Homework 6

Due: June 5th (Friday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded. (2), (3), (7), (8), (11)
- (1) Finish the proof of Lemma 13 in Lecture Slides_§3.5.

Lemma 13: If $G_1 \cong H_1$ and $G_2 \cong H_2$, then $G_1 \times G_2 \cong H_1 \times H_2$.

Let
$$\theta_1 : G_1 \to H_1$$
 and $\theta_2 : G_2 \to H_2$. Define $\phi : G_1 \times G_2 \to H_1 \times H_2$ by
 $\phi((x_1, x_2)) = (\theta_1(x_1), \theta_2(x_2))$, for all $(x_1, x_2) \in G_1 \times G_2$.

Claim: ϕ is a group isomorphism.

- (i) well-defined: Trivial since $\theta_1(x_1) \in H_1$ and $\theta_2(x_2) \in H_2$.
- (ii) ϕ respects the two operations: For any $(x_1, x_2), (y_1, y_2) \in G_1 \times G_2$

$$\phi((x_1, x_2)(y_1, y_2)) = \phi((x_1y_1, x_2y_2))$$

= $(\theta_1(x_1y_1), \theta_2(x_2y_2))$
= $(\theta_1(x_1)\theta_1(y_1), \theta_2(x_2)\theta_2(y_2))$
= $(\theta_1(x_1), \theta_2(x_2))(\theta_1(y_1), \theta_2(y_2))$
= $\phi((x_1, x_2))\phi((y_1, y_2))$

(iii) one-to-one: If $\phi((x_1, x_2)) = (\theta_1(x_1), \theta_2(x_2)) = (e_{H_1}, e_{H_2})$, then

$$\theta_1(x_1) = e_{H_1} \Rightarrow x_1 = e_{G_1}$$
$$\theta_2(x_2) = e_{H_2} \Rightarrow x_2 = e_{G_2}$$

and so $(x_1, x_2) = (e_{G_1}, e_{G_2}) = e_{G_1 \times G_2}$.

- (iv) onto: Trivial since θ_1 and θ_2 are two groups isomorphisms. In particular, for any element $(h_1, h_2) \in H_1 \times H_2$, we can always find $x_1 \in G_1$ and $x_2 \in G_2$ such that $\theta_1(x_1) = h_1$ and $\theta_2(x_2) = h_2$, and so $\phi((x_1, x_2)) = (h_1, h_2)$.
- (2) Let G be a group and let $a \in G$ be an element of order 30. List the powers of a that have order 2, order 3 or order 5.

Since $o(a) = 30 = |\langle a \rangle|$, then we have $\langle a \rangle \cong \mathbf{Z}_{30}$ by Theorem 2. In particular, you can think about the cyclic subgroup $\langle a \rangle$ generated by $a \in G$ is the "multiplicative version" of the additive group \mathbf{Z}_{30} . Thus, we have

$$\langle a^j \rangle = \langle a^d \rangle$$
, where $d = (j, 30)$ and so $o(a^j) = |\langle a^j \rangle| = |\langle a^d \rangle| = \frac{30}{d}$.
(i) $o(a^j) = 2 = \frac{30}{d} \Rightarrow d = (j, 30) = 15 \Rightarrow j = 15$.

(ii)
$$o(a^j) = 3 = \frac{30}{d} \Rightarrow d = (j, 30) = 10 \Rightarrow j = 10, 20.$$

(iii) $o(a^j) = 5 = \frac{30}{d} \Rightarrow d = (j, 30) = 6 \Rightarrow j = 6, 12, 18, 24.$

(3) Give the subgroup diagrams of the following groups.

- (a) \mathbf{Z}_{24}
- (b) Z_{36}

 $24 = 2^{3}3^{1}$: Any divisor $d = 2^{i}3^{j}$, where i = 0, 1, 2, 3 and j = 0, 1.

 $36 = 2^2 3^2$: Any divisor $d = 2^i 3^j$, where i = 0, 1, 2 and j = 0, 1, 2.

This implies that there is no element of order 8, and so \mathbf{Z}_{20}^{\times} is not cyclic.

¹Why $o([13]) \neq 3$? Think about Lagrange's Theorem!

