
Homework 3

Due: May 22nd (Friday), 11:59 pm

• Please submit your work on Blackboard.
• You are required to submit your work as a single pdf.
• Please make sure your handwriting is clear enough to read. Thanks.
• No late work will be accepted.
• There are five randomly picked questions (2 pts for each) that will be graded.

(2), (8), (9), (10), (12)

(1) In GL2(R), find the order of each of the following elements.

(a)

[
1 −1
1 0

] [
1 −1
1 0

]2
=

[
0 −1
1 −1

]
,[

1 −1
1 0

]3
=

[
0 −1
1 −1

] [
1 −1
1 0

]
=

[
−1 0
0 −1

]
= −I2

⇒
[
1 −1
1 0

]6
= (−I2)2 = I2. Thus, the matrix

[
1 −1
1 0

]
has order 6.1

(b)

[
1 −1
0 1

] [
1 −1
0 1

]n
=

[
1 −n
0 1

]
for all n.

Thus, the matrix

[
1 −1
0 1

]
has infinite order.

(2) For each of the following groups, find all cyclic subgroups of the group.
(a) Z8

Z8 = 〈[1]〉 = 〈[3]〉 = 〈[5]〉 = 〈[7]〉 since Z×8 = {[1], [3], [5], [7]}.
〈[2]〉 = 〈[6]〉 = {[0], [2], [4], [6]}
〈[4]〉 = {[0], [4]}
〈[0]〉 = {[0]}

(b) Z×12

Z×12 = {[1], [5], [7], [11]} = {[1], [5], [−5], [−1]}
〈[1]〉 = {[1]}
〈[5]〉 = {[1], [5]}
〈[7]〉 = {[1], [7]}
〈[11]〉 = {[1], [11]}
This implies that Z×12 is not a cyclic group.

(3) Find the cyclic subgroup of S6 generated by the element (123)(456).

[(123)(456)]2 = (123)2(456)2 = (132)(465) since (123) and (456) are disjoint.
[(123)(456)]3 = (123)3(456)3 = (1) since (123) and (456) are cycles of length 3
Thus, 〈(123)(456)〉 = {(1), (123)(456), (132)(465)}.

1It easily follows from the direct computations to see that its order cannot be 4 or 5.
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(4) Let G = GL3(R). Show that

H =


1 0 0
a 1 0
b c 1


is a subgroup of G.

(i) Closure:

 1 0 0
a1 1 0
b1 c1 1

 1 0 0
a2 1 0
b2 c2 1

 =

 1 0 0
a1 + a2 1 0

b1 + c1a2 + b2 c1 + c2 1

 ∈ H.
(ii) The identity matrix I3 ∈ H by letting a = b = c = 0.

(iii) Inverses: By part (i):

1 0 0
a 1 0
b c 1

−1 =

 1 0 0
−a 1 0

−b+ ca −c 1

 ∈ H.

(5) Let S be a set, and let a be a fixed element of S. Show that

{σ ∈ Sym(S) | σ(a) = a}
is a subgroup of Sym(S).

(a) Closure: If σ(a) = a, τ(a) = a, then στ(a) = σ(a) = a.

(b) The identity permutation 1S(a) = a.

(c) The inverse σ−1 of σ: σ−1σ(a) = 1S(a) = a⇒ σ−1(a) = a.

(6) Prove that any cyclic group is abelian.

Let 〈g〉 be a cyclic group G. For any two elements a, b ∈ G, there exist
m,n ∈ Z such that a = gm and b = gn. Thus,

ab = gmgn = gm+n = gn+m = gngm = ba.

(7) Prove that the intersection of any collection of subgroups of a group is again
a subgroup.

Let G be a group and Hi be a subgroup of G for i ∈ I. (I is an index set)
Then we need to show that K = ∩i∈IHi is again a subgroup of G.
(a) Take any a, b ∈ K ⊆ Hi, for each i. Then ab ∈ Hi since Hi is a subgroup.

Thus, ab ∈ K since i is arbitrary.
(b) The identity element e ∈ Hi for each i, so e ∈ K.
(c) Take any a ∈ K ⊆ Hi, for each i. Then a−1 ∈ Hi since Hi is a subgroup.

