
Homework 6

Due: June 5th (Friday), 11:59 pm

• Please submit your work on Blackboard.
• You are required to submit your work as a single pdf.
• Please make sure your handwriting is clear enough to read. Thanks.
• No late work will be accepted.
• There are five randomly picked questions (2 pts for each) that will be graded.

(2), (3), (7), (8), (11)

(1) Finish the proof of Lemma 13 in Lecture Slides §3.5.

Lemma 13: If G1
∼= H1 and G2

∼= H2, then G1 ×G2
∼= H1 ×H2.

Let θ1 : G1 → H1 and θ2 : G2 → H2. Define φ : G1 ×G2 → H1 ×H2 by

φ((x1, x2)) = (θ1(x1), θ2(x2)), for all (x1, x2) ∈ G1 ×G2.

Claim: φ is a group isomorphism.
(i) well-defined: Trivial since θ1(x1) ∈ H1 and θ2(x2) ∈ H2.

(ii) φ respects the two operations: For any (x1, x2), (y1, y2) ∈ G1 ×G2

φ((x1, x2)(y1, y2)) =φ((x1y1, x2y2))

=(θ1(x1y1), θ2(x2y2))

=(θ1(x1)θ1(y1), θ2(x2)θ2(y2))

=(θ1(x1), θ2(x2))(θ1(y1), θ2(y2))

=φ((x1, x2))φ((y1, y2))

(iii) one-to-one: If φ((x1, x2)) = (θ1(x1), θ2(x2)) = (eH1 , eH2), then

θ1(x1) = eH1 ⇒ x1 = eG1

θ2(x2) = eH2 ⇒ x2 = eG2

and so (x1, x2) = (eG1 , eG2) = eG1×G2 .
(iv) onto: Trivial since θ1 and θ2 are two groups isomorphisms. In particular,

for any element (h1, h2) ∈ H1×H2, we can always find x1 ∈ G1 and x2 ∈
G2 such that θ1(x1) = h1 and θ2(x2) = h2, and so φ((x1, x2)) = (h1, h2).

(2) Let G be a group and let a ∈ G be an element of order 30. List the powers of
a that have order 2, order 3 or order 5.

Since o(a) = 30 = |〈a〉|, then we have 〈a〉 ∼= Z30 by Theorem 2. In particu-
lar, you can think about the cyclic subgroup 〈a〉 generated by a ∈ G is the
“multiplicative version” of the additive group Z30. Thus, we have

〈aj〉 = 〈ad〉, where d = (j, 30) and so o(aj) = |〈aj〉| = |〈ad〉| = 30

d
.

(i) o(aj) = 2 =
30

d
⇒ d = (j, 30) = 15⇒ j = 15.
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(ii) o(aj) = 3 =
30

d
⇒ d = (j, 30) = 10⇒ j = 10, 20.

(iii) o(aj) = 5 =
30

d
⇒ d = (j, 30) = 6⇒ j = 6, 12, 18, 24.

(3) Give the subgroup diagrams of the following groups.
(a) Z24

(b) Z36

24 = 2331: Any divisor d = 2i3j,
where i = 0, 1, 2, 3 and j = 0, 1.

Z24 = 1Z24

2Z243Z24

6Z24 4Z24

12Z24 8Z24

24Z24 = 〈[0]24〉 = {[0]24}

36 = 2232: Any divisor d = 2i3j,
where i = 0, 1, 2 and j = 0, 1, 2.

Z36 = 1Z36

3Z36 2Z36

9Z36 6Z36 4Z36

18Z36 12Z36

36Z36 = 〈[0]36〉 = {[0]36}

(4) Which of Z×
18,Z

×
20 are cyclic? (Do not use Primitive Root Theorem.)

(a) Check Z×
18 : ϕ(18) = 18(1− 1

2
)(1− 1

3
) = 6

Z×
18 = {[1], [5], [7], [11], [13], [17]} = {±[1],±[5],±[7]}

(i) [5]2 = [25] = [7], [5]3 = [35] = [−1], so o([5]) = 6 (Lagrange’s Thm).

This implies that Z×
18 = 〈[5]〉, and so Z×

18 is cyclic.

(b) Check Z×
20 : ϕ(20) = 20(1− 1

2
)(1− 1

5
) = 8

Z×
20 = {[1], [3], [7], [9], [11], [13], [17], [19]} = {±[1],±[3],±[7],±[9]}

(i) [3]2 = [9], [3]3 = [27] = [7], [3]4 = [21] = [1], so o([3]) = 4.

