Final Exam

Exam Date: June 19th-20th (Friday-Saturday)

Exam Length: 150 minutes

- Please submit your work on Blackboard before Saturday (6/20) 11:59 pm.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- Open-book and Open-notes.
- Honors Code: No consulting any online sources. No consulting with each other.

(0) Write the following honors code with your full name at the end.

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code. As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam. **Full name**

- (1) [20 pts] True or False: (No need to show work to support your answer.)
 - i) **R** is a group under multiplication.
 - ii) A cyclic group is always abelian.
 - iii) 8 is a unit in \mathbf{Z}_{35} .
 - iv) If |G| = 23, then G must be isomorphic to \mathbb{Z}_{23} .
 - v) The odd permutations in S_n form a normal subgroup of S_n .
 - vi) $D_4 \cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$.
 - vii) The order of gH in G/H is the smallest positive integer n such that $g^n=e$.
 - viii) The product of an even number of disjoint cycles is an even permutation.
 - ix) $\mathbf{Z}_{10} \times \mathbf{Z}_{10} \cong \mathbf{Z}_5 \times \mathbf{Z}_{20}$.
 - x) \mathbf{Z}_{37} is a simple group.
- (2) (a) [3 pts] Solve the congruence $7x \equiv 1 \pmod{17}$.
 - (b) [3 pts] Solve the congruence $12x \equiv 30 \pmod{54}$.
 - (c) [4 pts] Solve the system of congruences $5x \equiv 7 \pmod{12}$ $x \equiv 13 \pmod{19}$.
- (3) $[10 \ pts]$ For the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 8 & 5 & 2 & 10 & 9 & 1 & 4 & 6 & 7 \end{pmatrix}$:
 - (a) Write σ as a product of disjoint cycles.
 - (b) Write σ as a product of transpositions.
 - (c) Write σ^{-1} as a product of disjoint cycles.
 - (d) Is σ even, odd, neither or both? Is σ^{-1} even, odd, neither or both?

1

(e) What is the order of σ ?

- (4) [10 pts] Let G be the set of nonzero rational numbers \mathbf{Q}^{\times} . Define a new multiplication by $a * b = \frac{ab}{5}$, for all $a, b \in G$. Show that (G, *) is an abelian group.
- (5) (a) [3 pts] Let $G = \langle a \rangle$ be a group of order 50. What is the order of $\langle a^{35} \rangle$?
 - (b) [3 pts] What is the order of ([18]₂₀, [25]₃₀) in $\mathbb{Z}_{20} \times \mathbb{Z}_{30}$?
 - (c) [4 pts] Let $G = \mathbb{Z}_{48}$. List all possible choice of $[k]_{48}$ such that $\langle [k]_{48} \rangle = \langle [20]_{48} \rangle$.
- (6) [5 pts] Let G be a non-cyclic group of order 27. Prove that $a^9 = e$ for all $a \in G$.
- (7) Let H be a subgroup of G. Let $N(H) = \{g \in G \mid gHg^{-1} = H\}$. Prove
 - (a) [4 pts] N(H) is a subgroup of G.
 - (b) [4 pts] H is a subgroup of N(H).
 - (c) [2 pts] H is normal in N(H).
- (8) [5 pts] Let N_1 and N_2 be normal subgroups of the group G and let $N_1 \cap N_2 = \{e\}$. Prove that $n_1 n_2 = n_2 n_1$ for all $n_1 \in N_1$ and $n_2 \in N_2$.
- (9) Let G and H be groups. Define the function $\phi: G \times H \to G$ by

$$\phi((a,b)) = a$$
, for all $(a,b) \in G \times H$.

- (a) [3 pts] Prove that ϕ is a group homomorphism and onto.
- (b) [2 pts] Find $ker(\phi)$.
- (10) (a) [2 pts] Let G be an abelian group. Let H be a subgroup of G. Prove that aH = Ha for any $a \in G$.
 - (b) [4 pts] List the cosets of $\langle [11]_{24} \rangle$ in \mathbf{Z}_{24}^{\times} .
 - (c) [4 pts] Prove that the factor group $\mathbf{Z}_{24}^{\times}/\langle[11]_{24}\rangle\cong\mathbf{Z}_{2}\times\mathbf{Z}_{2}$.
- (11) [5 pts] May you have a good summer! Stay safe!