Final Exam

Exam Date: June 19th-20th (Friday-Saturday)

Exam Length: 150 minutes

- Please submit your work on Blackboard before Saturday (6/20) 11:59 pm.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- Open-book and Open-notes.
- Honors Code: No consulting any online sources. No consulting with each other.

(0) Write the following honors code with your full name at the end.

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code. As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam. <u>Full name</u>

- (1) [20 pts] True or False: (No need to show work to support your answer.)
 - i) **R** is a group under multiplication. False: 0 has no inverse.
 - ii) A cyclic group is always abelian. True
 - iii) 8 is a unit in \mathbf{Z}_{35} . True
 - iv) If |G| = 23, then G must be isomorphic to \mathbb{Z}_{23} . True
 - v) The odd permutations in S_n form a normal subgroup of S_n . False: The odd permutations in S_n do not form a subgroup.
 - vi) $D_4 \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. False: D_4 is nonabelian., while $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ is abelian.
 - vii) The order of gH in G/H is the smallest positive integer n such that $g^n = e$. False: $\dots g^n \in H$.
 - viii) The product of an even number of disjoint cycles is an even permutation. False: (12)(345) is odd.
 - ix) $\mathbf{Z}_{10} \times \mathbf{Z}_{10} \cong \mathbf{Z}_5 \times \mathbf{Z}_{20}$. False: There is no element of order 20 in $\mathbf{Z}_{10} \times \mathbf{Z}_{10}$, while $\mathbf{Z}_5 \times \mathbf{Z}_{20}$ does.
 - x) \mathbf{Z}_{37} is a simple group. True
- (2) (a) [3 pts] Solve the congruence $7x \equiv 1 \pmod{17}$. $x \equiv 5 \pmod{17}$
 - (b) [3 pts] Solve the congruence $12x \equiv 30 \pmod{54}$.

 $gcd(12,54) = 6|30 \Rightarrow 2x \equiv 5 \pmod{9}$. Since $2x \equiv 1 \pmod{9}$ implies $x \equiv 5 \pmod{9}$. Thus, $2x \equiv 5 \pmod{9} \Rightarrow x \equiv 25 \equiv 7 \pmod{9}$. Therefore,

 $x \equiv 7, 16, 25, 34, 43, 52 \pmod{54}$.

(c) [4 *pts*] Solve the system of congruences $5x \equiv 7 \pmod{12}$ $x \equiv 13 \pmod{19}$.

$$\begin{bmatrix} 1 & 0 & 12 \\ 0 & 1 & 19 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 12 \\ -1 & 1 & 7 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 2 & -1 & 5 \\ -1 & 1 & 7 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 2 & -1 & 5 \\ -3 & 2 & 2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 8 & -5 & 1 \\ -19 & 12 & 0 \end{bmatrix} \Rightarrow 8 \cdot 12 + (-5) \cdot 19 = 1$$

Since $5x \equiv 7 \pmod{12} \Rightarrow x \equiv -1 \equiv 11 \pmod{12}$, by Chinese Remainder Theorem we have $x \equiv (11)(-95)+13(96) \pmod{12}$. That is, $x \equiv 203 \pmod{228}$.

(3)
$$[10 \ pts]$$
 For the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 8 & 5 & 2 & 10 & 9 & 1 & 4 & 6 & 7 \end{pmatrix}$:

- (a) Write σ as a product of disjoint cycles. $\sigma = (135 \ 10 \ 7)(284)(69)$
- (b) Write σ as a product of transpositions. $\sigma = (13)(35)(5\ 10)(10\ 7)(28)(84)(69) = (10\ 7)(57)(37)(17)(84)(24)(69)$
- (c) Write σ^{-1} as a product of disjoint cycles.

 $\sigma = (17 \ 10 \ 53)(248)(69)$ since disjoint cycles commute.