(ii) There is no need to try [7], [9] since [7], [9] ∈ 〈[3]〉.
(iii) [11] = [−9], [11]2 = [−9]2 = 1, so o([11]) = 2.

(iv) [13] = [−7], [13]2 = [−7]2 = [9], [13]4 = [9]2 = [1], so o([13]) = 4.1

(v) [17] = [−3], [17]4 = [−3]4 = 1, so o([17]) ≤ 4 since o([17])|4.

(vi) [19] = [−1], [19]2 = [−1]2 = 1, so o([19]) = 2.

This implies that there is no element of order 8, and so Z×
20 is not cyclic.

1Why o([13]) 6= 3? Think about Lagrange’s Theorem!
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(5) Find all cyclic subgroups of Z6 × Z3.

(a) • 〈([0]6, [0]3)〉 = {([0]6, [0]3)}.

• 〈([1]6, [0]3)〉= 〈([5]6, [0]3)〉 = {([a]6, [0]3)
∣∣ [a]6 ∈ Z6}

• 〈([2]6, [0]3)〉= 〈([4]6, [0]3)〉 = {([0]6, [0]3), ([2]6, [0]3), ([4]6, [0]3)}

• 〈([3]6, [0]3)〉 = {([0]6, [0]3), ([3]6, [0]3)}

(b) • 〈([0]6, [1]3)〉 = {([0]6, [0]3), ([0]6, [1]3), ([0]6, [2]3)}.

• 〈([1]6, [1]3)〉 = {([0]6, [0]3), ([1]6, [1]3), ([2]6, [2]3), ([3]6, [0]3), ([4]6, [1]3), ([5]6, [2]3)}.

• 〈([2]6, [1]3)〉 = {([0]6, [0]3), ([2]6, [1]3), ([4]6, [2]3)}.

• 〈([3]6, [1]3)〉 = {([0]6, [0]3), ([3]6, [1]3), ([0]6, [2]3), ([3]6, [0]3), ([0]6, [1]3), ([3]6, [2]3)}.

• 〈([4]6, [1]3)〉 = {([0]6, [0]3), ([4]6, [1]3), ([2]6, [2]3)}.

• 〈([5]6, [1]3)〉 = {([0]6, [0]3), ([5]6, [1]3), ([4]6, [2]3), ([3]6, [0]3), ([2]6, [1]3), ([1]6, [2]3)}.

(c) • 〈([0]6, [2]3)〉 = 〈−([0]6, [2]3)〉= 〈([0]6, [1]3)〉.

• 〈([1]6, [2]3)〉 = 〈−([1]6, [2]3)〉= 〈([5]6, [1]3)〉.

• 〈([2]6, [2]3)〉 = 〈−([2]6, [2]3)〉= 〈([4]6, [1]3)〉.

• 〈([3]6, [2]3)〉 = 〈−([3]6, [2]3)〉= 〈([3]6, [1]3)〉.

• 〈([4]6, [2]3)〉 = 〈−([4]6, [2]3)〉= 〈([2]6, [1]3)〉.

• 〈([5]6, [2]3)〉 = 〈−([5]6, [2]3)〉= 〈([1]6, [1]3)〉.

(6) Prove that Z×
10 is not isomorphic to Z×

12. (Do not use Primitive Root Theorem.)

(a) Check Z×
10 : ϕ(10) = 10(1− 1

2
)(1− 1

5
) = 4

Z×
10 = {[1], [3], [7], [9]} = {±[1],±[3]}

(i) [3]2 = [9], so o([3]) = 4 (Lagrange’s Thm).

This implies that Z×
10 = 〈[3]〉, and so Z×

10 is cyclic.

(b) Check Z×
12 : ϕ(12) = 12(1− 1

2
)(1− 1

3
) = 4

Z×
12 = {[1], [5], [7], [11]} = {±[1],±[5]}

[5]2 = [7]2 = [11]2 = [1]
This implies that there is no element of order 4, and so Z×

12 is not cyclic.

By Proposition 3 (c) in §3.4, we have Z×
10 6∼= Z×

12.

(7) You need to show work to support your conclusions.
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(a) Is Z3 × Z30 isomorphic to Z6 × Z15? Yes!

By Question (1) or Lemma 13 in §3.5, we get Z3 ×Z30
∼= Z3 ×Z6 ×Z5

2

and Z6 × Z15
∼= Z6 × Z3 × Z5.

