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Review from Chapter 1, I

Theorem (Theorem 2: Division Algorithm)

For any integers a and b, with b > 0, there exist unique integers q and r
such that a = bq + r ,with 0 ≤ r < b.

Example (A useful skill)

To show b|a: We write a = bq + r first and then to show r = 0.

Theorem (Theorem 5)

d = gcd(a, b) is the smallest positive linear combination of a and b.
Moreover, an integer x is a linear combination of a and b ⇔ gcd(a, b)|x.

Remark (Use Group Theory:)

aZ+bZ = dZ, where d = gcd(a, b). aZ∩bZ = mZ, where m = lcm[a, b].
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Review from Chapter 1, II

Question 1

How to find d = gcd(a, b) and the linear combination as + bt = d?

Answer 1

(Matrix form of the) Euclidean algorithm !

Proposition (Proposition. 1)

(a, b) = 1 if and only if there exist integers m, n such that ma + nb = 1.

Proposition (Proposition. 2)

(a) If b|ac, then b|(a, b) · c.

(b) If b|ac and (a, b) = 1, then b|c.

(c) If b|a, c |a and (b, c) = 1, then bc|a.

(d) (a, bc) = 1 if and only if (a, b) = 1 and (a, c) = 1.
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Review from Chapter 1, III

Proposition (Proposition. 3)

Let a, b, n ∈ Z and n > 0. Then a ≡ b (mod n) if and only if n|(a− b).

Theorem (Theorem 10)

(1) ax ≡ b (mod n) has a solution ⇔ d |b, where d = gcd(a, n).
(2) If d |b, then there are d distinct solutions modulo n, and these
solutions are congruent modulo n/d.

Question 2

How to solve linear congruences ax ≡ b (mod n)?

Answer 2

See the slide (16 of 31): “An algorithm for solving linear congruences”.

Theorem (Theorem 11)

Chinese Remainder Theorem: Solve the system of congruences.
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Review from Chapter 1, IV

Definition (Definition 12 & Definition 17)

Zn = {[a]n} vs. Z×n = {[a]n | gcd(a, n) = 1}

Remark (Use Group Theory:)

Two Groups: (Zn,+[ ]) vs. (Z×n , ·[ ])

Example

|Zn| = n vs. |Z×n | = ϕ(n) = the number of generators of Zn.

Definition (Definition 16 & Proposition. 8)

ϕ(n): Euler’s ϕ-function, or the totient function.

Note (Theorem 18 & Corollary 19: Euler’s Thm ⇒ Fermat’s Thm)

If (a, n) = 1, then aϕ(n) ≡ 1 (mod n). ⇒ ap ≡ a (mod p) if p is a prime.
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Review from §2.3, I

Definition (Definition 1)

A function σ : S → S is a permutation of S if σ is one-to-one and onto.

Remark (Use Group Theory: Proposition. 1)

(Sym(S), ◦) is a group.

Proposition (Proposition. 2)

|Sn| = n!.

Definition (Definition 2)

σ = (a1a2 · · · ak): a cycle of length k. And the order o(σ) = k.

Example

Know how to compute στ = σ ◦ τ and σ−1.
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Review from §2.3, II

Proposition (Definition 3 & Proposition. 3)

If σ and τ are disjoint cycles in Sym(S), then στ = τσ.

Theorem (Theorem 4)

Every σ ∈ Sn can be written as a (unique) product of disjoint cycles.

Proposition (Proposition. 5)

The order of σ is the lcm of the lengths (orders) of its disjoint cycles.

Proposition (Definition 6 & Proposition. 6)

Every σ ∈ Sn can be written as a (NOT unique) product of transpositions.

Definition (Theorem 7 & Definition 8)

Product of transpositions: Even permutation vs. Odd permutation

Yi Final Review June 18, 2020 7 / 33



Review from §2.3, II

Proposition (Definition 3 & Proposition. 3)

If σ and τ are disjoint cycles in Sym(S), then στ = τσ.

Theorem (Theorem 4)

Every σ ∈ Sn can be written as a (unique) product of disjoint cycles.

Proposition (Proposition. 5)

The order of σ is the lcm of the lengths (orders) of its disjoint cycles.

