Homework 5

Due: June 1st (Monday), 11:59 pm

e Please submit your work on Blackboard.

e You are required to submit your work as a single pdf.

e Please make sure your handwriting is clear enough to read. Thanks.

e No late work will be accepted.

e There are five randomly picked questions (2 pts for each) that will be graded.

(1), (5), (8), (9), (10)

(1) Show that the multiplicative group Z3 is isomorphic to the additive group Zg.
Define a function ¢ : Zg — Z5 by letting ¢([n]s) = [3]F since Z5 = ([3]7).
o If [ny] = [ng), i.e., ny = no (mod 6), then [3]7* = [3]7? since o([3]7) = 6.

)

This implies that ¢([n1]g) = ¢([n2]s). Thus, ¢ is well-defined.

e For any two elements [m]g, [n]s € Zg, we have

&([ms + [nJe) = d(lm +nls) = 37" = [3]7" - [3]7 = &([mle) - ¢([n]o).

Thus, ¢ respects the two operations.

o If ¢([n|s) = [3]% = [1]7, then 6|n since o([3];) = 6. So [n|s = [0]s. By
Proposition 5, ¢ is one-to-one.

e Since |Zg| = |Z7 | = 6, any any one-to-one mapping must be onto.
Thus, ¢ is an isomorphism.

2) Show that the multiplicative group Zg is isomorphic to the group Zg X Z,.
8

Zg = {[1s, [3]s, [5]s, [7]s} and Zyx Zy = {([0]2, [0]2), ([1]2, [0]2), ([0]2, [1]2), ([1]2, [1]2)}
Define a function ¢ : Zg — Zy X Zs by letting

¢([1]s) = ([02, [0]2), ¢([3]s) = ([1]2, [0]2), ¢([5]s) = ([02, [1]2), &([7]s) = ([1]2, [1]2)-

e [t is easy to see that ¢ is one-to-one and onto from the definition of ¢.

e [t follows that from the straightforward calculation that ¢ respects the
two operations. For any [als, [b]s € Zg , we have ¢([a]s[b]s) = ¢([a]s)o([b]s).

Thus, ¢ is an isomorphism.
You can also write the function ¢ in a compact version. In particular,
o([3]2'[5]8) = ([m]a, [n]2) for m = 0,1 and n =0, 1.

(3) Show that Z: is not isomorphic to Z§ by showing that the first group has an
element of order 4 but the second group does not.
In Z7, the element [3]5 has order 4. And ZZ = ([3]5) implies that Z; is cyclic.
In Z$, every non-identity element has order 2. Moreover, Z$ is not cyclic.
Thus there cannot be an isomorphism between them by Proposition 3 (a)/(b).

(4) Let (G, -) be a group. Define a new binary operation * on G by the formula

axb=">b-a,forall a,b € G.
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Show that the group (G, *)! is isomorphic to the group (G, ).
Let G; = (G, ) and let Gy = (G, *). Define a function ¢ : G; — G4 by
¢(a) = a=* for all a € G.
e well-defined: ¢(a) = a™! € Gy since G is a group.
e respects the two operations: For any two elements a,b € G, we have
dla-b)=(a-b)'=b"t-at=al*xb"! = ¢(a)* ¢(b).
e one-to-one: If ¢(x) = e for z € Gy, then 7' = c and so r = e.
e onto: For any a € Gy, we have ¢(a™!) = (a')™! = a.
Thus, ¢ is an isomorphism.
(5) Find two abelian groups of order 8 that are not isomorphic.
Zs 2 7o x Zy4. The first one is cyclic, but the second one is not cyclic;
Zg 2 7y X 7o x Zy. Same reason as above;

ZoxZy % Zyx7ZyxZsy. The first group has an element of order 4, eg. ([1], [1]).
However, in the second group, every non-identity element has order 2.
(6) Let G be any group, and let a be a fixed element of G. Define a function
¢q : G — G by ¢g(z) = axa™?, for all z € G.
Show that ¢, is an isomorphism.
e well-defined: Trivial.
e respects the two operations: For any z,y € G, we have
Ga(2y) = azya™ = az(a” a)ya™" = (aza™!)(aya™") = da(2)¢a(y).

l—¢ andsoz =a 'ea = e.

e one-to-one: If ¢,(z) = e, then axa™
e onto: For any y € G, we have ¢,(a 'ya) = a(a 'ya)a™! = y.
Thus, ¢ is an isomorphism.
(7) Let G be any group. Define ¢ : G — G by ¢(z) =z~ !, for all z € G.
(a) Prove that ¢ is one-to-one and onto.

To show ¢ is one-to-one and onto, we are trying to find its inverse function.

