ∼ a, and so N contains the conjugacy class of a. It is
equivalent to say that N is a union of conjugacy classess since a is an arbitrary
element of N . This completes the proof. �

(20) (a) List the cosets of 〈[9]16〉 in Z×
16, and find the order of each coset in Z×

16/〈[9]16〉.
Z×

16 = {[1]16, [3]16, [5]16, [7]16, [9]16, [11]16, [13]16, [15]16}. Then we have

coset of 〈[9]16〉 order reason
〈[9]16〉 = {[1]16, [9]16} 1 trivial

[3]16 · 〈[9]16〉 = {[3]16, [11]16} 2 [3]216 = [9]16
[5]16 · 〈[9]16〉 = {[5]16, [13]16} 2 [5]216 = [25]16 = [9]16
[7]16 · 〈[9]16〉 = {[7]16, [15]16} 2 [7]216 = [49]16 = [1]16

(b) List the cosets of 〈[7]16〉 in Z×
16. Is the factor group Z×

16/〈[7]16〉 cyclic?

coset of 〈[7]16〉 order reason
〈[7]16〉 = {[1]16, [7]16} 1 trivial

[3]16 · 〈[7]16〉 = {[3]16, [5]16} 4 [3]216 = [9]16, [3]416 = [1]16
[9]16 · 〈[7]16〉 = {[9]16, [15]16} 2 [9]216 = [1]16

[11]16 · 〈[7]16〉 = {[11]16, [13]16} 4 [11]216 = [9]16, [11]416 = [1]16

The factor group is cyclic. In fact, it easily follows from [3]2 /∈ 〈[7]16〉.
(21) Let G be the dihedral group D6 and let H be the subset {e, a3, b, a3b} of G.

(a) Show that H is subgroup of G.

Proof. It is easy to see that H is closed under the multiplication. In particular,

ba3 = a−3b = a3b. [See Homework 7 (3)-(a)]

This completes the proof since H is a finite subset. �
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(b) Is H a normal subgroup of G?

No. Since aH 6= Ha. In particular, we have

aH = {a, a4, ab, a4b}, while Ha = {a, a4, ba = a5b, a3ba = a2b}.
Hence proved.

(22) Let H and N be normal subgroups of a group G, with N ⊆ H. Define

φ : G/N → G/H by φ(xN) = xH, for all cosets xN ∈ G/N .

(a) Show that φ is a well-defined onto homomorphism.

Proof. (i) well-defined: If xN = yN , then y−1x ∈ N ⊆ H, and so y−1x ∈ H.
This implies that xH = yH, i,e., φ(xN) = φ(yN).

(ii) φ is a homomorphism. For any xN, yN ∈ G/N , we have

φ(xNyN) = φ(xyN) = xyH = xHyH = φ(xN)φ(yN).

(iii) φ is onto: Trivial.
�

(b) Show that (G/N)/(H/N) ∼= G/H.

Proof. ker(φ) = {xN ∈ G/N | φ(xN) = xH = H} = {xN ∈ G/N | x ∈ H}.
This implies that ker(φ) is the left cosets of N in H, i.e., ker(φ) = H/N . It
follows from the fundamental homomorphism theorem that

(G/N)/(H/N) ∼= G/H.

�

Note that this problem is also called the “Third isomorphism theorem”.
Furthermore, HW9 (10) is also called the “Second isomorphism theorem”.

∗ ∗ ∗ The solution is also available on the course website. ∗ ∗ ∗
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Good luck for the final !
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