Thus, a−1 ∈ K since i is arbitrary.

(8) Let G be a group, and let a ∈ G. The set

C(a) = {x ∈ G | xa = ax}
of all elements of G that commute with a is called the centralizer of a.

(a) Show that C(a) is a subgroup of G.

(b) Show that 〈a〉 ⊆ C(a).

(c) Computer C(a) if G = S3 and a = (123).

(d) Computer C(a) if G = S3 and a = (12).

2



(a) (i) Closure: Let x, y ∈ C(a). Then xy ∈ C(a) since
(xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy).

(ii) The identity element e ∈ C(a) since ea = a = ae.
(iii) If x ∈ C(a), then x−1 ∈ C(a). We know that a = ea = (xx−1)a

and a = ae = a(xx−1), this implies that (xx−1)a = a(xx−1) =
(ax)x−1 = (xa)x−1 since x ∈ C(a). So

(xx−1)a =(xa)x−1

x(x−1a) =x(ax−1)

x−1a =ax−1.

(b) It is clear that a ∈ C(a). Thus, 〈a〉 ⊂ C(a) by Proposition 2 (b).

(c) It follows from part (b) that 〈(123)〉 = {(1), (123), (132)} ⊆ C((123)).
By the direct computations, we can see that there is no other element in
S3 belong to C((123)).2 Thus, C((123)) = 〈(123)〉 = {(1), (123), (132)}.

(d) Similarly, we can see that C((12)) = 〈(12)〉 = {(1), (12)}.
(9) Let G be a group. The set

Z(G) = {x ∈ G | xg = gx for all g ∈ G}
of all elements that commute with every other element of G is called the
center of G.

(a) Show that Z(G) is a subgroup of G.

(i) If x, y ∈ Z(G), then xy ∈ Z(G) since by definition we have
(xy)g = x(yg) = x(gy) = (xg)y = (gx)y = g(xy) for all g ∈ G.

(ii) The identity element e ∈ Z(G) since eg = g = ge for all g ∈ G.
(iii) If x ∈ Z(G), then x−1 ∈ Z(G). In fact, for all g ∈ G we have

g = eg = (x−1x)g = x−1(xg) = x−1(gx) = (x−1g)x.
Thus, gx−1 = x−1g for all g ∈ G.

(b) Show that Z(G) = ∩a∈GC(a).

Z(G) ⊆ ∩a∈GC(a): For any x ∈ Z(G), it is clear that x ∈ C(a) for any
a ∈ G since xa = ax by definition. So, x ∈ ∩a∈GC(a) since a is arbitrary.
Thus, Z(G) ⊆ ∩a∈GC(a).
∩a∈GC(a) ⊆ Z(G): For any x ∈ ∩a∈GC(a), then x ∈ C(a) for all a ∈ G.
That is, xa = ax for all a ∈ G. This implies that x ∈ Z(G) by definition.
Thus, ∩a∈GC(a) ⊆ Z(G).

(c) Computer the center of S3.

By Question 8 (c) and (d), we know that
C((123)) = {(1), (123), (132)} and C((12)) = {(1), (12)}.

This implies that C((123)) ∩ C((12)) = {(1)}. It follows from part (b)
that Z(G) = ∩a∈S3C(a) ⊆ (C((123)) ∩ C((12))) = {(1)}. It is also clear
that the identity element (1) ∈ Z(G). Therefore, Z(G) = Z(S3) = {(1)}.

2You can also see this by looking at the multiplication table for S3.
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(10) Show that if a group G has a unique element a of order 2, then a ∈ Z(G).

To show a ∈ Z(G), it is equivalent to show that ab = ba for all b ∈ G. Consider
the element bab−1 for each b ∈ G, since a2 = e we have

(bab−1)2 = (bab−1)(bab−1) = bab−1bab−1 = ba2b−1 = beb−1 = e.

