Homework 7

Due: June 8th (Monday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded. (1), (2), (4), (5), (7)
- (1) Find the orders of each of these permutations.
 - (a) (123)(2435)(132)
 - = (1534), so order is 4.
 - (b) (136)(278)(42537)
 - = (138256)(47), so order is lcm[6, 2] = 6.
- (2) Find the permutations that correspond to the rigid motions of a rectangle that is not a square. Do the same for the rigid motions of a rhombus (diamond) that is not a square.

 $1 \underbrace{\hspace{1cm}}_{4}^{2}$

Rigid motions of the rectangle: (1), (14)(23), (12)(34), (13)(24).

Rigid motions of the rhombus: (1), (13), (24), (13)(24).

- (3) Let the dihedral group D_n be given by elements a of order n and b of order 2, where $ba = a^{-1}b$.
 - (a) Show that $ba^m = a^{-m}b$, for all $m \in \mathbf{Z}$.

For any positive integer m, we have

 $ba^{m} = (ba)a^{m-1} = (a^{-1}b)a^{m-1} = a^{-1}(ba)a^{m-2} = a^{-2}(ba^{m-2}) = \dots = a^{-m}b.$

If m is a negative integer, then m = -|m|, and so we have

$$ba^{m} = ba^{-|m|} = b(a^{-1})^{|m|} = (a^{-1})^{-|m|}b = (a^{-1})^{m}b = a^{-m}b.$$

It is trivial for m=0. In conclusion, we have $ba^m=a^{-m}b$, for all $m\in \mathbb{Z}$.

- (b) Show that $ba^mb=a^{-m}$, for all $m\in \mathbf{Z}$.
 - By (a), we have $ba^m = a^{-m}b$. Thus, $ba^mb = a^{-m}bb = a^{-m}$ for all $m \in \mathbf{Z}$.
- (4) Find the order of each element of D_6 .

We know that

$$D_6 = \{e, a, a^2, a^3, a^4, a^5, b, ab, a^2b, a^3b, a^4b, a^5b\}, \text{ where } a^6 = e, b^2 = e, ba = a^{-1}b.$$

By Proposition 1 in §3.5, we know that $o(a^j) = \frac{n}{\gcd(j,n)}$. Thus,

Claim: All the remaining elements of the form $a^{j}b$ have the order 2 for $0 \leq j < 6$.

$$(a^{j}b)^{2} = a^{j}(ba^{j})b \stackrel{!}{=} a^{j}(a^{-j}b)b = (a^{j}a^{-j})(bb) = ee = e.$$

- $\stackrel{!}{=}$ holds because of Question 3 (a). Note that the above claim holds for any D_n .
- (5) Let $\tau = (abc)$ and let σ be any permutation. Show that $\sigma\tau\sigma^{-1} = (\sigma(a)\sigma(b)\sigma(c))$. $\sigma\tau\sigma^{-1}(\sigma(a)) = \sigma(\tau(\sigma^{-1}\sigma(a))) = \sigma(\tau(a)) = \sigma(b) : \text{This implies } \sigma(a) \xrightarrow{\sigma\tau\sigma^{-1}} \sigma(b).$ Similarly, we can check that $\sigma(b) \xrightarrow{\sigma\tau\sigma^{-1}} \sigma(c)$ and $\sigma(c) \xrightarrow{\sigma\tau\sigma^{-1}} \sigma(a)$.
- (6) In general, if $(12 \cdots k)$ is a cycle of length k and σ is any permutation, then $\sigma(12 \cdots k)\sigma^{-1} = (\sigma(1)\sigma(2) \cdots \sigma(k)).$

This is just a generalization of Question (5). For any $1 \le i < k$, we have $\sigma(12\cdots k)\sigma^{-1}(\sigma(i)) = \sigma((12\cdots k)(\sigma^{-1}\sigma(i))) = \sigma((12\cdots k)(i)) = \sigma(i+1).$ And for i=k, we just take i+1 as 1.

(7) (a) In S_4 , find the subgroup H generated by (123) and (23).

Since $(123) \in H$, $\langle (123) \rangle = \{(1), (123), (132)\} \subseteq H$.

Since $(23) \in H$, $\langle (23) \rangle = \{(1), (23)\} \subseteq H$.

Since H is a group, so by the closure axiom H contains

 $\{(1), (123), (132), (23), (123)(23) = (12), (132)(23) = (13)\}.$

And this set is closed under multiplication. In fact, $H \cong S_3$. Thus, $H = \{(1), (123), (132), (23), (12), (13)\}.$

(b) For $\sigma = (234)$, find the corresponding subgroup $\sigma H \sigma^{-1}$.

We need to compute $\sigma\tau\sigma^{-1}$ for each $\tau \in H$. First, $\sigma(1)\sigma^{-1} = \sigma\sigma^{-1} = (1)$. The calculations will be easier if we apply Question (5) or (6). In particular,

$$\sigma(123)\sigma^{-1} = (\sigma(1)\sigma(2)\sigma(3)) = (134)$$

$$\sigma(132)\sigma^{-1} = (\sigma(1)\sigma(3)\sigma(2)) = (143)$$

$$\sigma(23)\sigma^{-1} = (\sigma(2)\sigma(3)) = (34)$$

$$\sigma(12)\sigma^{-1} = (\sigma(1)\sigma(2)) = (13)$$

$$\sigma(13)\sigma^{-1} = (\sigma(1)\sigma(3)) = (14)$$

Thus, $\sigma H \sigma^{-1} = \{(1), (134), (143), (34), (13), (14)\}.$

- (8) Let permutations in S_4 act on polynomials in four variables by permuting the subscripts, as in Theorem 10 in §3.6.
 - (a) Which permutations in S_4 leave the polynomial $(x_1-x_2)(x_3-x_4)$ unchanged?
 - (i) If x_1 does not change, neither does x_2 . It follows that x_3 and x_4 won't change either. The corresponding permutation is (1).

- (ii) If $x_1 \mapsto x_2$, then $x_2 \mapsto x_1$. It follows that $x_3 \mapsto x_4$ and $x_4 \mapsto x_3$. So the corresponding permutation is (12)(34).
- (iii) If $x_1 \mapsto x_3$, then $x_2 \mapsto x_4$. It follows that $x_3 \mapsto x_1$ and $x_4 \mapsto x_2$. So the corresponding permutation is (13)(24).
- (iv) If $x_1 \mapsto x_4$, then $x_2 \mapsto x_3$. It follows that $x_3 \mapsto x_2$ and $x_4 \mapsto x_1$. So the corresponding permutation is (14)(23).
- (b) Which permutations in S_4 leave the polynomial $\prod_{1 \leq i < j \leq 4} (x_i + x_j)$ unchanged?

The polynomial $\prod_{1 \le i < j \le 4} (x_i + x_j)$ is a symmetric polynomial. All the elements

in S_4 leave it unchanged. In particular, let $1 \leq i < j \leq 4$. For any permutation σ in S_4 , if $\sigma(i) < \sigma(j)$, then $x_{\sigma(i)} + x_{\sigma(j)}$ is one of the factors, and if $\sigma(i) > \sigma(j)$ then $x_{\sigma(i)} + x_{\sigma(j)} = x_{\sigma(j)} + x_{\sigma(i)}$ is again one factor in this polynomial. Thus, σ leaves the polynomial unchanged.