Proposition (Definition 6 & Proposition. 6)

Every σ ∈ Sn can be written as a (NOT unique) product of transpositions.

Definition (Theorem 7 & Definition 8)

Product of transpositions: Even permutation vs. Odd permutation

Yi Final Review June 18, 2020 7 / 33



Review from §2.3, II

Proposition (Definition 3 & Proposition. 3)

If σ and τ are disjoint cycles in Sym(S), then στ = τσ.

Theorem (Theorem 4)

Every σ ∈ Sn can be written as a (unique) product of disjoint cycles.

Proposition (Proposition. 5)

The order of σ is the lcm of the lengths (orders) of its disjoint cycles.

Proposition (Definition 6 & Proposition. 6)

Every σ ∈ Sn can be written as a (NOT unique) product of transpositions.

Definition (Theorem 7 & Definition 8)

Product of transpositions: Even permutation vs. Odd permutation

Yi Final Review June 18, 2020 7 / 33



Review from §2.3, II

Proposition (Definition 3 & Proposition. 3)

If σ and τ are disjoint cycles in Sym(S), then στ = τσ.

Theorem (Theorem 4)

Every σ ∈ Sn can be written as a (unique) product of disjoint cycles.

Proposition (Proposition. 5)

The order of σ is the lcm of the lengths (orders) of its disjoint cycles.

Proposition (Definition 6 & Proposition. 6)

Every σ ∈ Sn can be written as a (NOT unique) product of transpositions.

Definition (Theorem 7 & Definition 8)

Product of transpositions: Even permutation vs. Odd permutation

Yi Final Review June 18, 2020 7 / 33



Review from §2.3, II

Proposition (Definition 3 & Proposition. 3)

If σ and τ are disjoint cycles in Sym(S), then στ = τσ.

Theorem (Theorem 4)

Every σ ∈ Sn can be written as a (unique) product of disjoint cycles.

Proposition (Proposition. 5)

The order of σ is the lcm of the lengths (orders) of its disjoint cycles.

Proposition (Definition 6 & Proposition. 6)

Every σ ∈ Sn can be written as a (NOT unique) product of transpositions.

Definition (Theorem 7 & Definition 8)

Product of transpositions: Even permutation vs. Odd permutation

Yi Final Review June 18, 2020 7 / 33



Review from §3.1, I

Definition (Definition 5)

(G , ∗) is a group if ∗ is a binary operation, and the following are satisfied:

(i) Closure: For all a, b ∈ G, a ∗ b is a well-defined element of G.

(ii) Associativity: For all a, b, c ∈ G, we have

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(iii) Identity: There exists an identity element e ∈ G, i.e.,

a ∗ e = a and e ∗ a = a for all a ∈ G.

(iv) Inverses: For each a ∈ G there exists an inverse element a−1 ∈ G:

a ∗ a−1 = e and a−1 ∗ a = e.

Definition (Definition 6)

A group is a nonempty set G with an associative binary operation, such
that G contains an identity element for the operation, and each element
of G has an inverse in G.
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Review from §3.1, II

Proposition (Proposition 4)

(i) If ab = ac, then b = c. (ii) If ac = bc, then a = b.

Definition (Definition 9)

A group G is said to be abelian if ab = ba for all a, b ∈ G.

Example (Propositions 6-7)

(Zn,+[ ]) is abelian with |Zn| = n. (Z×n , ·[ ]) is abelian with |Z×n | = ϕ(n).

Definition (Definition 14)

∼ is an equivalence relation if and only if for all a, b, c ∈ S we have

(1) Reflexive: a ∼ a;

(2) Symmetric: if a ∼ b, then b ∼ a;

(3) Transitive: if a ∼ b and b ∼ c, then a ∼ c.
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Review from §3.2, I

Proposition (Proposition 1)

H is a subgroup of G if and only if the following conditions hold:

(i) Closure: ab ∈ H for all a, b ∈ H;

(ii) Identity: e ∈ H;

(iii) Inverses: a−1 ∈ H for all a ∈ H.

Corollary (Corollary 7)

H is a subgroup of G ⇔ H is nonempty and ab−1 ∈ H for all a, b ∈ H.

