Exam II

Exam Date: June 9th (Tuesday) Exam Length: 100 minutes

- Please submit your work on Blackboard between 9 am and 9 pm.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- Open-book and Open-notes.
- Honors Code: No consulting any online sources. No consulting with each other.

(0) Write the following honors code with your full name at the end.

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code. As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam. **Full name**

- (1) [8 *pts*] True or False:
	- (a) Let p be a prime number. Then $\mathbf{Z}_p \times \mathbf{Z}_p \cong \mathbf{Z}_{p^2}$. False. \mathbf{Z}_{p^2} is cyclic but $\mathbf{Z}_p \times \mathbf{Z}_p$ is not.
	- (b) $13\mathbf{Z} \cong 17\mathbf{Z}$.

True. Both are infinite and cyclic.

(c) Every subgroup of a non-cyclic group is non-cyclic.

False. For example, S_3 , $\mathbb{Z}_2 \times \mathbb{Z}_2$.

(d) Let σ be any permutation in S_n . Then σ^2 must be in A_n .

True. σ^2 can be always written as a product of an even number of transpositions.

(2) [8 pts] Let $G = \{x \in \mathbb{R} \mid x > 0 \text{ and } x \neq 1\}$, and define $*$ on G by $a * b = a^{\ln b}$.

In Homework 2 (5), we have already shown that $(G, *)$ is an abelian group with the identity element e (the natural number e).

Show that the group $(G, *)$ is isomorphic to the multiplicative group \mathbb{R}^{\times} .

Define a function $\phi : \mathbf{R}^{\times} \to G$ by $\phi(y) = e^y$ for all $y \in \mathbf{R}^{\times}$. It is well-defined.

 $\phi(y) = e^y > 0$ and $e^y \neq 1$ since $y \in \mathbb{R}^\times$. That is, $\phi(y) \in G$ for all $y \in \mathbb{R}^\times$.

Moreover, we define $\phi^{-1}: G \to \mathbf{R}^\times$ by $\phi^{-1}(x) = \ln x$ for all $x \in G$. \checkmark To show that ϕ is one-to-one and onto, we need to verify that ϕ^{-1} is the inverse function of ϕ . In fact, for all $x \in G$ and all $y \in \mathbb{R}^{\times}$, we have

 $\phi(\phi^{-1}(x)) = \phi(\ln x) = e^{\ln x} = x$ and $\phi^{-1}(\phi(y)) = \phi^{-1}(e^y) = \ln(e^y) = y$. For any two elements $y_1, y_2 \in \mathbb{R}^{\times}$, we have

 $\phi(y_1 \cdot y_2) = e^{y_1 \cdot y_2} = (e^{y_1})^{y_2} = (e^{y_1})^{\ln(e^{y_2})} = e^{y_1} * e^{y_2} = \phi(y_1) * \phi(y_2).$

This shows that ϕ respects the two operations. Thus, ϕ is an isomorphism.

(3) [6 pts] Let G be a finite group of order 125 (i.e., $|G| = 125$) with the identity element e. Assume that G contains an element a with $a^{25} \neq e$. Prove that G is cyclic.

Let $H = \langle a \rangle$. It is clear that H is a subgroup of G since $a \in G$. By Lagrange's Theorem, the possible orders of H are the divisors of $|G| = 125$. That is, $|H| = 1, 5, 25$, or 125.

Claim:
$$
|H| = 125
$$
.

If $|H| = 1, 5$, or 25, then $a^{25} = e$. This is a contradiction since $a^{25} \neq e$. If $|H| = 1, 5$, or 25, then $a^{25} = e$. This is a contradiction since $a^{25} \neq e$. \Box
That is, $H = \langle a \rangle = G$. Therefore, G is cyclic. \Box

(4) (a) $\lceil 3 \text{ pts} \rceil$ Let $\sigma = (17593)(2467)(385) \in S_9$. Find the order of σ in S_9 .

