Homework 6

Due: June 5th (Friday), 11:59 pm

e Please submit your work on Blackboard.

e You are required to submit your work as a single pdf.

e Please make sure your handwriting is clear enough to read. Thanks.

e No late work will be accepted.

e There are five randomly picked questions (2 pts for each) that will be graded.

(2), 3), (7), (8), (11)

(1) Finish the proof of Lemma 13 in Lecture Slides_§3.5.
Lemma 13: If G; = H; and Gy = Hy, then G; X G = H; X Hs.
Let 6, : Gy — Hy and 0y : Go — Hs. Define ¢ : G; x Gy — Hy x Hy by
d((x1,22)) = (01(x1), 02(x2)), for all (x1,x2) € Gy X Ga.
Claim: ¢ is a group isomorphism.
(i) well-defined: Trivial since 0 (z1) € H; and 02(x3) € Ho.
(i) ¢ respects the two operations: For any (x1,x2), (y1,y2) € G1 X Gy
O((x1, 22) (Y1, 92)) =0((x1y1, T22))
=(01(x191), O2(72y2))
=(01(21)01(y1), O2(22)02(y2))
=(01(1), 02(2)) (01 (y1), 02(y2))
=o((x1,22))¢((y1,2))
(iii) one-to-one: If ¢((x1,x2)) = (01(x1),02(x2)) = (en,,en,), then
01(z1) = e, = 71 = eq,
Oy(x2) = g, = 2 = eq,
and 80 (1, T2) = (g, €ay) = €GyxGs-
(iv) onto: Trivial since #; and 5 are two groups isomorphisms. In particular,

for any element (hq, hy) € Hy X Hy, we can always find 27 € G; and x5 €
G5 such that 6;(z1) = hy and 6(x2) = hg, and so ¢((z1,x2)) = (hy, ha).

(2) Let G be a group and let a € G be an element of order 30. List the powers of
a that have order 2, order 3 or order 5.

Since o(a) = 30 = |{(a)|, then we have (a) = Z3y by Theorem 2. In particu-
lar, you can think about the cyclic subgroup (a) generated by a € G is the
“multiplicative version” of the additive group Zsy. Thus, we have

(@) = {a), where d = (j, 30) and so o(a?) = (@'} = [(a®)| = °

(i) o(a’) 2:%:d:(j,30):15:>j:15.
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| 30
(i) o(a) =3 =" = d = (j,30) = 10 = j = 10,20.

30
(iii) o(a’) =5 =" = d = (j,30) = 6= j = 6,12,18,24.

(3) Give the subgroup diagrams of the following groups.

(a) Zag

(b) Zss

24 = 233': Any divisor d = 23/, 36 = 2232: Any divisor d = 23/,

where : = 0,1,2,3 and 7 =0, 1. where 1 =0,1,2 and j = 0,1, 2.

Loy = 174 235 = 1736
3724 27,4 3Z36 2736
6Zio4 4754 9736 6Z36 4736

12794 8794 18736 12754
24704 = < 0]24) = {[0]24} 36Z36 = <[0]36> = {[0]36}

[
(4) Which of Zj, Z3, are cyclic? (Do not use Primitive Root Theorem.)
1 1
(a) Check Z5 : ¢(18) = 18(1 — =)(1 — 5) —6

Zis = {[1, 5], [7], [11], [13], [(17]} = {+[1], +[5], +[7]}
(i) [5]* = [25] = [7], [5]> = [35] = [—1], so o([5]) = 6 (Lagrange’s Thm).
This implies that Z;5 = ([5]), and so Zjy is cyclic.
(b) Check ZJ, : (20) = 20(1 — %)(1 - 5) =8

(\]

Zy, = {[1], 3], [7], [9], [11], [13], [17], [19]} = {=£[1], £[3], £ [] +[9]}
(i) [3]* = [9], [3]> = [27] = [7], [3]* = [21] = [1], s0 o([3]) =
(ii) There is no need to try [7],[9] since [7],[9] € ([3]).
(iif) [11] = [-9], [11]* = [-9]* = 1, s0 o([11]) = 2.
(iv) [13] = [=7), [13]* = [-7]* = [9], [13]* = [9]* = [1], s0 o([13]) = 4."
(v) [17] = [=3], [17]" = [=3]* = 1, s0 o([17]) < 4 since o([17]) 4.
(vi) [19] = [-1], [19]* = [-1]* = 1, s0 o([19]) = 2.

This implies that there is no element of order 8, and so Z; is not cyclic.

"Why o([13]) # 3? Think about Lagrange’s Theorem!
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(5) Find all cyclic subgroups of Zg x Zs.

~ o~ o~ o~ o~ o~

[ Y B

[t . Y et W
~— ~— ~— ~— o

o~ o~ o~ o~ o~ o~

— e e e e

it S W S
~— ~— ~— ~— o ~—r

o~ o~ o~ o~ o~ o~

[ e S i

[ e s B i

— — N~ ~ ~

o~ o~ o~ o~~~
~—~ I~

—— e e e e

—_— o = o o

e i S VS i
~— — ~ ~ ~
~ Y~ Y~ ~— ~— ~—

o~ o~ o~ o~~~
~—~~ I~~~ —~

— o — o ——

S L S S —

— — o/ e o
[V i

— O~ N~ ~ ~
~ Y~ Y~ ~— ~— ~—

o~ o~ o~ o~~~
— e~~~ o~ =~

— — — o o

— — o o —

~— ~— ~— ~— ~— ~~—r

~  ~—  ~—  ~  ~  ~—

o~ o~ o~ o~~~
~—~~ I~

[

— o/ e e o

et i S i
— — N~ ~ ~
~ Y~ Y~ ~— ~— ~—

(6) Prove that Zj|, is not isomorphic to Z3,. (Do not use Primitive Root Theorem.)

