Homework 4

Due: May 25th (Monday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded. (1), (2), (6), (8), (9)
- (1) Find HK in \mathbf{Z}_{16}^{\times} , if $H = \langle [3] \rangle$ and $K = \langle [5] \rangle$. $|\mathbf{Z}_{16}^{\times}| = \varphi(16) = 8; H = \langle [3] \rangle = \{ [1], [3], [9], [11] \}$ and $K = \langle [5] \rangle = \{ [1], [5], [9], [13] \}$ $HK = \mathbf{Z}_{16}^{\times} = \{ [1], [3], [5], [7], [9], [11], [13], [15] \}.$
- (2) Find the order of the element $([9]_{12}, [15]_{18})$ in the group $\mathbf{Z}_{12} \times \mathbf{Z}_{18}$. $o([9]_{12}) = o([-3]_{12}) = o([3]_{12}) = 4$ in \mathbf{Z}_{12} and $o([15]_{18}) = o([-3]_{18}) = o([3]_{18}) = 6$ in \mathbf{Z}_{18} .¹ Thus, $o(([9]_{12}, [15]_{18})) = \text{lcm}[4, 6] = 12$.
- (3) Prove that if G_1 and G_2 are abelian groups, then the direct product $G_1 \times G_2$ is abelian. (Assume that $(G_1, *)$ and (G_2, \cdot) are abelian groups.)

For any two elements $(a_1, a_2), (b_1, b_2) \in G_1 \times G_2$, we have

 $(a_1, a_2)(b_1, b_2) = (a_1 * b_1, a_2 \cdot b_2) = (b_1 * a_1, b_2 \cdot a_2) = (b_1, b_2)(a_1, a_2).$

(4) Construct an abelian group of order 12 that is not cyclic.

 $\mathbf{Z}_2 \times \mathbf{Z}_6$ is abelian by Question (3). Since $(2,6) = 2 \neq 1$, it is not cyclic.²

(5) Construct a group of order 12 that is not abelian.

 $\mathbf{Z}_2 \times S_3$ is not abelian since S_3 is not abelian. For example, ([0], (123))([0], (12)) = ([0], (13)), but ([0], (12))([0], (123)) = ([0], (23)).

(6) Let G_1 and G_2 be groups, with subgroups H_1 and H_2 , respectively. Show that $\{(x_1, x_2) \mid x_1 \in H_1, x_2 \in H_2\}$

is a subgroup of the direct product $G_1 \times G_2$.

Let $(G_1, *)$ and (G_2, \cdot) be groups and let $S = \{(x_1, x_2) \mid x_1 \in H_1, x_2 \in H_2\}.$

- (i) For $(x_1, x_2), (y_1, y_2) \in S$, we have $(x_1, x_2)(y_1, y_2) = (x_1 * x_2, y_1 \cdot y_2) \in S$ since H_1 and H_2 are the subgroups of G_1 and G_2 , respectively.
- (ii) The identity element $e = (e_1, e_2) \in S$, where e_i is the identity element of H_i (and also of G_i) for i = 1, 2.
- (iii) Inverses: $(x_1, x_2)^{-1} = (x_1^{-1}, x_2^{-1}) \in S$. (Easy to check)

¹Here, we can also apply $\langle [a]_n \rangle = \langle [d]_n \rangle$, where d = (a, n).

²Here, we use the fact that $\mathbf{Z}_n \times \mathbf{Z}_m$ is cyclic if and only if (n,m) = 1.

- (7) (a) Let $C_1 = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a = b\}$. Show that C_1 is a subgroup of $\mathbb{Z} \times \mathbb{Z}$.
 - (i) For $(a, b), (c, d) \in C_1$, we have $(a, b)(c, d) = (a + c, b + d) \in C_1$. It follows from a = b and c = d that a + c = b + d.
 - (ii) The identity element $(0,0) \in C_1$.
 - (iii) For $(a, b) \in C_1$, its inverse $(a, b)^{-1} = (-a, -b) \in C_1$ since a = b.
 - (b) For each positive integer $n \ge 2$, let $C_n = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a \equiv b \pmod{n}\}$. Show that C_n is a subgroup of $\mathbb{Z} \times \mathbb{Z}$.
 - (i) For $(a, b), (c, d) \in C_n$, we have $(a, b)(c, d) = (a + c, b + d) \in C_n$. $a + c \equiv b + d \pmod{n}$ since $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.
 - (ii) The identity element $(0,0) \in C_n$ since $0 \equiv 0 \pmod{n}$.
 - (iii) For $(a, b) \in C_n$, its inverse $(a, b)^{-1} = (-a, -b) \in C_n$. (Easy to see)
 - (c) Show that every proper subgroup of $\mathbf{Z} \times \mathbf{Z}$ that contains C_1 has the form C_n , for some positive integer n.

Let *H* be a proper subgroup of $\mathbf{Z} \times \mathbf{Z}$ with $C_1 \subseteq H$.

- (i) If $C_1 = H$, then n = 1.
- (ii) If $C_1 \subsetneq H$, then there exists an element $(a, b) \in H$ but $(a, b) \notin C_1$. Since $(-a, -a) \in C_1 \subsetneq H$, we have $(a, b)(-a, -a) = (0, b - a) \in H$.

Let $n := \min\{|b - a| \mid \text{for all } (a, b) \in H \text{ with } a \neq b\}.$

Claim 1: $n \ge 2$.

If n = 1, then $(0, 1) \in H$ and so $(1, 0) \in H$ since $(1, 0) = (-1, 0)^{-1} = ((0, 1)(-1, -1))^{-1}$. This means $H = \mathbb{Z} \times \mathbb{Z}$ since any element (m, n) in $\mathbb{Z} \times \mathbb{Z}$ can be written as the form $(1, 0)^m (0, 1)^n$. This contradicts the condition that H is a proper subgroup of $\mathbb{Z} \times \mathbb{Z}$.