Corollary (Corollary 8: Let H be a finite subset of G .)

H is a subgroup of G ⇔ H is nonempty and ab ∈ H for all a, b ∈ H.

Example (Note 1)

H is nonempty: Easy to show that H contains the identity element e.
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Review from §3.2, II

Definition (Definition 11)

Cyclic subgroup generated by a: 〈a〉 = {x | x = an for some n ∈ Z}.
G is called a cyclic group if G = 〈a〉 for some (generator) a ∈ G.

Proposition (Proposition 2)

The cyclic subgroup 〈a〉 is the smallest subgroup of G containing a ∈ G.

Example (Examples 14-16)

(Z,+) and (Zn,+[ ]) are cyclic. (Z×n , ·[ ]) is not always cyclic.

Note (Homework 3 (6) & Homework 4 (4))

Any cyclic group is abelian, but conversely not true.

Definition (Definition 17)

The order of a: o(a) = min{n ∈ Z+ | an = e}. Note: o(a) might be ∞.
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Example (Examples 14-16)

(Z,+) and (Zn,+[ ]) are cyclic. (Z×n , ·[ ]) is not always cyclic.

Note (Homework 3 (6) & Homework 4 (4))

Any cyclic group is abelian, but conversely not true.

Definition (Definition 17)

The order of a: o(a) = min{n ∈ Z+ | an = e}. Note: o(a) might be ∞.
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Review from §3.2, III

Proposition (Proposition 3)

(a) If o(a) =∞, then ak 6= am for all integers k 6= m.

(b) If o(a) = n <∞ and k ∈ Z, then ak = e if and only if n|k.

(c) If o(a) = n <∞, then ak = am if and only if k ≡ m (mod n) for all
integers k,m. Furthermore, |〈a〉| = o(a).

Theorem (Theorem 18: Lagrange’s Theorem)

If H is a subgroup of the finite group G, then |H| is a divisor of |G |.

Corollary (Corollary 20: Let G be a finite group of order n.)

(a) For any a ∈ G, o(a) is a divisor of n.

(b) For any a ∈ G , an = e.

Corollary (Corollary 21)

Any group of prime order is cyclic.
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Review from §3.3, I

Example (Groups of small orders)

(i) Groups of order 2, 3, 5 are cyclic.

(ii) Groups of order 4 are abelian: cyclic [Z4] vs. non-cyclic [Z×8 ]

(iii) Groups of order 6: abelian (cyclic) [Z6] vs. nonabelian [S3]

Proposition (Defintion 2 & Question 3 & Proposition 1)

Product of two subgroups: HK is not always a subgroup of G.
If h−1kh ∈ K for all h ∈ H and k ∈ K, then HK is a subgroup of G.

Note

If G is abelian, then the product of any two subgroups is again a subgroup.
If G is a finite group, then |HK | = |H||K |/|H ∩ K |.
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Review from §3.3, II

Proposition (Definition 5 & Proposition 2 & Remark 1)

(a) The direct product G1 × G2 is a group under the operation defined
for all (a1, a2), (b1, b2) ∈ G1×G2 by (a1, a2)(b1, b2) = (a1 ∗b1, a2 ·b2).

(b) If o(a1) = n and o(a2) = m, then o((a1, a2)) = lcm[n,m] in G1 × G2.

(c) If G1,G2 are finite groups, then |G1 × G2| = |G1| · |G2|.

Example (Example 6 & Proposition 3)

Z× Z is not cyclic. Zn × Zm is cyclic if and only if gcd(n,m) = 1.

Proposition (Definition 10 & Proposition 7)

Subgroup generated by S : 〈S〉 is the smallest subgroup that contains S.
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Review from §3.4, I

Definition (Definition 1)

(G1, ∗) ∼= (G2, ·): A group isomorphism φ : G1 → G2 satisfies

φ is well-defined

φ is a group homomorphism: φ(a ∗ b) = φ(a) · φ(b)

φ is one-to-one and onto

Proposition (Proposition 1)

Let φ : G1 → G2 be an isomorphism. Let e1 = eG1 and e2 = eG2 . Then

(a) φ(e1) = e2.

