Homework 9

Due: June 20th (Saturday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded. (1), (2), (4), (8), (9)
- (1) (a) List all cosets of $\langle [16]_{24} \rangle$ in \mathbb{Z}_{24} .

Since gcd(16, 24) = 8, we have $\langle [16]_{24} \rangle = \langle [8]_{24} \rangle = \{ [0]_{24}, [8]_{24}, [16]_{24} \}$. Thus, $\langle [8]_{24} \rangle = \{ [0]_{24}, [8]_{24}, [16]_{24} \} = \langle [16]_{24} \rangle$ $[1]_{24} + \langle [8]_{24} \rangle = \{ [1]_{24}, [9]_{24}, [17]_{24} \} = [1]_{24} + \langle [16]_{24} \rangle$ $[2]_{24} + \langle [8]_{24} \rangle = \{ [2]_{24}, [10]_{24}, [18]_{24} \} = [2]_{24} + \langle [16]_{24} \rangle$ $[3]_{24} + \langle [8]_{24} \rangle = \{ [3]_{24}, [11]_{24}, [19]_{24} \} = [3]_{24} + \langle [16]_{24} \rangle$ $[4]_{24} + \langle [8]_{24} \rangle = \{ [4]_{24}, [12]_{24}, [20]_{24} \} = [4]_{24} + \langle [16]_{24} \rangle$ $[5]_{24} + \langle [8]_{24} \rangle = \{ [5]_{24}, [13]_{24}, [21]_{24} \} = [5]_{24} + \langle [16]_{24} \rangle$ $[6]_{24} + \langle [8]_{24} \rangle = \{ [6]_{24}, [14]_{24}, [22]_{24} \} = [6]_{24} + \langle [16]_{24} \rangle$ $[7]_{24} + \langle [8]_{24} \rangle = \{ [7]_{24}, [15]_{24}, [23]_{24} \} = [7]_{24} + \langle [16]_{24} \rangle$

(b) List all cosets of $\langle ([1]_3, [2]_6) \rangle$ in $\mathbf{Z}_3 \times \mathbf{Z}_6$.

Since $o(([1]_3, [2]_6))$ in $\mathbb{Z}_3 \times \mathbb{Z}_6$ is lcm[3, 3] = 3, we can calculate that

$$\langle ([1]_3, [2]_6) \rangle = \{ ([0]_3, [0]_6), ([1]_3, [2]_6), ([2]_3, [4]_6) \}$$

And so the index is 6, that is, there are six cosets of $\langle ([1]_3, [2]_6) \rangle$ in $\mathbb{Z}_3 \times \mathbb{Z}_6$:

- $\langle ([1]_3, [2]_6) \rangle = \{ ([0]_3, [0]_6), ([1]_3, [2]_6), ([2]_3, [4]_6) \} \\ ([0]_3, [1]_6) + \langle ([1]_3, [2]_6) \rangle = \{ ([0]_3, [1]_6), ([1]_3, [3]_6), ([2]_3, [5]_6) \} \\ ([0]_3, [2]_6) + \langle ([1]_3, [2]_6) \rangle = \{ ([0]_3, [2]_6), ([1]_3, [4]_6), ([2]_3, [0]_6) \} \\ ([0]_3, [3]_6) + \langle ([1]_3, [2]_6) \rangle = \{ ([0]_3, [3]_6), ([1]_3, [5]_6), ([2]_3, [1]_6) \} \\ ([0]_3, [4]_6) + \langle ([1]_3, [2]_6) \rangle = \{ ([0]_3, [4]_6), ([1]_3, [0]_6), ([2]_3, [2]_6) \} \\ ([0]_3, [5]_6) + \langle ([1]_3, [2]_6) \rangle = \{ ([0]_3, [5]_6), ([1]_3, [1]_6), ([2]_3, [3]_6) \}$
- (2) For each of the subgroups $\{e, a^2\}$ and $\{e, b\}$ of D_4 , list all left and right cosets. $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = 2$, and $ba = a^{-1}b = a^3b$.