- (d) Is σ even, odd, neither or both? Is σ^{-1} even, odd, neither or both? odd
- (e) What is the order of σ ? lcm[5, 3, 2] = 30.
- (4) [10 pts] Let G be the set of nonzero rational numbers \mathbf{Q}^{\times} . Define a new multiplication by $a * b = \frac{ab}{5}$, for all $a, b \in G$. Show that (G, *) is an abelian group.
 - (i) Closure: Trivial since $a, b \in \mathbf{Q}^{\times}$.
 - (ii) Associative: For any $a, b, c \in G$, we have $(a * b) * c = \frac{ab}{5} * c = \frac{abc}{25} = a * \frac{bc}{5} = a * (b * c)$

commutative: $a * b = \frac{ab}{5} = \frac{ba}{5} = b * a$

- (iii) Identity: The identity element is 5. For any $a \in \mathbf{Q}^{\times}$, we have $5 * a = \frac{5a}{5} = a$.
- (iv) Inverses: For any $a \in \mathbf{Q}^{\times}$, its inverse is $\frac{25}{a} \in \mathbf{Q}^{\times}$ since $a \in \mathbf{Q}^{\times}$. In fact, $25 \quad a \cdot 25/a$

$$a * \frac{25}{a} = \frac{a \cdot 25/a}{5} = 5.$$

For parts (iii)-(iv), we only check one equation because of the commutativity.

(5) (a) [3 pts] Let $G = \langle a \rangle$ be a group of order 50. What is the order of $\langle a^{35} \rangle$?

The order of $\langle a^{35} \rangle$ is $\frac{50}{\gcd(35, 50)} = 10.$

(b) [3 *pts*] What is the order of ([18]₂₀, [25]₃₀) in $\mathbb{Z}_{20} \times \mathbb{Z}_{30}$?

$$o([18]_{20}) = \frac{20}{\gcd(18,20)} = 10 \text{ and } o([25]_{30}) = \frac{30}{\gcd(25,30)} = 6.$$
 Thus, we have
 $o(([18]_{20}, [25]_{30})) = \operatorname{lcm}[10, 6] = 30.$

(c) [4 pts] Let $G = \mathbb{Z}_{48}$. List all possible choice of $[k]_{48}$ such that $\langle [k]_{48} \rangle = \langle [20]_{48} \rangle$.

 $\langle [k]_{48} \rangle = \langle [20]_{48} \rangle = \langle [4]_{48} \rangle \Rightarrow \gcd(k, 48) = 4 \Rightarrow \gcd(\frac{k}{4}, 12) = 1.$ And so all possible choice of $[k]_{48}$ such that $\langle [k]_{48} \rangle = \langle [20]_{48} \rangle$ are

$$[4]_{48}, [20]_{48}, [28]_{48}, [44]_{48}$$

- (6) [5 pts] Let G be a non-cyclic group of order 27. Prove that a⁹ = e for all a ∈ G.
 Proof. Since G is not cyclic, it follows from Lagrange's theorem that an element a ∈ G can have order 1, 3 or 9. Hence proved.
- (7) Let H be a subgroup of G. Let $N(H) = \{g \in G \mid gHg^{-1} = H\}$. Prove
 - (a) [4 pts] N(H) is a subgroup of G.

Proof. N(H) is nonempty since $eHe^{-1} = H$, i.e., $e \in N(H)$. For any $a, b \in N(H)$, we have

$$abH(ab)^{-1} = a(bHb^{-1})a^{-1} = aHa^{-1} = H.$$

This implies that $ab \in H$. Finally, for any $a \in N(H)$ we have

$$H = (a^{-1}a)H(a^{-1}a) = a^{-1}(aHa^{-1})a = a^{-1}H(a^{-1})^{-1}$$
 since $aHa^{-1} = H$.

This implies that $a^{-1} \in N(H)$.

(b) [4 pts] H is a subgroup of N(H).

Proof. It suffices to show that $H \subseteq N(H)$ since both H and N(H) are subgroups of G. Thus, for any $h \in H$, we need to show $hHh^{-1} = H$.

 $hHh^{-1} \subseteq H$: For any $h' \in H$, we have $hh'h^{-1} \in H$ since H is a subgroup.