(5) Find all cyclic subgroups of $\mathbf{Z}_6 \times \mathbf{Z}_3$.

(a) •
$$\langle ([0]_6, [0]_3) \rangle = \{ ([0]_6, [0]_3) \}.$$

- $\langle ([1]_6, [0]_3) \rangle = \langle ([5]_6, [0]_3) \rangle = \{ ([a]_6, [0]_3) \mid [a]_6 \in \mathbb{Z}_6 \}$
- $\langle ([2]_6, [0]_3) \rangle = \langle ([4]_6, [0]_3) \rangle = \{ ([0]_6, [0]_3), ([2]_6, [0]_3), ([4]_6, [0]_3) \}$
- $\langle ([3]_6, [0]_3) \rangle = \{ ([0]_6, [0]_3), ([3]_6, [0]_3) \}$

(b) •
$$\langle ([0]_6, [1]_3) \rangle = \{ ([0]_6, [0]_3), ([0]_6, [1]_3), ([0]_6, [2]_3) \}.$$

- $\langle ([1]_6, [1]_3) \rangle = \{ ([0]_6, [0]_3), ([1]_6, [1]_3), ([2]_6, [2]_3), ([3]_6, [0]_3), ([4]_6, [1]_3), ([5]_6, [2]_3) \}.$
- $\langle ([2]_6, [1]_3) \rangle = \{ ([0]_6, [0]_3), ([2]_6, [1]_3), ([4]_6, [2]_3) \}.$
- $\langle ([3]_6, [1]_3) \rangle = \{ ([0]_6, [0]_3), ([3]_6, [1]_3), ([0]_6, [2]_3), ([3]_6, [0]_3), ([0]_6, [1]_3), ([3]_6, [2]_3) \}.$
- $\langle ([4]_6, [1]_3) \rangle = \{ ([0]_6, [0]_3), ([4]_6, [1]_3), ([2]_6, [2]_3) \}.$
- $\langle ([5]_6, [1]_3) \rangle = \{ ([0]_6, [0]_3), ([5]_6, [1]_3), ([4]_6, [2]_3), ([3]_6, [0]_3), ([2]_6, [1]_3), ([1]_6, [2]_3) \}.$

(c) •
$$\langle ([0]_6, [2]_3) \rangle = \langle -([0]_6, [2]_3) \rangle = \langle ([0]_6, [1]_3) \rangle.$$

- $\langle ([1]_6, [2]_3) \rangle = \langle -([1]_6, [2]_3) \rangle = \langle ([5]_6, [1]_3) \rangle.$
- $\langle ([2]_6, [2]_3) \rangle = \langle -([2]_6, [2]_3) \rangle = \langle ([4]_6, [1]_3) \rangle.$
- $\langle ([3]_6, [2]_3) \rangle = \langle -([3]_6, [2]_3) \rangle = \langle ([3]_6, [1]_3) \rangle.$
- $\langle ([4]_6, [2]_3) \rangle = \langle -([4]_6, [2]_3) \rangle = \langle ([2]_6, [1]_3) \rangle.$
- $\langle ([5]_6, [2]_3) \rangle = \langle -([5]_6, [2]_3) \rangle = \langle ([1]_6, [1]_3) \rangle.$

(6) Prove that \mathbf{Z}_{10}^{\times} is not isomorphic to \mathbf{Z}_{12}^{\times} . (Do not use Primitive Root Theorem.)

(a) Check \mathbf{Z}_{10}^{\times} : $\varphi(10) = 10(1 - \frac{1}{2})(1 - \frac{1}{5}) = 4$ $\mathbf{Z}_{10}^{\times} = \{[1], [3], [7], [9]\} = \{\pm [1], \pm [3]\}$ (i) $[3]^2 = [9]$, so o([3]) = 4 (Lagrange's Thm). This implies that $\mathbf{Z}_{10}^{\times} = \langle [3] \rangle$, and so \mathbf{Z}_{10}^{\times} is cyclic. (b) Check $\mathbf{Z}_{12}^{\times} : \varphi(12) = 12(1-\frac{1}{2})(1-\frac{1}{3}) = 4$ $\mathbf{Z}_{12}^{\times} = \{[1], [5], [7], [11]\} = \{\pm [1], \pm [5]\}$ $[5]^2 = [7]^2 = [11]^2 = [1]$ This implies that there is no element of order 4, and so \mathbf{Z}_{12}^{\times} is not cyclic.