left cosets		right cosets	
	$\{e,a^2\}$	$\{e, a^2\}$	
$a\{e,a^2\} =$	$\{a, a^3\}$	$\{a, a^3\}$	$= \{e, a^2\}a$
$b\{e,a^2\} =$	$\{b, a^2b\}$	$\{b, a^2b\}$	$= \{e, a^2\}b$
$ab\{e, a^2\} =$	$\{ab, a^3b\}$	$\{ab, a^3b\}$	$= \{e, a^2\}ab$
left cosets		right cosets	
left co	osets	right	cosets
left co	$\frac{\text{osets}}{\{e,b\}}$	$\frac{\text{right}}{\{e,b\}}$	cosets
$\frac{1}{a\{e,b\}} = 1$	$\frac{1}{\{e,b\}}$ $\frac{\{a,ab\}}{\{a,ab\}}$		cosets $= \{e, b\}a$
$\frac{1}{a\{e,b\}} = a^2\{e,b\} = a^2\{e$	$bsets \\ {e, b} \\ {a, ab} \\ {a^2, a^2b} $	$ \begin{array}{c} \text{right} \\ \{e, b\} \\ \{a, a^3 b\} \\ \{a^2, a^2 b\} \end{array} $	$cosets = \{e, b\}a$ $= \{e, b\}a^2$

(3) Prove that if N is a normal subgroup of G, and H is any subgroup of G, then $H \cap N$ is a normal subgroup of H.

Proof. Since we already know that $H \cap N$ is always a subgroup, we only need to prove that it is normal. For any $a \in H \cap N$ and any $h \in H$, we have

$$hah^{-1} \in H$$
 since $a \in H, h \in H$, and H is a subgroup.

 $hah^{-1} \in N$ since $a \in N$, and N is a normal subgroup of G.

This implies $hah^{-1} \in H \cap N$, and so $H \cap N$ is a normal subgroup of H.

(4) Let N be a normal subgroup of index m in G. Show that $a^m \in N$ for all $a \in G$.

Proof. By [G:N] = m, we know that the factor group G/N has order m. Then

 $(aN)^m = N$ for all $a \in G$.

It follows from the coset multiplication that $(aN)^m = a^m N = N$, i.e., $a^m \in N$. \Box

(5) Let N be a normal subgroup of G. Show that the order of any coset aN in G/N is a divisor of o(a), when o(a) is finite.

Proof. Let o(a) = n. Then we have $a^n = e$. We also see that

$$(aN)^n = a^n N = eN = N.$$

Then the order of aN in G/N is a divisor of n.

(6) Let H and K be normal subgroups of G such that $H \cap K = \{e\}$. Show that hk = kh for all $h \in H$ and $k \in K$.

Proof. It suffices to show $k^{-1}hkh^{-1} = e$ for all $h \in H$ and $k \in K$. In particular,

 $k^{-1}hkh^{-1} = (k^{-1}hk)h^{-1} \in H$ since H is a normal subgroup of G.

 $k^{-1}hkh^{-1} = k^{-1}(hkh^{-1}) \in K$ since K is a normal subgroup of G.

This implies that $k^{-1}hkh^{-1} \in H \cap K = \{e\}$. This completes the proof.

(7) If N and M are normal subgroups of G, prove that NM is also a normal subgroup of G. (Note that you need to show that NM is a subgroup of G first.)

Proof. We are going to separate two steps to prove.

Claim 0.1. NM is a subgroup of G.

Proof of Claim 0.1. We are going to use Corollary 7 in Section 3.2 (Lecture slides). NM is nonempty since $e = ee \in NM$. For any $n_1m_1, n_2m_2 \in NM$ with $n_1, n_2 \in N$ and $m_1, m_2 \in M$, we need to show that $(n_1m_1)(n_2m_2)^{-1} \in NM$. In fact,

$$(n_1m_1)(n_2m_2)^{-1} = (n_1m_1)(m_2^{-1}n_2^{-1})$$

= $n_1(m_1m_2^{-1})n_2^{-1}$
= $(n_1n_2^{-1}) \cdot n_2(m_1m_2^{-1})n_2^{-1} \stackrel{!}{\in} NM$

[!] holds since N is a subgroup of G and M is a normal subgroup of G. \Box

Claim 0.2. NM is normal.

Proof of Claim 0.2. For any $nm \in NM$ and any $g \in G$, we have $gnmg^{-1} = (gng^{-1})(gmg^{-1}) \in NM$

because N and M are normal subgroups of G. Hence proved.

