Homework 9

Due: June 20th (Saturday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded.
- (1) (a) List all cosets of $\langle [16]_{24} \rangle$ in \mathbb{Z}_{24} .

(b) List all cosets of $\langle ([1]_3, [2]_6) \rangle$ in $\mathbf{Z}_3 \times \mathbf{Z}_6$.

- (2) For each of the subgroups $\{e, a^2\}$ and $\{e, b\}$ of D_4 , list all left and right cosets.
- (3) Prove that if N is a normal subgroup of G, and H is any subgroup of G, then $H \cap N$ is a normal subgroup of H.
- (4) Let N be a normal subgroup of index m in G. Show that $a^m \in N$ for all $a \in G$.
- (5) Let N be a normal subgroup of G. Show that the order of any coset aN in G/N is a divisor of o(a), when o(a) is finite.
- (6) Let H and K be normal subgroups of G such that $H \cap K = \{e\}$. Show that hk = kh for all $h \in H$ and $k \in K$.
- (7) If N and M are normal subgroups of G, prove that NM is also a normal subgroup of G. (Note that you need to show that NM is a subgroup of G first.)
- (8) Compute the factor group $(\mathbf{Z}_6 \times \mathbf{Z}_4)/\langle ([2]_6, [2]_4) \rangle$.
- (9) Show that $\mathbf{R}^{\times}/\langle -1 \rangle$ is isomorphic to the group of positive real numbers under multiplication.
- (10) Let H and N be subgroups of a group G, and assume that N is a normal subgroup of G. Prove the following statements.
 - (a) N is a normal subgroup of HN.
 - (b) Each element of HN/N has the form hN, for some $h \in H$.
 - (c) Define $\phi: H \to HN/N$ by $\phi(h) = hN$, for all $h \in H$, is an onto homomorphism.
 - (d) $HN/N \cong H/K$, where $K = H \cap N$.