Homework 5

Due: June 1st (Monday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded..
- (1) Show that the multiplicative group \mathbf{Z}_7^{\times} is isomorphic to the additive group \mathbf{Z}_6 .
- (2) Show that the multiplicative group \mathbf{Z}_8^{\times} is isomorphic to the group $\mathbf{Z}_2 \times \mathbf{Z}_2$.
- (3) Show that \mathbf{Z}_5^{\times} is not isomorphic to \mathbf{Z}_8^{\times} by showing that the first group has an element of order 4 but the second group does not.
- (4) Let (G, \cdot) be a group. Define a new binary operation * on G by the formula $a * b = b \cdot a$, for all $a, b \in G$.

Show that the group $(G, *)^1$ is isomorphic to the group (G, \cdot) .

- (5) Find two abelian groups of order 8 that are not isomorphic.
- (6) Let G be any group, and let a be a fixed element of G. Define a function $\phi_a: G \to G$ by $\phi_a(x) = axa^{-1}$, for all $x \in G$.

Show that ϕ_a is an isomorphism.

- (7) Let G be any group. Define $\phi: G \to G$ by $\phi(x) = x^{-1}$, for all $x \in G$.
 - (a) Prove that ϕ is one-to-one and onto.
 - (b) Prove that ϕ is an isomorphism if and only if G is abelian.
- (8) Define * on **R** by a * b = a + b 1, for all $a, b \in \mathbf{R}$. Show that the group $(\mathbf{R}, *)^2$ is isomorphic to the group $(\mathbf{R}, +)$.
- (9) Let $G = \mathbf{R} \{-1\}$. Define * on G by a * b = a + b + ab. Show that the group $(G, *)^3$ is isomorphic to the multiplicative group \mathbf{R}^{\times} .
- (10) Let $G = \{x \in \mathbf{R} \mid x > 1\}$. Define * on G by a * b = ab a b + 2, for all $a, b \in G$. Define $\phi : G \to \mathbf{R}^+$ by $\phi(x) = x 1$, for all $x \in G$.
 - (a) Show that (G, *) is a group.
 - (b) Show that ϕ is an isomorphism.

¹In Homework 2 (3), we have shown that (G, *) is a group.

²In Homework 2 (7), we have shown that $(\mathbf{R}, *)$ is a group.

³In Homework 2 (8), we have shown that (G, *) is a group.