 $H \subseteq hHh^{-1}$: For any $h' \in H$, we have $h' = h(h^{-1}h'h)h^{-1} \in hHh^{-1}$ since $h^{-1}h'h \in H$.

(c) [2 pts] H is normal in N(H).

Proof. For any
$$h \in H$$
 and $g \in N(H)$, we have $ghg^{-1} \in gHg^{-1} = H$.

(8) [5 pts] Let N_1 and N_2 be normal subgroups of the group G and let $N_1 \cap N_2 = \{e\}$. Prove that $n_1n_2 = n_2n_1$ for all $n_1 \in N_1$ and $n_2 \in N_2$.

Proof. $n_2^{-1}n_1n_2n_1^{-1} = n_2^{-1}(n_1n_2n_1^{-1}) \in N_2$ since N_2 is a normal subgroup. $n_2^{-1}n_1n_2n_1^{-1} = (n_2^{-1}n_1n_2)n_1^{-1} \in N_1$ since N_1 is a normal subgroup. This implies that $n_2^{-1}n_1n_2n_1^{-1} \in N_1 \cap N_2 = \{e\}$. That is, $n_2^{-1}n_1n_2n_1^{-1} = e$. So $n_2^{-1}n_1n_2n_1^{-1} = e \Rightarrow n_1n_2 = n_2n_1$. (9) Let G and H be groups. Define the function $\phi: G \times H \to G$ by

 $\phi((a, b)) = a$, for all $(a, b) \in G \times H$.

(a) [3 pts] Prove that ϕ is a group homomorphism and onto.

Proof. It is clear that ϕ is well-defined and onto. For any $(a_1, b_1), (a_2, b_2)$, we have $\phi((a_1, b_1), (a_2, b_2)) = \phi(a_1 a_2, b_1 b_2) = a_1 a_2 = \phi((a_1, b_1))\phi((a_2, b_2))$.

(b) [2 pts] Find ker (ϕ) .

 $\ker(\phi) = \{(a,b) \in G \times H \mid \phi((a,b)) = a = e_G\} = e_G \times H.$

(10) (a) [2 pts] Let G be an abelian group. Let H be a subgroup of G. Prove that aH = Ha for any $a \in G$.

Proof. Any subgroup of an abelian group is normal by commutativity. \Box

- (b) $[4 \ pts]$ List the cosets of $\langle [11]_{24} \rangle$ in \mathbf{Z}_{24}^{\times} . $\mathbf{Z}_{24}^{\times} = \{ [1]_{24}, [5]_{24}, [7]_{24}, [11]_{24}, [13]_{24}, [17]_{24}, [19]_{24}, [23]_{24} \}$ $\langle [11]_{24} \rangle = \{ [1]_{24}, [11]_{24} \}$. $[5]_{24} \langle [11]_{24} \rangle = \{ [5]_{24}, [7]_{24} \}$. $[13]_{24} \langle [11]_{24} \rangle = \{ [13]_{24}, [23]_{24} \}$. $[17]_{24} \langle [11]_{24} \rangle = \{ [17]_{24}, [19]_{24} \}$.
- (c) [4 *pts*] Prove that the factor group $\mathbf{Z}_{24}^{\times}/\langle [11]_{24}\rangle \cong \mathbf{Z}_2 \times \mathbf{Z}_2$.

Proof. From part (b), we know that the factor group $\mathbf{Z}_{24}^{\times}/\langle [11]_{24}\rangle$ has order 4. So it must be isomorphic to \mathbf{Z}_4 or $\mathbf{Z}_2 \times \mathbf{Z}_2$. Moreover, every non-identity element in the factor group has order 2. In particular, $[5]_{24}^2 = [1]_{24}, [13]_{24}^2 =$ $[1]_{24}$, and $[17]_{24}^2 = [1]_{24}$. This implies that $\mathbf{Z}_{24}^{\times}/\langle [11]_{24}\rangle \cong \mathbf{Z}_2 \times \mathbf{Z}_2$.

(11) [5 pts] May you have a good summer! Stay safe!