Homework 8

Due: June 15th (Monday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded. $(1), (2), (3), (5), (6)$
- (1) Write down the formulas for all homomorphisms from \mathbb{Z}_{24} into \mathbb{Z}_{18} .

Define $\phi : \mathbf{Z}_{24} \to \mathbf{Z}_{18}$ by $\phi([x]_{24}) = [mx]_{18}$ for some $[m]_{18} \in \mathbf{Z}_{18}$. In order for ϕ to be well-defined, we need the condition that $18|24m$. That is, $3|4m$, and so $3|m$ since gcd(3, 4) = 1. Then, all the possible $[m]_{18}$'s are $[0]_{18}$, $[3]_{18}$, $[6]_{18}$, $[9]_{18}$, $[12]_{18}$ and [15]₁₈. Thus, the formulas for all homomorphisms from \mathbb{Z}_{24} into \mathbb{Z}_{18} are:

```
\phi_0([x]_{24}) = [0]_{18}\phi_3([x]_{24}) = [3x]_{18}\phi_6([x]_{24}) = [6x]_{18}\phi_9([x]_{24}) = [9x]_{18}\phi_{12}([x]_{24}) = [12x]_{18}\phi_{15}([x]_{24}) = [15x]_{18}
```
defined for all $[x]_{24} \in \mathbb{Z}_{24}$.

(2) Write down the formulas for all homomorphisms from **Z** onto \mathbf{Z}_{12} .

Every homomorphism $\phi : \mathbf{Z} \to \mathbf{Z}_{12}$ is defined by $\phi(x) = [mx]_{12}$ for $[m]_{12} \in \mathbf{Z}_{12}$. Moreover, the homomorphism ϕ is onto. This implies that ϕ sends the generator 1 in **Z** to the generator $[m]_{12}$ in \mathbb{Z}_{12} . As we know that $[m]_{12}$ generates \mathbb{Z}_{12} if and only if $[m]_{12} \in \mathbb{Z}_{12}^{\times}$, i.e., $gcd(m, 12) = 1$. Thus, $m = 1, 5, 7, 11$. In conclusion, the formulas for all homomorphisms from Z onto Z_{12} are:

$$
\phi_1(x) = [x]_{12}
$$

\n
$$
\phi_5(x) = [5x]_{12}
$$

\n
$$
\phi_7(x) = [7x]_{12}
$$

\n
$$
\phi_{11}(x) = [11x]_{12}
$$

defined for all $x \in \mathbf{Z}$.

(3) For the group homomorphism $\phi : \mathbb{Z}_{15}^{\times} \to \mathbb{Z}_{15}^{\times}$ defined by $\phi([x]) = [x]^2$ for all $[x] \in \mathbb{Z}_{15}^{\times}$, find the kernel and image of ϕ .

Note that $\mathbf{Z}_{15}^{\times} = \{ [1], [2], [4], [7], [8], [11], [13], [14] \}.$

[x] [1] [2] [4] [7] [8] [11] [13] [14] 2 φ([x]) = [x] [1] [4] [1] [4] [4] [1] [4] [1]

Thus, $\text{ker}(\phi) = \{ [1], [4], [11], [14] \}$ and $\text{im}(\phi) = \{ [1], [4] \}.$

(4) Define $\phi : \mathbf{C}^{\times} \to \mathbf{R}^{\times}$ by $\phi(a+bi) = a^2 + b^2$, for all $a+bi \in \mathbf{C}^{\times}$. Show that ϕ is a homomorphism.

The well-definedness of ϕ is trivial. For any $a + bi, c + di \in \mathbb{C}^{\times}$, we have

$$
\phi((a+bi)(c+di)) = \phi((ac-bd) + (ad+bc)i)
$$

= $(ac-bd)^2 + (ad+bc)^2$
= $a^2c^2 - 2abcd + b^2d^2 + a^2d^2 + 2abcd + b^2c^2$
= $(a^2 + b^2)(c^2 + d^2)$
= $\phi((a+bi)) \cdot \phi((c+di))$

Thus, ϕ is a homomorphism.

(5) Which of the following functions are homomorphisms? You need to show work to support your answers.