(8) Compute the factor group $(\mathbf{Z}_6 \times \mathbf{Z}_4)/\langle ([2]_6, [2]_4) \rangle$.

First, we observe that $o(([2]_6, [2]_4))$ in $\mathbb{Z}_6 \times \mathbb{Z}_4$ is lcm[3, 2] = 6. In particular, $\langle ([2]_6, [2]_4) \rangle = \{ ([0]_6, [0]_4), ([2]_6, [2]_4), ([4]_6, [0]_4), ([0]_6, [2]_4), ([2]_6, [0]_4), ([4]_6, [2]_4) \}.$ There are four elements in the factor group $(\mathbb{Z}_6 \times \mathbb{Z}_4) / \langle ([2]_6, [2]_4) \rangle$:

 $\langle ([2]_6, [2]_4) \rangle = \{ ([0]_6, [0]_4), ([2]_6, [2]_4), ([4]_6, [0]_4), ([0]_6, [2]_4), ([2]_6, [0]_4), ([4]_6, [2]_4) \} \\ ([0]_6, [1]_4) + \langle ([2]_6, [2]_4) \rangle = \{ ([0]_6, [1]_4), ([2]_6, [3]_4), ([4]_6, [1]_4), ([0]_6, [3]_4), ([2]_6, [1]_4), ([4]_6, [3]_4) \} \\ ([1]_6, [0]_4) + \langle ([2]_6, [2]_4) \rangle = \{ ([1]_6, [0]_4), ([3]_6, [2]_4), ([5]_6, [0]_4), ([1]_6, [2]_4), ([3]_6, [0]_4), ([5]_6, [2]_4) \} \\ ([1]_6, [1]_4) + \langle ([2]_6, [2]_4) \rangle = \{ ([1]_6, [1]_4), ([3]_6, [3]_4), ([5]_6, [1]_4), ([1]_6, [3]_4), ([3]_6, [1]_4), ([5]_6, [3]_4) \} \\ ([1]_6, [1]_4) + \langle ([2]_6, [2]_4) \rangle = \{ ([1]_6, [1]_4), ([3]_6, [3]_4), ([5]_6, [1]_4), ([1]_6, [3]_4), ([3]_6, [1]_4), ([5]_6, [3]_4) \} \\ ([1]_6, [1]_4) + \langle ([2]_6, [2]_4) \rangle = \{ ([1]_6, [1]_4), ([3]_6, [3]_4), ([5]_6, [1]_4), ([1]_6, [3]_4), ([3]_6, [1]_4), ([5]_6, [3]_4) \} \\ ([1]_6, [1]_4) + \langle ([2]_6, [2]_4) \rangle = \{ ([1]_6, [1]_4), ([3]_6, [3]_4), ([5]_6, [1]_4), ([1]_6, [3]_4), ([3]_6, [1]_4), ([5]_6, [3]_4) \} \\ ([1]_6, [1]_4) + \langle ([2]_6, [2]_4) \rangle = \{ ([1]_6, [1]_4), ([3]_6, [3]_4), ([5]_6, [1]_4), ([1]_6, [3]_4), ([3]_6, [1]_4), ([5]_6, [3]_4) \} \\ ([1]_6, [1]_4) + \langle ([2]_6, [2]_4) \rangle = \{ ([1]_6, [1]_4), ([3]_6, [3]_4), ([5]_6, [1]_4), ([1]_6, [3]_4), ([3]_6, [1]_4), ([5]_6, [3]_4) \} \\ ([1]_6, [1]_4) + \langle ([2]_6, [2]_4) \rangle = \{ ([1]_6, [1]_4), ([3]_6, [3]_4), ([5]_6, [1]_4), ([3]_6, [1]_4), ([5]_6, [3]_4) \} \\ ([1]_6, [3]_4) + \langle ([2]_6, [3]_4) \rangle = \{ ([1]_6, [3]_4), ([3]_6, [3]_4), ([3]_6, [3]_4), ([3]_6, [3]_4) \} \\ ([1]_6, [3]_4) + \langle ([3]_6, [3]_4), ([3]_6, [3]_4), ([3]_6, [3]_4) \} \\ ([1]_6, [3]_4) + \langle ([3]_6, [3]_4), ([3]_6, [3]_4), ([3]_6, [3]_4) \} \\ ([1]_6, [3]_4) + \langle ([3]_6, [3]_4), ([3]_6, [3]_4) + \langle ([3]_6, [3]_4), ([3]_6, [3]_4) \} \\ ([1]_6, [3]_4) + \langle ([3]_6, [3]_4), ([3]_6, [3]_4) + \langle ([3]_6, [3]$