We omit the parentheses in the above calculations. There are two possibilities:
(a) If bab−1 = e, then ba = b. This implies a = e. We obtain a contradiction

since o(a) = 2.
(b) If bab−1 6= e, then o(bab−1) = 2. So bab−1 = a since the element a is the

unique one in G with order 2. This implies ba = ab for all b ∈ G. Thus,
a ∈ Z(G).

(11) Let G be a group with a, b ∈ G.

(a) Show that o(a−1) = o(a).

Let o(a) = n > 0. By an = e, we have (an)−1 = e. Thus (a−1)n = e. It
implies that o(a−1)|n. If m = o(a−1) < n, there exists a positive integer q
such that n = mq. Then (a−1)m = (am)−1 = e. This means that am = e.
We obtain a contradiction since o(a) = n > m.
If o(a) is infinite, so is o(a−1). Otherwise, suppose that m = o(a−1) > 0,
we can conclude that am = e by applying the similar argument as above.
Again we obtain a contradiction since o(a) is infinite.

(b) Show that o(ab) = o(ba).

Let o(ab) = n and so we have (ab)n = e. This implies that
(ab)n = a(ba)n−1b = e⇒ (ba)n−1b = a−1 ⇒ (ba)n−1(ba) = (ba)n = e.

Thus, o(ba)|n. Similarly, let o(ba) = m and so (ba)m = e. Then
(ba)m = b(ab)m−1a = e⇒ (ab)m−1a = b−1 ⇒ (ab)m−1(ab) = (ab)m = e.

Thus, o(ab)|m. We can conclude that m = n since m|n and n|m.
Again, a similar argument shows that if o(ab) is infinite, then so is o(ba).

(c) Show that o(aba−1) = o(b).

Let o(aba−1) = n and so (aba−1)n = e. In particular, we have
(aba−1)n = (aba−1)(aba−1) · · · (aba−1) = abna−1 = e.

This implies bn = e. On the other hand, let o(b) = m and so bm = e. So
bm = a−1(aba−1)ma = e⇒ (aba−1)m = e.

It follows from above discussions that m|n and n|m. Again, m = n.
A similar argument shows that if o(aba−1) is infinite, then so is o(b).
An easier way to show it: Let A = ab and B = a−1. By part (b), we have

o(AB) = o(BA)⇒ o(aba−1) = o(a−1(ab)) = o((a−1a)b) = o(b).

(12) Let G be a group with a, b ∈ G. Assume that o(a) and o(b) are finite and
relatively prime, and that ab = ba. Show that o(ab) = o(a)o(b).

Let o(a) = n and o(b) = m with (n,m) = 1. To show o(ab) = nm.
First, it follows from ab = ba that (ab)nm = anmbnm = (an)m(bm)n = emen = e.
Assume that o(ab) = k, then k|nm. We are done if we can also show nm|k.
Write k = nq1 + r1 and k = mq2 + r2 for some q1, q2 ∈ Z, where 0 ≤ r1 < n
and 0 ≤ r2 < m. By definition of n,m, k and ab = ba, we have
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e = (ab)k = akbk = anq1+r1bmq2+r2 = (an)q1ar1(bm)q2br2 = eq1ar1eq2br2 = ar1br2 .

Claim: r1 = r2 = 0.
Proof of Claim: It suffices to show one of these two values is zero, say r1 = 0.
If r1 = 0, then r2 = 0 since e = br2 and 0 ≤ r2 < m = o(b). The same
argument can be applied for the other side: i.e., if r2 = 0, then r1 = 0.
Since e = ar1br2 , we have br2 = a−r1 . It follows from bm = e that

(br2)m = (bm)r2 = er2 = e⇒ (a−r1)m = (ar1m)−1 = e⇒ ar1m = e.

It implies that n|r1m. Thus, n|r1 since (n,m) = 1. We can conclude that
r1 = 0 since 0 ≤ r1 < n. This means that we finish the proof of the claim,
i.e., r1 = r2 = 0.
It implies that k = nq1 = mq2 for some q1, q2 ∈ Z. So n|k and m|k, thus nm|k
since (m,n) = 1. Finally, we obtain k = nm since k|nm and nm|k. �
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