By Proposition 3 (c) in §3.4, we have $\mathbf{Z}_{10}^{\times} \cong \mathbf{Z}_{12}^{\times}$.

(7) You need to show work to support your conclusions.

(a) Is $\mathbf{Z}_3 \times \mathbf{Z}_{30}$ isomorphic to $\mathbf{Z}_6 \times \mathbf{Z}_{15}$? Yes!

By Question (1) or Lemma 13 in §3.5, we get $\mathbf{Z}_3 \times \mathbf{Z}_{30} \cong \mathbf{Z}_3 \times \mathbf{Z}_6 \times \mathbf{Z}_5^{-2}$ and $\mathbf{Z}_6 \times \mathbf{Z}_{15} \cong \mathbf{Z}_6 \times \mathbf{Z}_3 \times \mathbf{Z}_5^{-3}$ Consider the function $\phi : \mathbf{Z}_3 \times \mathbf{Z}_6 \times \mathbf{Z}_5 \to \mathbf{Z}_6 \times \mathbf{Z}_3 \times \mathbf{Z}_5^{-4}$ by $\phi(([x_1]_3, [x_2]_6, [x_3]_5)) = ([x_2]_6, [x_1]_3, [x_3]_5)$ for any element $([x_1]_3, [x_2]_6, [x_3]_5) \in \mathbf{Z}_3 \times \mathbf{Z}_6 \times \mathbf{Z}_5$. It is obvious that ϕ is an isomorphism. Thus, we prove that $\mathbf{Z}_3 \times \mathbf{Z}_{30} \cong \mathbf{Z}_6 \times \mathbf{Z}_{15}$.

(b) Is $\mathbf{Z}_9 \times \mathbf{Z}_{14}$ isomorphic to $\mathbf{Z}_6 \times \mathbf{Z}_{21}$? No!

By Question (1) or Lemma 13 in §3.5, we get $\mathbf{Z}_9 \times \mathbf{Z}_{14} \cong \mathbf{Z}_9 \times \mathbf{Z}_2 \times \mathbf{Z}_7$ and $\mathbf{Z}_6 \times \mathbf{Z}_{21} \cong \mathbf{Z}_6 \times \mathbf{Z}_3 \times \mathbf{Z}_7 \cong \mathbf{Z}_2 \times \mathbf{Z}_3 \times \mathbf{Z}_3 \times \mathbf{Z}_7$. It shows that the first has an element of order 9, while the second has none. By Proposition 3 (a) in §3.4, we have $\mathbf{Z}_9 \times \mathbf{Z}_{14} \cong \mathbf{Z}_6 \times \mathbf{Z}_{21}$.

(8) Prove that any cyclic group with more than two elements has at least two different generators.

Proof by contradiction: Let |G| > 2 and $G = \langle a \rangle$ for some element $a \neq e$. Suppose that a is the only generator of the group G. However, we also know that $G = \langle a^{-1} \rangle$. By assumption, we have

 $a = a^{-1} \Rightarrow a^2 = e \Rightarrow o(a) = |\langle a \rangle| = |G| = 2$ since $a \neq e$, a contradiction.

Thus, G has at least two different generators.

(9) Prove that any finite cyclic group with more than two elements has an even number of distinct generators.

Let G be a finite cyclic group and |G| = n > 2. By Theorem 2 (b), we have $G \cong \mathbb{Z}_n$. Consider the prime decomposition $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$, where $p_1 < p_2 < \ldots < p_m$. And the number of distinct generators is equal to

$$|\mathbf{Z}_n^{\times}| = \varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_m}\right).$$

If one of p_1, p_2, \ldots, p_m is an odd prime, then it is easy to see that $\varphi(n)$ is even. Otherwise, $n = 2^k$ for some positive integer k > 2, then $\varphi(n) = \varphi(2^k) = 2^k \cdot (1 - \frac{1}{2}) = 2^{k-1}$ is again a even number since k - 1 > 1.

