Homework 1

Due: May 15th (Friday), 11:59 pm

- Please submit your work on Blackboard.
- You are required to submit your work as a single pdf, not as an email attachment (if needed, there are many online converters of jpg pictures to pdfs).
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded. (2), (3), (9), (10), (11)
- (1) Read §1.1 and §1.2 to make sure you understand the gcd, lcm, and Euclidean algorithm.
- (2) Solve the following congruences.

(a)
$$2x \equiv 1 \pmod{9}$$
 $d = (2, 9) = 1 | 1 \checkmark \Rightarrow \boxed{x \equiv 5 \pmod{9}}$

(b)
$$10x \equiv 5 \pmod{15}$$
 $d = (10, 15) = 5 | 5\checkmark \Rightarrow 2x \equiv 1 \pmod{3}$ $\Rightarrow x \equiv 2 \pmod{3} \Leftrightarrow \boxed{x \equiv 2, 5, 8, 11, 14 \pmod{15}}$

(c)
$$20x \equiv 12 \pmod{72}$$
 $d = (20, 72) = 4|12\checkmark \Rightarrow 5x \equiv 3 \pmod{18}$
Solve $5x \equiv 1 \pmod{18}$ first: $x \equiv 11 \pmod{18}$.
Thus, $5x \equiv 3 \pmod{18} \Rightarrow x \equiv 33 \equiv 15 \pmod{18}$
Equivalently, $x \equiv 15, 33, 51, 69 \pmod{72}$

(3) Solve the following system of congruences.

$$x \equiv 15 \pmod{27}$$
 $x \equiv 16 \pmod{20}$

$$\begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 20 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -1 & 7 \\ 0 & 1 & 20 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -1 & 7 \\ -2 & 3 & 6 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 3 & -4 & 1 \\ -2 & 3 & 6 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 3 & -4 & 1 \\ -20 & 27 & 0 \end{bmatrix}$$
Therefore, $3 \cdot 27 + (-4) \cdot 20 = 1$. By CRT, we take
$$x \equiv 16(3 \cdot 27) + 15((-4) \cdot 20) \pmod{27 \cdot 20} \Rightarrow \boxed{x \equiv 96 \pmod{540}}$$

(4) (a) Make addition and multiplication tables for \mathbf{Z}_4 .

		[1]				[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]	[0]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[3]	[0]	[1]	[0]	[1]	[2]	[3]
[2]	[2]	[3]	[0]	[1]			[2]		
		[0]			[3]	[0]	[3]	[2]	[1]

(b) Make multiplication table for \mathbf{Z}_{12}^{\times} . $\mathbf{Z}_{12}^{\times} = \{[1], [5], [7], [11]\} = \{[1], [5], [-5], [-1]\}$ or we can just write $\pm 1, \pm 5$.

. [1]	[-1]	[5]	[-5]		1	-1	5	-5
				1	1	-1	5	-5
[-1] $[-1]$				-1	-1	1	-5	5
[5] [5]				5	5	-5	1	-1
$\begin{bmatrix} -5 \end{bmatrix} \begin{bmatrix} -5 \end{bmatrix}$				-5	-5	5	-1	1

- (5) Find the multiplicative inverses of the given elements (if possible).
 - (a) [6] in \mathbf{Z}_{15} . No multiplicative inverse since $(6,15)=3\neq 1$

(b) [7] in
$$\mathbf{Z}_{15}$$
. $[7][2] = [-1] \Rightarrow [7][-2] = [7][13] = [1] \Rightarrow \boxed{[7]^{-1} = [13]}$

(6) Let (a, n) = 1. The smallest positive integer k such that $a^k \equiv 1 \pmod{n}$ is called the **multiplicative order** of [a] in \mathbb{Z}_n^{\times} .

Find the multiplicative orders of [5] and [7] in \mathbf{Z}_{16}^{\times} and show that their multiplicative orders both divide $\varphi(16)$. $\varphi(16) = 8$.

$$[5]^2 = [25] = [9], [5]^3 = [5]^2[5] = [45] = [-3], [5]^4 = [5]^3[5] = [-15] = [1]$$

 \Rightarrow order is $4|\varphi(16)$. \checkmark

 $[7]^2 = [49] = [1] \Rightarrow \text{ order is } 2|\varphi(16). \checkmark$

(7) For n = 12 show that $\sum_{n} \varphi(d) = n$.

(8) Consider the following permutations in S_7 .

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix} \quad \text{and} \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3 \end{pmatrix}$$

(a) Write the following permutations as a product of disjoint cycles.

(i)
$$\sigma \tau$$
 (ii) $\tau \sigma$ (iii) σ^{-1} (iv) $\sigma \tau \sigma^{-1}$

Write $\sigma = (1356)$ and $\tau = (12)(3547)$.

(i)
$$\sigma \tau = (1356)(12)(3547) = (1236)(475)$$

(ii)
$$\tau \sigma = (12)(3547)(1356) = (1562)(347)$$

(iii)
$$\sigma^{-1} = (6531) = (1653)$$

$$(iv)$$
 $\sigma\tau\sigma^{-1} = (\sigma\tau)\sigma^{-1} = (1236)(475)(1653) = (1)(23)(4756) = (23)(4756)$

(b) Write σ and τ as products of transpositions.

$$\sigma = (1356) = (56)(36)(16) = (13)(35)(56)$$

$$\tau = (12)(3547) = (12)(47)(57)(37) = (12)(35)(54)(47)$$

(9) Write

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
3 & 4 & 10 & 5 & 7 & 8 & 2 & 6 & 9 & 1
\end{pmatrix}$$

as a product of disjoint cycles and as a product of transpositions. Find its inverse, and find its order.

$$(1310)(2457)(68) = (13)(310)(24)(45)(57)(68) = (310)(110)(57)(47)(27)(68)$$

Order= $lcm[3, 4, 2] = 12$. Inverse is $(1031)(7542)(86) = (1103)(2754)(68)$

(10) Find the order of each of the following permutations.

Hint: First write each permutation as a product of disjoint cycles.

(a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 6 & 7 & 5 & 1 & 8 & 2 & 3 \end{pmatrix}$$

 $(145)(26837) \Rightarrow \text{Order} = \text{lcm}[3, 5] = 15.$

(b)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 9 & 8 & 7 & 3 & 4 & 6 & 1 & 2 \end{pmatrix}$$

 $(1538)(29)(476) \Rightarrow \text{Order} = \text{lcm}[4, 2, 3] = 12.$

- (11) Let $\sigma = (2396)(73259)(17)(487) \in S_9$.
 - (a) Is σ an even permutation or an odd permutation?

Even. Because "Odd-Even-Odd-Even=Even".

(b) What is the order of σ in S_9 ?

 $\sigma = (19748)(256)(3) = (19748)(256) \Rightarrow \text{Order} = \text{lcm}[5, 3] = 15.$

You can also see σ is even from the product of disjoint cycles: "Even-Even".