Claim 2: $H = C_n$. (a) $C_n \subseteq H$: For any element $(a, b) \in C_n$, we have $a \equiv b \pmod{n}$. It implies b - a = nq for some $q \in \mathbf{Z}$. So $(a, b) = (a, a)(0, b - a) = (a, a)(0, nq) = (a, a)(0, n)^q \in H$ since H is a subgroup of $\mathbf{Z} \times \mathbf{Z}$.

(b) $H \subseteq C_n$: For any element $(a, b) \in H$, we can write b - a = nq + r with $0 \leq r < n$. So $(0, r) = (a, b)(-a, -a - nq) = (a, b)(-a, -a)(0, -nq) = (a, b)(-a, -a)(0, n)^{-q} \in H$. Thus, r = 0 since n is the smallest positive integer such that $(0, n) \in H$. It follows that b - a = nq and so $a \equiv b \pmod{n}$. That is, $(a, b) \in C_n$.

- (8) Let G_1 and G_2 be groups, and let G be the direct product $G_1 \times G_2$. Let $H = \{(x_1, x_2) \in G_1 \times G_2 \mid x_2 = e_2\}$ and let $K = \{(x_1, x_2) \in G_1 \times G_2 \mid x_1 = e_1\}$.
 - (a) Show that H and K are subgroups of G.

We will show H is a subgroup of G and the proof for K should be similar. (i) $(x_1, e_2), (y_1, e_2) \in H$, we have $(x_1, e_2)(y_1, e_2) = (x_1 * y_1, e_2 \cdot e_2) \in H$.

- (ii) The identity element $(e_1, e_2) \in H$.
- (iii) For $(x_1, e_2) \in H$, its inverse is $(x_1^{-1}, e_2) \in H$.

(b) Show that HK = KH = G.

HK = KH: For any element $(x_1, e_2) \in H$ and any element $(e_1, x_2) \in K$, we have

$$(x_1, e_2)(e_1, x_2) = (x_1 * e_1, e_2 \cdot x_2)$$

=(x_1, x_2)
=(e_1 * x_1, x_2 \cdot e_2)
=(e_1, x_2)(x_1, e_2).

 $HK \subseteq G$: HK is a subgroup of G by Proposition 1 since HK = KH.

 $G \subseteq HK$: For any element $(x_1, x_2) \in G$ for $x_1 \in G_1$ and $x_2 \in G_2$, we can write it as $(x_1, x_2) = (x_1 * e_1, e_2 \cdot x_2) = (x_1, e_2)(e_1, x_2)$, which is in HK.

(c) Show that $H \cap K = \{(e_1, e_2)\}.$

 $\{(e_1, e_2)\} \subseteq H \cap K: \text{ By definition, we have } (e_1, e_2) \in H \text{ and } (e_1, e_2) \in K.$ $H \cap K \subseteq \{(e_1, e_2)\}: \text{ For any element } (x_1, x_2) \in H \cap K, \text{ we have}$ $\begin{cases} (x_1, x_2) \in H \Rightarrow x_2 = e_2\\ (x_1, x_2) \in K \Rightarrow x_1 = e_1 \end{cases} \implies (x_1, x_2) = (e_1, e_2).$

(9) Let H, K, L be subgroups of the group G, with $H \subseteq K$. Prove that $H(K \cap L) = K \cap HL$.

Note: This is an equality of sets, since they may not be subgroups.

 $H(K \cap L) \subseteq K \cap HL$: For any element $a \in H(K \cap L)$, there exist $h \in H$ and $t \in K \cap L$ such that a = ht. Since $h \in H \subseteq K$ and $t \in K \cap L \subseteq K$, so we have $a = ht \in K$ since K is a subgroup of the group G. Again, since $t \in K \cap L \subseteq L$, we have $a = ht \in HL$. Thus, $a = ht \in K \cap HL$.

 $K \cap HL \subseteq H(K \cap L)$: For any element $a \in K \cap HL$, there exist $h \in H$ and $l \in L$ such that a = hl and a = k for some $k \in K$. Thus, we have $l = h^{-1}a = h^{-1}k$ since H is a subgroup of G and so h^{-1} always exists. It follows that $l = h^{-1}k \in K$ since $h^{-1} \in H \subseteq K$ and K is a subgroup of G. Therefore, $l \in K \cap L$ and so $a = hl \in H(K \cap L)$.

(10) Let F be a field, and let H be the subset of $GL_2(F)$ consisting of all invertible upper triangular matrices. Show that H is a subgroup of $GL_2(F)$.

(i) Let
$$\begin{bmatrix} a_1 & b_1 \\ 0 & d_1 \end{bmatrix}$$
, $\begin{bmatrix} a_2 & b_2 \\ 0 & d_2 \end{bmatrix} \in H$. In particular, $a_1d_1 \neq 0, a_2d_2 \neq 0$. Then
 $\begin{bmatrix} a_1 & b_1 \\ 0 & d_1 \end{bmatrix} \begin{bmatrix} a_2 & b_2 \\ 0 & d_2 \end{bmatrix} = \begin{bmatrix} a_1a_2 & a_1b_2 + b_1d_2 \\ 0 & d_1d_2 \end{bmatrix} \in H$.
This is because the determinant of the product is $a_1a_2d_1d_2 \neq 0$.
(ii) The identity matrix $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in H$.
(iii) For any element $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \in H$, its inverse is $\begin{bmatrix} 1/a & -b/(ad) \\ 0 & 1/d \end{bmatrix} \in H$.