Homework 5

Due: June 1st (Monday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded. (1), (5), (8), (9), (10)
- (1) Show that the multiplicative group \mathbf{Z}_7^{\times} is isomorphic to the additive group \mathbf{Z}_6 .

Define a function $\phi: \mathbf{Z}_6 \to \mathbf{Z}_7^{\times}$ by letting $\phi([n]_6) = [3]_7^n$ since $\mathbf{Z}_7^{\times} = \langle [3]_7 \rangle$.

- If $[n_1] = [n_2]$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $[3]_7^{n_1} = [3]_7^{n_2}$ since $o([3]_7) = 6$. This implies that $\phi([n_1]_6) = \phi([n_2]_6)$. Thus, ϕ is well-defined.
- For any two elements $[m]_6$, $[n]_6 \in \mathbf{Z}_6$, we have $\phi([m]_6 + [n]_6) = \phi([m+n]_6) = [3]_7^{m+n} = [3]_7^m \cdot [3]_7^n = \phi([m]_6) \cdot \phi([n]_6)$. Thus, ϕ respects the two operations.
- If $\phi([n]_6) = [3]_7^n = [1]_7$, then 6|n since $o([3]_7) = 6$. So $[n]_6 = [0]_6$. By Proposition 5, ϕ is one-to-one.
- Since $|\mathbf{Z}_6| = |\mathbf{Z}_7^{\times}| = 6$, any any one-to-one mapping must be onto.

Thus, ϕ is an isomorphism.

(2) Show that the multiplicative group \mathbf{Z}_8^{\times} is isomorphic to the group $\mathbf{Z}_2 \times \mathbf{Z}_2$.

 $\mathbf{Z}_8^{\times} = \{[1]_8, [3]_8, [5]_8, [7]_8\} \text{ and } \mathbf{Z}_2 \times \mathbf{Z}_2 = \{([0]_2, [0]_2), ([1]_2, [0]_2), ([0]_2, [1]_2), ([1]_2, [1]_2)\}$ Define a function $\phi : \mathbf{Z}_8 \to \mathbf{Z}_2 \times \mathbf{Z}_2$ by letting

$$\phi([1]_8) = ([0]_2, [0]_2), \phi([3]_8) = ([1]_2, [0]_2), \phi([5]_8) = ([0]_2, [1]_2), \phi([7]_8) = ([1]_2, [1]_2).$$

- It is easy to see that ϕ is one-to-one and onto from the definition of ϕ .
- It follows that from the straightforward calculation that ϕ respects the two operations. For any $[a]_8, [b]_8 \in \mathbf{Z}_8^{\times}$, we have $\phi([a]_8[b]_8) = \phi([a]_8)\phi([b]_8)$.

Thus, ϕ is an isomorphism.

You can also write the function ϕ in a compact version. In particular, $\phi([3]_8^m[5]_8^n) = ([m]_2, [n]_2)$ for m = 0, 1 and n = 0, 1.

- (3) Show that \mathbf{Z}_5^{\times} is not isomorphic to \mathbf{Z}_8^{\times} by showing that the first group has an element of order 4 but the second group does not.
 - In \mathbf{Z}_5^{\times} , the element [3]₅ has order 4. And $\mathbf{Z}_5^{\times} = \langle [3]_5 \rangle$ implies that \mathbf{Z}_5^{\times} is cyclic.

In \mathbb{Z}_8^{\times} , every non-identity element has order 2. Moreover, \mathbb{Z}_8^{\times} is not cyclic.

Thus there cannot be an isomorphism between them by Proposition 3 (a)/(b).

(4) Let (G, \cdot) be a group. Define a new binary operation * on G by the formula $a*b=b\cdot a,$ for all $a,b\in G.$

Show that the group $(G,*)^1$ is isomorphic to the group (G,\cdot) .

Let $G_1 = (G, \cdot)$ and let $G_2 = (G, *)$. Define a function $\phi: G_1 \to G_2$ by $\phi(a) = a^{-1}$ for all $a \in G_1$.