 $\sigma = (172465)(389)$, so the order of σ is lcm[6, 3] = 6.

(b) $\lceil 3 \text{ pts} \rceil$ Let $\tau = (14376)(2589)(23)(1457) \in S_9$. Find the order of τ in S_9 .

 $\tau = (1356)(27489)$, so the order of τ is lcm[4, 5] = 20.

(c) [3 pts] Which of the permutations σ , τ are in A_9 ? Show work to support your answer.

None of σ and τ is in A_9 . Since both of σ and τ are odd permutations.

(5) (a) [3 pts] Let G be a group and let $g \in G$ be an element of order 100. List all possible powers of g that have order 5.

For any integer k, we have
$$
\langle g^k \rangle = \langle g^d \rangle
$$
 with $d = \gcd(k, 100)$. And $o(g^j) = |\langle g^k \rangle| = |\langle g^d \rangle| = \frac{100}{d} = \frac{100}{\gcd(k, 100)} = 5$. So, $\gcd(k, 100) = 20$. It is equivalent to $\gcd\left(\frac{k}{20}, 5\right) = 1 \Rightarrow \frac{k}{20} = 1, 2, 3, 4 \Rightarrow k = 20, 40, 60, 80$.

(b) [3 pts] Let $G = \mathbb{Z}_{100}$. List all possible choice of $[k]_{100}$ such that $\langle [k]_{100} \rangle = \langle [35]_{100} \rangle$.

$$
\langle [k]_{100} \rangle = \langle [35]_{100} \rangle = \langle [5]_{100} \rangle \text{ since } \gcd(35, 100) = 5. \text{ It follows that}
$$

$$
\langle [k]_{100} \rangle = \langle [5]_{100} \rangle \Leftrightarrow \gcd(k, 100) = 5 \Leftrightarrow \gcd\left(\frac{k}{5}, 20\right) = 1.
$$

Thus, $\frac{k}{5}$ 5 $= 1, 3, 7, 9, 11, 13, 17, 19$. In conclusion, the possible choices are $k = 5, 15, 35, 45, 55, 65, 85, 95.$

(c) [4 pts] Give the subgroup diagram of \mathbb{Z}_{100} .

$$
100 = 2^2 5^2
$$
: Any divisor $d = 2^i 5^j$, where $i = 0, 1, 2$ and $j = 0, 1, 2$.

- (6) [9 pts] Let $D_n = \{a^k, a^k b \mid 0 \le k < n\}$, where $a^n = e, b^2 = e$, and $ba = a^{-1}b$. Moreover, in Homework 7 (3), we have shown that $ba^m = a^{-m}b$ for all $m \in \mathbb{Z}$.
	- (a) [2 pts] Show that $(a^k b)^2 = e$ for each $0 \le k < n$. $(a^k b)^2 = (a^k b)(a^k b) = a^k (ba^k) b = a^k (a^{-k} b) b = (a^k a^{-k})(bb) = ee = e.$
	- (b) [4 pts] Find the order of each element of D_{10} .

By Proposition 1 in §3.5, we know that $o(a^k) = \frac{10}{100}$ $\frac{16}{\gcd(k, 10)}$. Thus, a^k |e a a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 order 1 10 5 10 5 2 5 10 5 10

It follows from Part (a) that all the remaining elements of the form $a^k b$ have the order 2 since $a^k b \neq e$. That is,

$$
\begin{array}{c|ccccccccc}\n a^k & b & b & ab & a^2b & a^3b & a^4b & a^5b & a^6b & a^7b & a^8b & a^9b \\
\hline\n\text{order} & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2\n\end{array}
$$

(c) [3 pts] Is D_{10} isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_5$? Show work to support your answer. No. $\mathbf{Z}_4 \times \mathbf{Z}_5$ is cyclic but D_{10} is not. Or there is an element of order 4 in $\mathbf{Z}_4 \times \mathbf{Z}_5$ but D_{10} has none.