=4

L

1— =
)

1001 - 3)(
{000,181, 71, 191} = {£[1], %031

Z

(a) Check Zj; : ¢(10)

X
10 —

4 (Lagrange’s Thm).

([3]), and so Z7, is cyclic.

X
10 —

This implies that Z

(b) Check Z7; : ¢(12)

1
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121 - 5)(
{00, 151, 7], (1} = {==[1], £[5]}

Z
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X
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is not cyclic.

X
12

= 72 = [ = (1

[5]°

This implies that there is no element of order 4, and so Z

X
12~

% 7

(7) You need to show work to support your conclusions.

X
10

By Proposition 3 (c) in §3.4, we have Z



(a) Is Zs X Z3o isomorphic to Zg X Zq57 Yes!

By Question (1) or Lemma 13 in §3.5, we get Zz X Zsg = Zs X Zg X Zs >
and Z6 X Z15 = Z6 X Z3 X Z5.3
Consider the function ¢ : Zs x Zg x Zs — Zg X Z3 x Zs * by

O(([z1]s, [w2]6, [23]5)) = ([22]6, [21]5, [25]5)
for any element ([x1]3, [xa]6, [3]5) € Z3 X Zg X Z5. 1t is obvious that ¢ is
an isomorphism. Thus, we prove that Zs X Zsg = Zg X Z5.

(b) Is Zg x Zy4 isomorphic to Zg x Zy;? No!

By Question (1) or Lemma 13 in §3.5, we get Zg X Zyy = Zg X Zy X Z7
andZ6><Z21%Z6><Z3><Z7§Z2><Z3><Z3><Z7.

It shows that the first has an element of order 9, while the second has
none. By Proposition 3 (a) in §3.4, we have Zg X Zyy ¥ Zg X Zo;.

(8) Prove that any cyclic group with more than two elements has at least two
different generators.

Proof by contradiction: Let |G| > 2 and G = (a) for some element a # e.
Suppose that a is the only generator of the group G. However, we also know
that G = (a™'). By assumption, we have

a=a"'!=a’>=e=o(a) =|(a)| = |G| = 2 since a # e, a contradiction.
Thus, G has at least two different generators.

(9) Prove that any finite cyclic group with more than two elements has an even
number of distinct generators.

Let G be a finite cyclic group and |G| = n > 2. By Theorem 2 (b), we
have G = Z,. Consider the prime decomposition n = p{*p3?---pim, where

P < p2 < ...<pp. And the number of distinct generators is equal to

s+ (1-2)(-2)(1-1)

If one of py, pa, ..., pm is an odd prime, then it is easy to see that p(n) is even.
Otherwise, n = 2% for some positive integer k > 2, then p(n) = p(2F) =
1
2k . (1 — 5) = 2F1 is again a even number since k — 1 > 1. O]
1 00
(10) Let G be the set of all 3 x 3 matrices of the form | 1 0f.

b c 1
(a) Show that if a,b, c € Z3, then G is a group with exponent 3.

20r you can write Zgz X Zgg = Z3 X Zio X L3 X Zs5

30r you can write Zg x Zis = Zo X Zs X Zs X Zs

4Ory0ucanconsider¢:Z3 X Zio X Lig X Zis — Zio X i3 X Ziz X Z5 by ...
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For any a,b, c € Z3, we have
— -— 2 - -

1 00 100|100 1 0 0

a 1l 0] =1la 1 0 a 1l 0] = 2a 1 0

b ¢ 1 b ¢ 1 b ¢ 1 2b4+ac 2¢ 1

10 01" [1oo][ 1 0 0 1 0 0

a 1 0] =]a 1 0 2a 1 0] = 3a 1 0| =13
b ¢ 1 b ¢ 1 2b+ac 2¢ 1 3b4+3ac 3¢ 1

(b) Show that if a, b, ¢ € Zy, then G is a group with exponent 4.

For any a,b, ¢ € Z5, we have
- 42

1 00 [1 0 0] [1 0 O 1 0 0 1 00
a1l 0] =la 1 0] |la 1 0] = 2a 1 0)=(0 1 O

b ¢ 1 b ¢ 1] |b ¢ 1 2b+ac 2c¢ 1 ac 0 1
10 01" [1 0 0] 1 001 00 1 00
a1l 0 =10 1 0] =0 1 0 0 1 0[=]10 1 0| =I5
b ¢ 1 ac 0 1 ac 0 1| |ac 0 1 2ac 0 1

(11) Let G be any group with no proper, nontrivial subgroups, and assume that
|G| > 1. Prove that G must be isomorphic to Z, for some prime p.

Assume that the only subgroups of G are the trivial subgroup {e} and itself.
Since |G| > 1, there exists a non-identity element a € G. Then we have
G = (a) since (a) is a subgroup of G but not {e}, and so G is cyclic.
Moreover, G is a finite cyclic group. Otherwise, (a*) is a proper, nontrivial
subgroup of G = (a) for any positive integer k, a contradiction.

Let |G| =n > 1. By Theorem 2 (b), we have G = Z,,. In particular, for each
divisor d of n, there exists a (unique) subgroup H of order d since G is a finite
cyclic group. By assumption, d has only two possibilities, that is, d = 1 or
d = n. This implies that n has to be a prime number p. Therefore, G = Z,.