(b) φ(a−1) = (φ(a))−1 for all a ∈ G1.

(c) φ(an) = (φ(a))n for all a ∈ G1 and all n ∈ Z.

Proposition (Proposition 2)

The isomorphism ∼= is an equivalence relation.
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Review from §3.4, II

Note (Examples 4-5 & Propositions 5-6: Show one-to-one and onto:)

Direct proof; Find its inverse function φ−1: φ−1φ = 1G1 , φφ
−1 = 1G2

If φ is a homomorphism, then φ is one-to-one if and only if φ(x) = e2
implies x = e1, for all x ∈ G1. That is, ker(φ) = {e1}.
If |G1| = |G2| <∞, then any one-to-one mapping must be onto.

Example (Note 3 & Proposition 6)

Zm × Zn
∼= Zmn if and only if gcd(m, n) = 1.

Proposition (Proposition 3: Let φ : G1 → G2 be an isomorphism.)

(a) If a has order n in G1, then φ(a) has order n in G2.

(b) If G1 is abelian (cyclic), then so is G2.

Note (Note 2 & Examples 6-9)

This gives us a technique for proving that two groups are not isomorphic.

Yi Final Review June 18, 2020 16 / 33



Review from §3.4, II

Note (Examples 4-5 & Propositions 5-6: Show one-to-one and onto:)

Direct proof; Find its inverse function φ−1: φ−1φ = 1G1 , φφ
−1 = 1G2

If φ is a homomorphism, then φ is one-to-one if and only if φ(x) = e2
implies x = e1, for all x ∈ G1. That is, ker(φ) = {e1}.
If |G1| = |G2| <∞, then any one-to-one mapping must be onto.

Example (Note 3 & Proposition 6)

Zm × Zn
∼= Zmn if and only if gcd(m, n) = 1.

Proposition (Proposition 3: Let φ : G1 → G2 be an isomorphism.)

(a) If a has order n in G1, then φ(a) has order n in G2.

(b) If G1 is abelian (cyclic), then so is G2.

Note (Note 2 & Examples 6-9)

This gives us a technique for proving that two groups are not isomorphic.

Yi Final Review June 18, 2020 16 / 33



Review from §3.4, II

Note (Examples 4-5 & Propositions 5-6: Show one-to-one and onto:)

Direct proof; Find its inverse function φ−1: φ−1φ = 1G1 , φφ
−1 = 1G2

If φ is a homomorphism, then φ is one-to-one if and only if φ(x) = e2
implies x = e1, for all x ∈ G1. That is, ker(φ) = {e1}.
If |G1| = |G2| <∞, then any one-to-one mapping must be onto.

Example (Note 3 & Proposition 6)

Zm × Zn
∼= Zmn if and only if gcd(m, n) = 1.

Proposition (Proposition 3: Let φ : G1 → G2 be an isomorphism.)

(a) If a has order n in G1, then φ(a) has order n in G2.

(b) If G1 is abelian (cyclic), then so is G2.

Note (Note 2 & Examples 6-9)

This gives us a technique for proving that two groups are not isomorphic.

Yi Final Review June 18, 2020 16 / 33



Review from §3.4, II

Note (Examples 4-5 & Propositions 5-6: Show one-to-one and onto:)

Direct proof; Find its inverse function φ−1: φ−1φ = 1G1 , φφ
−1 = 1G2

If φ is a homomorphism, then φ is one-to-one if and only if φ(x) = e2
implies x = e1, for all x ∈ G1. That is, ker(φ) = {e1}.
If |G1| = |G2| <∞, then any one-to-one mapping must be onto.

Example (Note 3 & Proposition 6)

Zm × Zn
∼= Zmn if and only if gcd(m, n) = 1.

Proposition (Proposition 3: Let φ : G1 → G2 be an isomorphism.)

(a) If a has order n in G1, then φ(a) has order n in G2.

(b) If G1 is abelian (cyclic), then so is G2.

Note (Note 2 & Examples 6-9)

This gives us a technique for proving that two groups are not isomorphic.

Yi Final Review June 18, 2020 16 / 33



Review from §3.5, I

Theorem (Theorems 1-2)

Every subgroup of a cyclic group G is cyclic.