Define ¢! : G — G by letting ¢~ '(z) = 27! for all z € G. Then we have

P(¢ (2) =) = (z7) =207 (¢(x)) = ¢ (@) = (7)) T =2

for all # € G. This shows that ¢! is the inverse function of ¢. [
(b) Prove that ¢ is an isomorphism if and only if G is abelian.

By part (a), to show ¢ is an isomorphism, it suffices to show that ¢
preserves products. For any two elements =,y € GG, we have
$(zy) = (zy) ™ =yt
e If G is abelian, ¢(xy) = (zy) ' =y o7 =27y ! = ¢(2)o(y). v
e If ¢ preserves products, then we have ¢(zy) = ¢(x)o(y). That is,
y Tt =Ty = (ay)y e (ya) = (ey)aTly T (ya) = yr =3y
This shows that G is abelian since x, y are arbitrary elements in G.

'In Homework 2 (3), we have shown that (G, ) is a group.
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In conclusion, ¢ is an isomorphism if and only if GG is abelian.
(8) Define * on R by axb =a+b—1, for all a,b € R. Show that the group
(R, %)? is isomorphic to the group (R, +).

Let G; = (R, *) and let Gy = (R, +). Define a function ¢ : G; — G5 by
¢(a) =a—1for all a € G;.
o well-defined: Trivial.

e ¢ respects the two operations: For any two elements a,b € GG, we have

dlaxb)=¢la+b—1)=a+b—1—-1=(a—1)+(b—1) = ¢(a)+ ¢(b).
e one-to-one: If p(a) =e2 =0, thena—1=0,andsoa=1=¢. vV
e onto: For any = € Gy, we have ¢p(z + 1) =ax+1—-1=z. vV

Thus, ¢ is an isomorphism.

(9) Let G = R—{—1}. Define * on G by a*b = a+ b+ ab. Show that the group
(G, *)? is isomorphic to the multiplicative group R*.

1
Define a function ¢ : G — R* by letting ¢(a) =
a

for all @ € G.
+1

1
e Since a € G, i.e., a # —1, 50 ¢(a) = P € R* is well-defined.
a

e ¢ preserves the two operations. For any two elements a,b € G, we have
dla*xb) =d(a+b+ab) =

at+btab+l (a+1)(b+1) = ¢la) - 9(b).

e one-to-one: If ¢p(a) = es = 1, then

1
] = 1 implies that a =0 =1¢;. v

1

1
e onto: For any element x € R*, we have ¢ (— — 1) = =a.v
a

I
S —1+1
a

Thus, ¢ is an isomorphism.

Define a function ¢ : G — R* by letting ¢(a) = a+ 1 for all a € G. v'(easier)

(10) Let G = {xr € R | x > 1}. Define * on G by a*xb = ab—a — b+ 2, for all
a,b € G. Define ¢ : G — RT by ¢(z) =2z — 1, for all z € G.

(a) Show that (G, x) is a group.

(i) Closure: For any two elements a,b € G, we have
axb=ab—a—-b+2=ab—a—-b+1+1=(—-1)b—-1)+1>1
since ¢ > 1 and b > 1. This shows that a xb € G.

2In Homework 2 (7), we have shown that (R, *) is a group.
3In Homework 2 (8), we have shown that (G, ) is a group.
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(ii) Associativity: For any a,b,c € G, we have
(axb)xc=(ab—a—b+2)xc=(ab—a—b+2)c—(ab—a—b+2)—c+2
=abc —ac—bc+2c—ab+a+b—c
=abc —ac—bc—ab+a+b+c
ax(bxc)=ax(bc—b—c+2)=albc—=b—c+2)—a—(bc—b—c+2)+2
=abc —ab—ac+2a—a—ba+b+c
=abc —ab—ac—ba+a+b+c
commutativity: axb=ab—a—0+2=ba—b—a+2="0x*a.

(iii) Identity: The identity element is 2. In particular, we have
ax2=2a—a—2+2=a.
The other equation holds because of the commutativity.

. In particular,

(iv) Inverses: For any element a € G, its inverse is
a J—
2 _ 2
a a a°—a”"+a—a
=a 2= 2=2.
a—1 a—1 a—1 o a—1 i
The other equation holds because of the commutativity.

a *x

(b) Show that ¢ is an isomorphism.

e well-defined: For any a € G, we have ¢(a) = a—1 > 0 since a > 1.
e ¢ respects the two operations: For any a,b € G, we have

d(axb) = p(ab—a—b+2) = ab—a—b+1 = (a—1)(b—1) = ¢(a)-o(b).
e one-to-one: If ¢(a) = e; = 1, then a—1 = 1 implies that a = 2 = e;.
e onto: For any element x € RT, we have p(z+1) =z +1—-1=2z.v

Thus, ¢ is an isomorphism.