- well-defined: $\phi(a) = a^{-1} \in G_2$ since G is a group.
- respects the two operations: For any two elements $a, b \in G_1$, we have $\phi(a \cdot b) = (a \cdot b)^{-1} = b^{-1} \cdot a^{-1} = a^{-1} * b^{-1} = \phi(a) * \phi(b).$
- one-to-one: If $\phi(x) = e$ for $x \in G_1$, then $x^{-1} = e$ and so x = e.
- onto: For any $a \in G_2$, we have $\phi(a^{-1}) = (a^{-1})^{-1} = a$.

Thus, ϕ is an isomorphism.

(5) Find two abelian groups of order 8 that are not isomorphic.

 $\mathbb{Z}_8 \not\cong \mathbb{Z}_2 \times \mathbb{Z}_4$. The first one is cyclic, but the second one is not cyclic;

 $\mathbf{Z}_8 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$. Same reason as above;

 $\mathbb{Z}_2 \times \mathbb{Z}_4 \not\cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. The first group has an element of order 4, eg. ([1], [1]). However, in the second group, every non-identity element has order 2.

(6) Let G be any group, and let a be a fixed element of G. Define a function $\phi_a: G \to G$ by $\phi_a(x) = axa^{-1}$, for all $x \in G$.

Show that ϕ_a is an isomorphism.

- well-defined: Trivial.
- respects the two operations: For any $x, y \in G$, we have $\phi_a(xy) = axya^{-1} = ax(a^{-1}a)ya^{-1} = (axa^{-1})(aya^{-1}) = \phi_a(x)\phi_a(y).$
- one-to-one: If $\phi_a(x) = e$, then $axa^{-1} = e$, and so $x = a^{-1}ea = e$.
- onto: For any $y \in G$, we have $\phi_a(a^{-1}ya) = a(a^{-1}ya)a^{-1} = y$.

Thus, ϕ is an isomorphism.

- (7) Let G be any group. Define $\phi: G \to G$ by $\phi(x) = x^{-1}$, for all $x \in G$.
 - (a) Prove that ϕ is one-to-one and onto.

To show ϕ is one-to-one and onto, we are trying to find its inverse function. Define $\phi^{-1}: G \to G$ by letting $\phi^{-1}(x) = x^{-1}$ for all $x \in G$. Then we have $\phi(\phi^{-1}(x)) = \phi(x^{-1}) = (x^{-1})^{-1} = x$; $\phi^{-1}(\phi(x)) = \phi^{-1}(x^{-1}) = (x^{-1})^{-1} = x$ for all $x \in G$. This shows that ϕ^{-1} is the inverse function of ϕ .

(b) Prove that ϕ is an isomorphism if and only if G is abelian.

By part (a), to show ϕ is an isomorphism, it suffices to show that ϕ preserves products. For any two elements $x, y \in G$, we have

$$\phi(xy) = (xy)^{-1} = y^{-1}x^{-1}.$$

- $\phi(xy) = (xy)^{-1} = y^{-1}x^{-1}.$ If G is abelian, $\phi(xy) = (xy)^{-1} = y^{-1}x^{-1} = x^{-1}y^{-1} = \phi(x)\phi(y)$. \checkmark
- If ϕ preserves products, then we have $\phi(xy) = \phi(x)\phi(y)$. That is, $y^{-1}x^{-1} = x^{-1}y^{-1} \Rightarrow (xy)y^{-1}x^{-1}(yx) = (xy)x^{-1}y^{-1}(yx) \Rightarrow yx = xy$ This shows that G is abelian since x, y are arbitrary elements in G.

¹In Homework 2 (3), we have shown that (G, *) is a group.

In conclusion, ϕ is an isomorphism if and only if G is abelian.

(8) Define * on **R** by a * b = a + b - 1, for all $a, b \in \mathbf{R}$. Show that the group $(\mathbf{R}, *)^2$ is isomorphic to the group $(\mathbf{R}, +)$.

Let $G_1 = (\mathbf{R}, *)$ and let $G_2 = (\mathbf{R}, +)$. Define a function $\phi : G_1 \to G_2$ by $\phi(a) = a - 1$ for all $a \in G_1$.