Let G be a cyclic group.

{
If G is infinite, then G ∼= Z.

If |G | = n, then G ∼= Zn.

Corollary (Corollary 3)

(a) Any two infinite cyclic groups are isomorphic to each other.

(b) Two finite cyclic groups are isomorphic ⇔ they have the same order.

Note (Note 1 & Corollary 4 & Remark 1: Subgroups of Z)

For any m ∈ Z, mZ = 〈m〉 ∼= Z = 〈1〉 = 〈−1〉.
• mZ ⊆ nZ⇔ n|m. • mZ = nZ⇔ m = ±n.
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Review from §3.5, II

Proposition (Proposition 1 & Corollary 5 & Note 3: Subgroups of Zn)

Let d = gcd(m, n). Then 〈[m]n〉 = 〈[d ]n〉. And |〈[m]n〉| = |〈[d ]n〉| = n/d.

(a) The element [k]n generates Zn ⇔ gcd(k, n) = 1, i.e., [k]n ∈ Zn×.

(b) If H is any subgroup of Zn, then H = 〈[d ]n〉 for some divisor d of n.

(c) If d1|n and d2|n, then 〈[d1]n〉 ⊆ 〈[d2]n〉 if and only if d2|d1.

(c)’ If d1|n and d2|n and d1 6= d2, then 〈[d1]n〉 6= 〈[d2]n〉.

Remark (Below Proposition 1 & Corollary 5: G = 〈a〉 with o(a) = n.)

Know how to translate above proposition to the multiplicative version.

Example (Definition 8 & Example 9)

Subgroup diagram shows all subgroups of Zn and the inclusion relations.
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Review from §3.5, III

Definition (Definition 10)

Direct product G1× · · · ×Gn of n groups G1, . . . ,Gn is defined as follows

The elements are n-tuples (g1, . . . , gn), where gi ∈ Gi for each i .

The operation is componentwise multiplication:

(g1, . . . , gn)(g ′1, . . . , g
′
n) = (g1g

′
1, . . . , gng

′
n).

The order of an element is the lcm of the orders of each component.

Example (Theorem 11 & Examples 14-15)

Let n ∈ Z+ which has the prime decomposition n = pα1
1 pα2

2 · · · pαm
m . Then

Zn
∼= Zp

α1
1
× Zp

α2
2
× · · · × Zpαm

m
, where p1 < p2 < . . . < pm.

Corollary (Corollary 12 (Proposition. 8 in Chapter 1))

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pm

)
.
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Review from §3.5, IV

Definition (Definition 16)

Exponent of group G = min{N ∈ Z+ | aN = e for all a ∈ G}.

Proposition (Proposition 2: Let G be a finite abelian group.)

(a) The exponent of G is equal to max{o(a) | a ∈ G}..
(b) The group G is cyclic if and only if its exponent is equal to its order.

Note

This characterizes cyclic groups among all finite abelian groups.

Example (Two Examples: Z×15 is not cyclic & Z×7
∼= Z×14)

For small n, check Z×n cyclic or not without using primitive root theorem.
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Review from §3.6, I

Definition (Definition 1)

Permutation group: Any subgroup of the symmetric group Sym(S).

Theorem (Theorem 2: Cayley’s Theorem)

Every group is isomorphic to a permutation group.

Definition (Definition 4 & Example: Rigid motions of a regular n-gon)

The nth dihedral group Dn is the group of rigid motions of a regular n-gon.

Proposition (Propositions 2-3 & Note 5)

Dn = {ak , akb | 0 ≤ k < n}, where an = e, b2 = e, ba = a−1b and n ≥ 3.
a : A counterclockwise rotation about the center through 360/n degrees.
b : A a flip about the line of symmetry through position number 1.
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Review from §3.6, II

Example (Slides 14-16 of 23)

Subgroups of D3 and D4: Subgroup diagrams of D3 and D4

Note (Homework 7 (3)-(4))

In Dn, o(ak) =
n

gcd(k , n)
and o(akb) = 2 for all 0 ≤ k < n.

Definition (Proposition 5 & Definition 5)

The alternating group An is the set of all even permutations of Sn.

Theorem (Theorem 6)

|An| =
|Sn|

2
=

n!