Let $G = \mathbb{Z}_6 \times \mathbb{Z}_4$ and let $N = \langle ([2]_6, [2]_4) \rangle$. Then the factor group G/N is

 $G/N = \{N, ([0]_6, [1]_4) + N, ([1]_6, [0]_4) + N, ([1]_6, [1]_4) + N\}.$

It is clear that all the non-identity elements in G/N have order 2. In particular,

$$2([0]_6, [1]_4) = ([0]_6, [2]_4) \in N$$

$$2([1]_6, [0]_4) = ([2]_6, [0]_4) \in N$$

$$2([1]_6, [1]_4) = ([2]_6, [2]_4) \in N$$

In conclusion, the factor group $(\mathbf{Z}_6 \times \mathbf{Z}_4) / \langle ([2]_6, [2]_4) \rangle$ is isomorphic to $\mathbf{Z}_2 \times \mathbf{Z}_2$.

(9) Show that $\mathbf{R}^{\times}/\langle -1 \rangle$ is isomorphic to the group of positive real numbers under multiplication.

Proof. Define $\phi : \mathbf{R}^{\times} \to \mathbf{R}^{+}$ by $\phi(x) = |x|$.

- (i) ϕ is well-defined: Trivial since |x| > 0 for all $x \in \mathbf{R}^{\times}$.
- (ii) ϕ is a homomorphism: For all $x, y \in \mathbf{R}^{\times}$, we have

$$\phi(xy) = |xy| = |x||y| = \phi(x)\phi(y).$$

(iii) ϕ is onto: For any $x \in \mathbf{R}^+$, we have $\phi(x) = |x| = x$ since x > 0.

(iv) $\ker(\phi) = \{x \in \mathbf{R}^{\times} \mid \phi(x) = |x| = 1\} = \{x \mid x = \pm 1\} = \{1, -1\} = \langle -1 \rangle.$

The desired results follow from the fundamental homomorphism theorem, i.e.,

$$\mathbf{R}^{\times}/\langle -1\rangle \cong \mathbf{R}^{+}.$$

- (10) Let H and N be subgroups of a group G, and assume that N is a normal subgroup of G. Prove the following statements.
 - (a) N is a normal subgroup of HN.

Proof. Note that the proof of "HN is a subgroup" is similar as in Question (7). So we just show that it is normal. For any $a \in N$ and any $g = hn \in HN$ with $h \in H$ and $n \in N$, we have

$$gag^{-1} = (hn)a(hn)^{-1} = h(nan^{-1})h^{-1} \in \mathbb{N}.$$

 $\stackrel{!}{\in}$ holds since N is a normal subgroup of G. This completes the proof.

(b) Each element of HN/N has the form hN, for some $h \in H$.

Proof. Each element of HN/N has the form hnN with $h \in H$ and $n \in N$, and so we have hnN = hN since nN = N. Hence proved.

(c) Define $\phi: H \to HN/N$ by $\phi(h) = hN$, for all $h \in H$, is an onto homomorphism.

Proof.

- (i) ϕ is well-defined: It is true because of part (b).
- (ii) ϕ is a homomorphism: For any $h_1, h_2 \in H$, we have

 $\phi(h_1h_2) = h_1h_2N \stackrel{!}{=} h_1Nh_2N = \phi(h_1)\phi(h_2).$

 $\dot{\epsilon}$ holds since N is a normal subgroup of G.

(iii) ϕ is onto: It is trivial by the definition of ϕ .

(d) $HN/N \cong H/K$, where $K = H \cap N$.

Proof. $\ker(\phi) = \{h \in H \mid \phi(h) = hN = N\} = \{h \in H \mid h \in N\} = H \cap N.$ It follows from the fundamental homomorphism theorem that

$$HN/N \cong H/H \cap N.$$