Homework 8

Due: June 15th (Monday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded.
- (1) Write down the formulas for all homomorphisms from \mathbf{Z}_{24} into \mathbf{Z}_{18} .
- (2) Write down the formulas for all homomorphisms from \mathbf{Z} onto \mathbf{Z}_{12} .
- (3) For the group homomorphism $\phi : \mathbf{Z}_{15}^{\times} \to \mathbf{Z}_{15}^{\times}$ defined by $\phi([x]) = [x]^2$ for all $[x] \in \mathbf{Z}_{15}^{\times}$, find the kernel and image of ϕ . Note that $\mathbf{Z}_{15}^{\times} = \{[1], [2], [4], [7], [8], [11], [13], [14]\}.$
- (4) Define $\phi : \mathbf{C}^{\times} \to \mathbf{R}^{\times}$ by $\phi(a+bi) = a^2 + b^2$, for all $a + bi \in \mathbf{C}^{\times}$. Show that ϕ is a homomorphism.
- (5) Which of the following functions are homomorphisms? You need to show work to support your answers.

(a)
$$\phi : \mathbf{R}^{\times} \to \operatorname{GL}_2(\mathbf{R})$$
 defined by $\phi(a) = \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$
(b) $\phi : \mathbf{R} \to \operatorname{GL}_2(\mathbf{R})$ defined by $\phi(a) = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix}$
(c) $\phi : \operatorname{M}_2(\mathbf{R}) \to \mathbf{R}$ defined by $\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a$
(d) $\phi : \operatorname{GL}_2(\mathbf{R}) \to \mathbf{R}^{\times}$ defined by $\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ab$

- (6) Let $\phi: G_1 \to G_2$ and $\theta: G_2 \to G_3$ be group homomorphisms. Prove that
 - (a) $\theta\phi: G_1 \to G_3$ is a homomorphism.
 - (b) $\ker(\phi) \subseteq \ker(\theta\phi)$.
- (7) Let G be a group, and let H be a normal subgroup of G. Show that for each $g \in G$ and $h \in H$ there exist h_1 and h_2 in H with $gh = h_1g$ and $hg = gh_2$.
- (8) Recall that the center Z(G) of a group G is

$$Z(G) = \{ x \in G \mid xg = gx \text{ for all } g \in G \}.$$

Prove that the center of any group is a normal subgroup.

(9) Prove that the intersection of two normal subgroups is a normal subgroup.