2
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Review from §3.6, III

Definition (Definition 7)

The decomposition type of a permutation σ in Sn is the list of all the
cycle lengths involved in a decomposition of σ into disjoint cycles.

Example (Slides 19-20 of 23)

List all the elements of A3 and A4.

Example (Proposition 6: The converse of Lagrange’s theorem is false)

A4 has no subgroup of order 6.

Theorem (Definition 8 & Theorem 10)

Let ∆n =
∏

1≤i<j≤n
(xi − xj) and σ(∆n) =

∏
1≤i<j≤n

(xσ(i) − xσ(j)).

Then σ ∈ An ⇔ σ(∆n) = ∆n.
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Review from §3.7, I

Definition (Definition 1)

φ : G1 → G2 is a homomorphism if φ(a ∗b) = φ(a) ·φ(b) for all a, b ∈ G1.

Note (Note 1)

Every isomorphism is a homomorphism, but conversely not true.

Proposition (Propositions 1-2: Let φ : G1 → G2 be a homomorphism.)

(a) φ(e1) = e2;

(b) φ(a−1) = (φ(a))−1 for all a ∈ G1;

(c) φ(an) = (φ(a))n for all a ∈ G1 and all n ∈ Z;

(d) if o(a) = n in G1, then o(φ(a)) in G2 is a divisor of n.

(e) φ is onto: If G1 is abelian (cyclic), then G2 is also abelian (cyclic).

Example (Examples 7-8)

If G1 = 〈a〉 is cyclic, then φ : G1 → G2 is completely determined by φ(a).
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Review from §3.7, II

Definition (Definition 9 & Note 2 & Theorem 10)

ker(φ) = {x ∈ G1 | φ(x) = e2}⊆ G1 & im(φ) = {φ(x) | x ∈ G1}⊆ G2

Theorem (Theorem 11)

φ is one-to-one ⇔ ker(φ) = {e1} & φ is onto ⇔ im(φ) = G2

Example (φ’s between cyclic groups: Example 8 & Propositions 3-5)

(1) Define φ : Z→ Z by φ(x) = mx.

(2) Define φ : Z→ Zn by φ(x) = [mx ]n.

(3) Define φ : Zn → Z by φ([x ]n) = 0. This φ is the only one.

(4) Define φ : Zn → Zk by φ([x ]n) = [mx ]k . φ is well-defined ⇔ k |mn.
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Review from §3.7, III

Definition (Definition 12)

Normal subgroup H of G: If ghg−1 ∈ H for all h ∈ H and g ∈ G.

Example (Proposition 6 & Example 13)

(1) ker(φ) is a normal subgroup of G1.

(2) If H = G or H = {e}, then H is normal.

(3) Any subgroup of an abelian group is normal.

Proposition (Proposition 7: Let φ : G1 → G2 be a homomorphism.)

(a) If H1 is a subgroup of G1, then φ(H1) is a subgroup of G2.
If φ is onto and H1 is normal in G1, then φ(H1) is normal in G2.

(b) If H2 is a subgroup of G2, then φ−1(H2) is a subgroup of G1.
If H2 is a normal in G2, then φ−1(H2) is normal in G1.
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Review from §3.7, IV

Theorem (Definition 14 & Proposition 8 & Theorem 15)

Let φ : G1 → G2 be a homomorphism. Define φ : G1/φ→ φ(G1) by
φ([a]φ) = φ(a), for all [a]φ ∈ G1/φ. Then φ is a group isomorphism.

Example (Slides 20-21 of 23)

(1) Reprove “Every cyclic group G is isomorphic to either Z or Zn”.

(2) Reprove “Cayley’s Theorem: Every group G ∼= a permutation group”.

Proposition (Proposition 9: Let φ be a homomorphism. TFAE:)

(1) φ(a) = φ(b); (2) ab−1 ∈ ker(φ); (3) a = kb for some k ∈ ker(φ);
(2)′ b−1a ∈ ker(φ); (3)′ a = bk for some k ∈ ker(φ).