(10) Let G be the set of all 3×3 matrices of the form $\begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix}$. (a) Show that if $a, b, c \in \mathbf{Z}_3$, then G is a group with exponent 3.

²Or you can write $\mathbf{Z}_3 \times \mathbf{Z}_{30} \cong \mathbf{Z}_3 \times \mathbf{Z}_2 \times \mathbf{Z}_3 \times \mathbf{Z}_5$

³Or you can write $\mathbf{Z}_6 \times \mathbf{Z}_{15} \cong \mathbf{Z}_2 \times \mathbf{Z}_3 \times \mathbf{Z}_3 \times \mathbf{Z}_5$

⁴Or you can consider $\phi : \mathbf{Z}_3 \times \mathbf{Z}_2 \times \mathbf{Z}_3 \times \mathbf{Z}_5 \to \mathbf{Z}_2 \times \mathbf{Z}_3 \times \mathbf{Z}_3 \times \mathbf{Z}_5$ by ...

For any $a, b, c \in \mathbb{Z}_3$, we have

$\begin{bmatrix} 1\\ a\\ b \end{bmatrix}$	$0 \\ 1 \\ c$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}^2 = \begin{bmatrix} 1\\a\\b \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ c \end{array}$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix}$	=	$\begin{bmatrix} 1\\ 2a\\ 2b+a \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ c & 2c & 1 \end{bmatrix}$		
$\begin{bmatrix} 1\\ a\\ b \end{bmatrix}$	$0\\1\\c$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}^3 = \begin{bmatrix} 1\\a\\b \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ c \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1\\ 2a\\ 2b+ac \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 2c \end{array}$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$	$ \begin{array}{c} 1\\ 3a\\ 3b+3ac \end{array} $	$\begin{array}{c} 0 \\ 1 \\ 3c \end{array}$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix} = I_3$

(b) Show that if $a, b, c \in \mathbb{Z}_2$, then G is a group with exponent 4.

For any $a, b, c \in \mathbb{Z}_2$, we have

$\begin{bmatrix} 1 \\ a \\ b \end{bmatrix}$	$0 \\ 1 \\ c$	0 0 1	=	$\begin{bmatrix} 1 \\ a \\ b \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ c \end{array}$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	$\begin{bmatrix} 1\\ a\\ b \end{bmatrix}$	$ \begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ c & 1 \end{array} $	=	$\begin{bmatrix} 1\\2a\\2b+a \end{bmatrix}$	$\begin{array}{c} 0\\ 1\\ c & 2c \end{array}$	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	=	1 0 ac	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
$\begin{bmatrix} 1 \\ a \\ b \end{bmatrix}$	$0\\1\\c$	$\begin{array}{c} 0\\ 0\\ 1 \end{array}$	4 =	$\begin{bmatrix} 1\\ 0\\ ac \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$	2 =	$\begin{bmatrix} 1\\ 0\\ ac \end{bmatrix}$	0 0 1 0 0 1	$\begin{bmatrix} 1 \\ 0 \\ ac \end{bmatrix}$	$\begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}$	=	$\begin{bmatrix} 1\\0\\2ac \end{bmatrix}$	0 1 c 0	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	$=I_3$

(11) Let G be any group with no proper, nontrivial subgroups, and assume that |G| > 1. Prove that G must be isomorphic to \mathbf{Z}_p for some prime p.

Assume that the only subgroups of G are the trivial subgroup $\{e\}$ and itself. Since |G| > 1, there exists a non-identity element $a \in G$. Then we have $G = \langle a \rangle$ since $\langle a \rangle$ is a subgroup of G but not $\{e\}$, and so G is cyclic.

Moreover, G is a finite cyclic group. Otherwise, $\langle a^k \rangle$ is a proper, nontrivial subgroup of $G = \langle a \rangle$ for any positive integer k, a contradiction.

Let |G| = n > 1. By Theorem 2 (b), we have $G \cong \mathbb{Z}_n$. In particular, for each divisor d of n, there exists a (unique) subgroup H of order d since G is a finite cyclic group. By assumption, d has only two possibilities, that is, d = 1 or d = n. This implies that n has to be a prime number p. Therefore, $G \cong \mathbb{Z}_p$.