Homework 1

Due: May 15th (Friday), 11:59 pm

• Please submit your work on Blackboard.

- You are required to submit your work as a single pdf, not as an email attachment (if needed, there are many online converters of jpg pictures to pdfs).
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- There are five randomly picked questions (2 pts for each) that will be graded.
- (1) Read $\S 1.1$ and $\S 1.2$ to make sure you understand the gcd, lcm, and Euclidean algorithm.
- (2) Solve the following congruences.
 - (a) $2x \equiv 1 \pmod{9}$
 - (b) $10x \equiv 5 \pmod{15}$
 - (c) $20x \equiv 12 \pmod{72}$
- (3) Solve the following system of congruences.

$$x \equiv 15 \pmod{27}$$
 $x \equiv 16 \pmod{20}$

- (4) (a) Make addition and multiplication tables for \mathbf{Z}_4 .
 - (b) Make multiplication table for \mathbf{Z}_{12}^{\times} .
- (5) Find the multiplicative inverses of the given elements (if possible).
 - (a) [6] in \mathbf{Z}_{15} .
 - (b) [7] in \mathbf{Z}_{15} .
- (6) Let (a, n) = 1. The smallest positive integer k such that $a^k \equiv 1 \pmod{n}$ is called the **multiplicative order** of [a] in \mathbf{Z}_n^{\times} . Find the multiplicative orders of [5] and [7] in \mathbf{Z}_{16}^{\times} and show that their multiplicative orders both divide $\varphi(16)$.
- (7) For n = 12 show that $\sum_{d|n} \varphi(d) = n$.
- (8) Consider the following permutations in S_7 .

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix} \quad \text{and} \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3 \end{pmatrix}$$

- (a) Write the following permutations as a product of disjoint cycles.
 - (i) $\sigma \tau$ (ii) $\tau \sigma$ (iii) σ^{-1} (iv) $\sigma \tau \sigma^{-1}$

1

(b) Write σ and τ as products of transpositions.

(9) Write

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
3 & 4 & 10 & 5 & 7 & 8 & 2 & 6 & 9 & 1
\end{pmatrix}$$

as a product of disjoint cycles and as a product of transpositions. Find its inverse, and find its order.

(10) Find the order of each of the following permutations.

Hint: First write each permutation as a product of disjoint cycles.

(a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 6 & 7 & 5 & 1 & 8 & 2 & 3 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 9 & 8 & 7 & 3 & 4 & 6 & 1 & 2 \end{pmatrix}$$

- (11) Let $\sigma = (2396)(73259)(17)(487) \in S_9$.
 - (a) Is σ an even permutation or an odd permutation?
 - (b) What is the order of σ in S_9 ?