(a)
$$
\phi : \mathbf{R}^{\times} \to GL_2(\mathbf{R})
$$
 defined by $\phi(a) = \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$

Yes:

- (i) well-defined: $\phi(a) \in GL_2(\mathbf{R})$ since $a \in \mathbf{R}^{\times}$.
- (ii) For any $a, b \in \mathbf{R}^{\times}$, we have

$$
\phi(a \cdot b) = \begin{bmatrix} ab & 0 \\ 0 & 1 \end{bmatrix}
$$

$$
= \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} b & 0 \\ 0 & 1 \end{bmatrix}
$$

$$
= \phi(a)\phi(b)
$$

(b) $\phi : \mathbf{R} \to GL_2(\mathbf{R})$ defined by $\phi(a) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ a 1

Yes:

(i) well-defined: $\phi(a) \in GL_2(\mathbf{R})$ since $\det(\phi(a)) = 1 \neq 0$ for all $a \in \mathbf{R}$.

1

(ii) For any $a, b \in \mathbf{R}^{\times}$, we have

$$
\phi(a+b) = \begin{bmatrix} 1 & 0 \\ a+b & 1 \end{bmatrix}
$$

$$
= \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix}
$$

$$
= \phi(a)\phi(b)
$$

(c) $\phi : M_2(\mathbf{R}) \to \mathbf{R}$ defined by $\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a$
Yes:

(i) well-defined: Trivial.

(ii) For any
$$
\begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$
, $\begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \in M_2(\mathbf{R})$, we have
\n
$$
\phi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \right) = \begin{bmatrix} a+a' & b+b' \\ c+c' & d+d' \end{bmatrix}
$$
\n
$$
=a+a'
$$
\n
$$
= \phi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) + \phi \left(\begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \right)
$$
\n(d) $\phi : GL_2(\mathbf{R}) \to \mathbf{R}^{\times}$ defined by $\phi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ab$

No: ϕ is not well-defined. For example, let $b = 0$, and so $ab = 0 \notin \mathbb{R}^{\times}$.

- (6) Let $\phi: G_1 \to G_2$ and $\theta: G_2 \to G_3$ be group homomorphisms. Prove that
	- (a) $\theta \phi : G_1 \to G_3$ is a homomorphism.
		- (i) well-defined: For any $a \in G_1$, $\theta \phi(a) = \theta(\phi(a)) \in G_3$ since $\phi(a) \in G_2$.
		- (ii) For any $a, b \in G_1$, we have

$$
\theta\phi(a * b) = \theta(\phi(a * b)) = \theta(\phi(a) \cdot \phi(b)) = \theta(\phi(a)) \star \theta(\phi(b)) = \theta\phi(a) \star \theta\phi(b).
$$

(b) ker $(\phi) \subseteq \text{ker}(\theta \phi)$.

subgroup of G .

For any $a \in \text{ker}(\phi)$, we have $\theta \phi(a) = \theta(\phi(a)) = \theta(e_2) = e_3$, and so $a \in$ $\ker(\theta \phi)$. This proves $\ker(\phi) \subseteq \ker(\theta \phi)$.

 (7) Let G be a group, and let H be a normal subgroup of G. Show that for each $g \in G$ and $h \in H$ there exist h_1 and h_2 in H with $gh = h_1g$ and $hg = gh_2$.

By definition of the normal subgroup, for each $g \in G$ and $h \in H$ we have $ghg^{-1} \in H$. Say, $ghg^{-1} = h_1$, and so $gh = h_1g$. Since G is a group, $g^{-1} \in G$. Then $g^{-1}h(g^{-1})^{-1} = g^{-1}hg \in H$. Say $g^{-1}hg = h_2$, and so $hg = gh_2$.

(8) Recall that the center $Z(G)$ of a group G is

 $Z(G) = \{x \in G \mid xq = qx \text{ for all } q \in G\}.$

Prove that the center of any group is a normal subgroup.

For any $a \in Z(G)$ (it is already a subgroup of G) and any $g \in G$, we have

$$
gag^{-1} = gg^{-1}a = ea = a \in Z(G).
$$

Thus, the center of any group is a normal subgroup.

(9) Prove that the intersection of two normal subgroups is a normal subgroup.

Let H_1 and H_2 be two normal subgroups of G. Let $H = H_1 \cap H_2$. It is also easy to see that H is a subgroup of G. It suffices to show that H is normal. Let h be any element in H and g be any element in G . Then we have

> $ghg^{-1} \in H_1$ since $h \in H_1$ and H_1 is a normal subgroup of G ; $ghg^{-1} \in H_2$ since $h \in H_2$ and H_2 is a normal subgroup of G.

This implies that $ghg^{-1} \in H_1 \cap H_2 = H$. Thus, $H = H_1 \cap H_2$ is again a normal