Theorem (Remark 1: Fundamental Homomorphism Theorem)

Let φ : G1 → G2 be a homomorphism. Then G1/ ker(φ) ∼= φ(G1) = im(φ).
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Review from §3.8, I

Definition (Definition 5 & Corollary 4 & Note 3)

Left coset of H in G: {aH | a ∈ G}. Right coset of H in G: {Ha | a ∈ G}.
Index [G : H] of H in G: The number of left (right) cosets of H in G.

Note (Note 3)

There is a one-to-one correspondence between left cosets and right cosets.

Proposition (Proposition 1 & Note 2: TFAE:)

(1) aH = bH; (2) aH ⊆ bH; (3) a ∈ bH; (4) b−1a ∈ H;

(2)′ bH ⊆ aH; (3)′ b ∈ aH; (4)′ a−1b ∈ H.

Proposition (Proposition 2: TFAE:)

(1) Ha = Hb; (2) Ha ⊆ Hb; (3) a ∈ Hb; (4) ab−1 ∈ H;

(2)′ Hb ⊆ Ha; (3)′ b ∈ Ha; (4)′ ba−1 ∈ H.
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Review from §3.8, II

Example (Proposition 3)

The left coset aH has the same number of elements as H.

Example (Examples 6-9 & Question 1)

Algorithm for listing the left cosets of a given subgroup H of a finite group:

(1) The first coset we can identify is H itself.

(2) If a ∈ H, then aH = H, so we begin by choosing any element a /∈ H.

(3) For the next coset we choose any element not in H or aH (if possible).

(4) Continuing in this way provides a method for listing all cosets.

Remark

The above two Examples also hold for the right cosets of H.

Note (Slide 12 of 35)

For abelian groups, left cosets and right cosets are always the same.
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Review from §3.8, III

Theorem (Theorem 11)

If N is a normal subgroup of G, then the set of left cosets of N forms a
group under the coset multiplication given by aNbN = abN for a, b ∈ G.

Definition (Definition 12)

If N is a normal subgroup of G, then the group of left cosets of N in G is
called the factor group of G determined by N. It will be denoted by G/N.

Example (Example 13: Order of an element in the factor group G/N)

The order of aN is the smallest positive integer n such that an ∈ N.
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Review from §3.8, IV

Proposition (Proposition 4: Let N be a normal subgroup of G .)

(a) The natural projection π : G → G/N defined by π(x) = xN, for all
x ∈ G, is a group homomorphism, and ker(π) = N.

(b) There is a one-to-one correspondence between

{subgroups K of G/N} ←→ {subgroups H of G with H ⊇ N}
Under this correspondence, normal subgroups ←→ normal subgroups.

Proposition (Proposition 5)

H is normal if and only if its left and right cosets coincide.

Example (Slides 22-24 of 35)

This gives us a technique for determining that a subgroup is normal or not.

Fact (Slides 23 of 35: A useful fact)

Subgroups of index 2 are normal.
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Review from §3.8, V

Theorem (Theorem 15: Fundamental Homomorphism Theorem)

If φ : G1 → G2 is a homomorphism with K = ker(φ), then G1/K ∼= φ(G1).

Remark (How to use Fundamental Homomorphism Theorem)

To show G1/ ker(φ) ∼= φ(G1):

(i) Show that φ is well-defined.

(ii) Show that φ is a homomorphism.

(iii) Find φ(G1). In particular, φ(G1) = G2 if φ is onto.

(iv) Find ker(φ). In particular, ker(φ) = {e1} if φ is one-to-one.

Definition (Remark 2 & Definition 16 & Example 17)

The nontrivial group G is called a simple group if it has no proper
nontrivial normal subgroups. For example, Zp is simple for any prime p.
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Review from §3.8, VI

Example (Proposition 6: Factor groups of direct products)

Let Ni be a normal subgroup of Gi with i ∈ {1, 2}. Then N1 × N2 is a
normal subgroup of the direct product G1 × G2 and

(G1 × G2)/(N1 × N2) ∼= (G1/N1)× (G2/N2).

Example (Proposition 7: Internal direct product)

A group G with subgroups H and K is called the internal direct product
of H and K if

(i) H and K are normal in G,

(ii) H ∩ K = {e}, and

(iii) HK = G.

Then in this case G ∼= H × K.
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