- well-defined: Trivial.
- ϕ respects the two operations: For any two elements $a, b \in G_1$, we have $\phi(a*b) = \phi(a+b-1) = a+b-1-1 = (a-1)+(b-1) = \phi(a)+\phi(b)$.
- one-to-one: If $\phi(a) = e_2 = 0$, then a 1 = 0, and so $a = 1 = e_1$. \checkmark
- onto: For any $x \in G_2$, we have $\phi(x+1) = x+1-1 = x$.

Thus, ϕ is an isomorphism.

(9) Let $G = \mathbf{R} - \{-1\}$. Define * on G by a * b = a + b + ab. Show that the group $(G, *)^3$ is isomorphic to the multiplicative group \mathbf{R}^{\times} .

Define a function $\phi: G \to \mathbf{R}^{\times}$ by letting $\phi(a) = \frac{1}{a+1}$ for all $a \in G$.

- Since $a \in G$, i.e., $a \neq -1$, so $\phi(a) = \frac{1}{a+1} \in \mathbf{R}^{\times}$ is well-defined.
- ϕ preserves the two operations. For any two elements $a,b\in G$, we have $\phi(a*b)=\phi(a+b+ab)=\frac{1}{a+b+ab+1}=\frac{1}{(a+1)(b+1)}=\phi(a)\cdot\phi(b).$
- one-to-one: If $\phi(a) = e_2 = 1$, then $\frac{1}{a+1} = 1$ implies that $a = 0 = e_1$.
- onto: For any element $x \in \mathbf{R}^{\times}$, we have $\phi\left(\frac{1}{a}-1\right) = \frac{1}{\frac{1}{a}-1+1} = a.\checkmark$

Thus, ϕ is an isomorphism.

Define a function $\phi: G \to \mathbf{R}^{\times}$ by letting $\phi(a) = a + 1$ for all $a \in G$. \checkmark (easier)

- (10) Let $G = \{x \in \mathbf{R} \mid x > 1\}$. Define * on G by a * b = ab a b + 2, for all $a, b \in G$. Define $\phi : G \to \mathbf{R}^+$ by $\phi(x) = x 1$, for all $x \in G$.
 - (a) Show that (G, *) is a group.
 - (i) Closure: For any two elements $a, b \in G$, we have a*b=ab-a-b+2=ab-a-b+1+1=(a-1)(b-1)+1>1 since a>1 and b>1. This shows that $a*b\in G$.

²In Homework 2 (7), we have shown that $(\mathbf{R}, *)$ is a group.

³In Homework 2 (8), we have shown that (G, *) is a group.

(ii) Associativity: For any $a, b, c \in G$, we have

$$(a*b)*c = (ab - a - b + 2)*c = (ab - a - b + 2)c - (ab - a - b + 2) - c + 2$$

$$= abc - ac - bc + 2c - ab + a + b - c$$

$$= abc - ac - bc - ab + a + b + c$$

$$a*(b*c) = a*(bc - b - c + 2) = a(bc - b - c + 2) - a - (bc - b - c + 2) + 2$$

$$= abc - ab - ac + 2a - a - ba + b + c$$

$$= abc - ab - ac - ba + a + b + c$$

commutativity: a * b = ab - a - b + 2 = ba - b - a + 2 = b * a.

- (iii) Identity: The identity element is 2. In particular, we have a*2=2a-a-2+2=a. The other equation holds because of the commutativity.
- (iv) Inverses: For any element $a \in G$, its inverse is $\frac{a}{a-1}$. In particular, $a*\frac{a}{a-1}=a\frac{a}{a-1}-a-\frac{a}{a-1}+2=\frac{a^2-a^2+a-a}{a-1}+2=2.$ The other equation holds because of the commutativity.
- (b) Show that ϕ is an isomorphism.
 - well-defined: For any $a \in G$, we have $\phi(a) = a 1 > 0$ since a > 1.
 - ϕ respects the two operations: For any $a,b\in G$, we have $\phi(a*b)=\phi(ab-a-b+2)=ab-a-b+1=(a-1)(b-1)=\phi(a)\cdot\phi(b).$
 - one-to-one: If $\phi(a) = e_2 = 1$, then a-1 = 1 implies that $a = 2 = e_1$.
 - onto: For any element $x \in R^+$, we have $\phi(x+1) = x+1-1 = x.\checkmark$ Thus, ϕ is an isomorphism.