3

Consider the function φ : Z3 × Z6 × Z5 → Z6 × Z3 × Z5
4 by

φ(([x1]3, [x2]6, [x3]5)) = ([x2]6, [x1]3, [x3]5)
for any element ([x1]3, [x2]6, [x3]5) ∈ Z3 ×Z6 ×Z5. It is obvious that φ is
an isomorphism. Thus, we prove that Z3 × Z30

∼= Z6 × Z15.

(b) Is Z9 × Z14 isomorphic to Z6 × Z21? No!

By Question (1) or Lemma 13 in §3.5, we get Z9 × Z14
∼= Z9 × Z2 × Z7

and Z6 × Z21
∼= Z6 × Z3 × Z7

∼= Z2 × Z3 × Z3 × Z7.
It shows that the first has an element of order 9, while the second has
none. By Proposition 3 (a) in §3.4, we have Z9 × Z14 6∼= Z6 × Z21.

(8) Prove that any cyclic group with more than two elements has at least two
different generators.

Proof by contradiction: Let |G| > 2 and G = 〈a〉 for some element a 6= e.
Suppose that a is the only generator of the group G. However, we also know
that G = 〈a−1〉. By assumption, we have

a = a−1 ⇒ a2 = e⇒ o(a) = |〈a〉| = |G| = 2 since a 6= e, a contradiction.

Thus, G has at least two different generators.

(9) Prove that any finite cyclic group with more than two elements has an even
number of distinct generators.

Let G be a finite cyclic group and |G| = n > 2. By Theorem 2 (b), we
have G ∼= Zn. Consider the prime decomposition n = pα1

1 p
α2
2 · · · pαm

m , where
p1 < p2 < . . . < pm. And the number of distinct generators is equal to

|Z×
n | = ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pm

)
.

If one of p1, p2, . . . , pm is an odd prime, then it is easy to see that ϕ(n) is even.
Otherwise, n = 2k for some positive integer k > 2, then ϕ(n) = ϕ(2k) =

2k · (1− 1

2
) = 2k−1 is again a even number since k − 1 > 1. �

(10) Let G be the set of all 3× 3 matrices of the form

1 0 0
a 1 0
b c 1

.

(a) Show that if a, b, c ∈ Z3, then G is a group with exponent 3.

2Or you can write Z3 × Z30
∼= Z3 × Z2 × Z3 × Z5

3Or you can write Z6 × Z15
∼= Z2 × Z3 × Z3 × Z5

4Or you can consider φ : Z3 × Z2 × Z3 × Z5 → Z2 × Z3 × Z3 × Z5 by . . .
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For any a, b, c ∈ Z3, we have1 0 0
a 1 0
b c 1

2

=

1 0 0
a 1 0
b c 1

1 0 0
a 1 0
b c 1

 =

 1 0 0
2a 1 0

2b+ ac 2c 1


1 0 0
a 1 0
b c 1

3

=

1 0 0
a 1 0
b c 1

 1 0 0
2a 1 0

2b+ ac 2c 1

 =

 1 0 0
3a 1 0

3b+ 3ac 3c 1

 = I3

(b) Show that if a, b, c ∈ Z2, then G is a group with exponent 4.

For any a, b, c ∈ Z2, we have1 0 0
a 1 0
b c 1

2

=

1 0 0
a 1 0
b c 1

1 0 0
a 1 0
b c 1

 =

 1 0 0
2a 1 0

2b+ ac 2c 1

 =

 1 0 0
0 1 0
ac 0 1


1 0 0
a 1 0
b c 1

4

=

 1 0 0
0 1 0
ac 0 1

2

=

 1 0 0
0 1 0
ac 0 1

 1 0 0
0 1 0
ac 0 1

 =

 1 0 0
0 1 0

2ac 0 1

 = I3

(11) Let G be any group with no proper, nontrivial subgroups, and assume that
|G| > 1. Prove that G must be isomorphic to Zp for some prime p.

Assume that the only subgroups of G are the trivial subgroup {e} and itself.

Since |G| > 1, there exists a non-identity element a ∈ G. Then we have
G = 〈a〉 since 〈a〉 is a subgroup of G but not {e}, and so G is cyclic.

Moreover, G is a finite cyclic group. Otherwise, 〈ak〉 is a proper, nontrivial
subgroup of G = 〈a〉 for any positive integer k, a contradiction.

Let |G| = n > 1. By Theorem 2 (b), we have G ∼= Zn. In particular, for each
divisor d of n, there exists a (unique) subgroup H of order d since G is a finite
cyclic group. By assumption, d has only two possibilities, that is, d = 1 or
d = n. This implies that n has to be a prime number p. Therefore, G ∼= Zp.
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