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e Find ¢ & Verify ¢
o ¢(a") =(¢(a))" forallaec GyandallneZ: n=0vs. n=—1
e o(a) = n= o(¢(a)) = n; abelian; cyclic
e Lagrange's Theorem: If |G| = n < oo and H C G, then |H]||n.
o Let a€ G. Then (a) C G and |(a)| = o(a)||G]| in addition if G is finite.
e Any group of prime order is cyclic (and so abelian).

Cayley's Theorem: Every group is isomorphic to a permutation group.

Cyclic group Cy: Infinite: & Z vs. Finite: = Z,, --» multiplicative G
Subgroups of Z vs. Subgroups of Z,~~ subgroup diagram

Dihedral group Dj:
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A group isomorphism ¢ : (Gy,*) — (G, )
e Find ¢ & Verify ¢
o ¢(a") =(¢(a))" forallaec GyandallneZ: n=0vs. n=—1
e o(a) = n= o(¢(a)) = n; abelian; cyclic
Lagrange's Theorem: If |G| = n < oo and H C G, then |H]||n.
o Let a€ G. Then (a) C G and |(a)| = o(a)||G]| in addition if G is finite.
e Any group of prime order is cyclic (and so abelian).

o Cayley's Theorem: Every group is isomorphic to a permutation group.

Cyclic group Cy: Infinite: & Z vs. Finite: = Z,, --» multiplicative G
Subgroups of Z vs. Subgroups of Z,~~ subgroup diagram

Dihedral group D,: Subgroups of D3, Dy

Alternating group A,: Subgroups of Az, Ag

Z): not always cyclic. |Z)| = p(n) = # of generators of Z,

Product of two subgroups: not always a subgroup.

Direct product of 2 groups ~» n groups: Z, = zpf‘l X o ZLpam~ ()
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Example 1

Let G be an abelian group with subgroups H and K. Prove that if
HK = G and HN K = {e}, then G = H x K.
Proof.
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Example 2

Let G be a finite abelian group. Let n € ZT. Define a function

¢:G— Gby¢p(g)=2g" forall geG.

Then ¢ is a group isomorphism if and only if G has no nontrivial element
whose order is a divisor of n.
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¢:G— Gby¢p(g)=2g" forall geG.
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Let G be a finite abelian group. Let n € ZT. Define a function
¢:G— Gby¢p(g)=2g" forall geG.

Then ¢ is a group isomorphism if and only if G has no nontrivial element
whose order is a divisor of n.

Proof.
(i) well-defined: Trivial. (Why?)
(ii) ¢ preserves the products: For any g, h € G, we have
!
¢(gh) = (gh)"=g"h" = ¢(g)p(h).

(iii) one-to-one and onto: If ¢ is one-to-one, then ¢ is also onto. (Why?)
By Proposition 5 in §3.4, ¢ is one-to-one < ¢(g) = e = g =e.

S gh=e=>g=e< o(g)fnforall g #e.
That is, G has no non-identity element whose order is a divisor of n.
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Example 3

Any cyclic group of even order has exactly one element of order 2.
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Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: G = Z5,. In Z5,,
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Example 3

Any cyclic group of even order has exactly one element of order 2.

Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: G = Z5,. In Z5,,
o(x) =2=2x =0 (mod 2n) = x =0 (mod n) = x =0, n (mod 2n),

i.e., x = [0]2n, [n]2n- But o([0]2,) = 1, [n]2n is the only element of order 2
in Z3,. The proof is done. (Why?) [Proposition 3 (a) in §3.4] O

v

Another proof.

G = Zy, : In Zy,, there is exactly one subgroup H of order 2. (Why?)
Moreover, H is cyclic. (Why?) Thus, H = Z5. (Why?) It follows that H
has only one generator. (Why?)
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Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: G = Z5,. In Z5,,
o(x) =2=2x =0 (mod 2n) = x =0 (mod n) = x =0, n (mod 2n),

i.e., x = [0]2n, [n]2n- But o([0]2,) = 1, [n]2n is the only element of order 2
in Zp,. The proof is done. (Why?) [Proposition 3 (a) in §3.4] O

Another proof.

G = Z5, : In Zyp, there is exactly one subgroup H of order 2. (Why?)
Moreover, H is cyclic. (Why?) Thus, H = Z,. (Why?) It follows that H
has only one generator. (Why?) Similarly as above, the proof is done. [

v

Example 1

Z7; is not cyclic: [—1]15 and [4]1s have order 2. (Much easier!)
Z3, is not cyclic: [—1]21 and [8]21 have order 2. (Much easier!)

o
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Example 4

Remark 1 (From previous example:)

In Z3,,, the equation 2x = 0 (mod 2n) has exactly 2 solutions.
That is, the equation x2 = e has exactly 2 solutions in G = Z5,,.
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Example 4

Remark 1 (From previous example:)

In Z3,, the equation 2x = 0 (mod 2n) has exactly 2 solutions.
That is, the equation x° = e has exactly 2 solutions in G = Z5,,.

Let G be a finite cyclic group of order n. Let m € Z* be a divisor of n.
Show that the equation x™ = e has exactly m solutions.
Proof.

G =1Z,: Toshow mx =0 (mod n) has exactly m solutions, where m|n.
Then the proof is done by using Theorem 10 (2) in Chapter 1. (Why?) [

Theorem 2 (Theorem 10 in Chapter 1)
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Remark 1 (From previous example:)

In Z3,, the equation 2x = 0 (mod 2n) has exactly 2 solutions.
That is, the equation x° = e has exactly 2 solutions in G = Z5,,.

Let G be a finite cyclic group of order n. Let m € Z* be a divisor of n.
Show that the equation x™ = e has exactly m solutions.

Proof.

G =1Z,: Toshow mx =0 (mod n) has exactly m solutions, where m|n.
Then the proof is done by using Theorem 10 (2) in Chapter 1. (Why?) [

Theorem 2 (Theorem 10 in Chapter 1)

Let a,b and n > 1 be integers.

(1) The congruence ax = b (mod n) has a solution if and only if b is
divisible by d, where d = (a, n).
(2) Ifd|b, then there are d distinct solutions modulo n, and these

solutions are congruent modulo n/d.
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Example 5

Let H = { E 2} ’ ce€Zyand d = j:l} C GL2(Zp). Prove H = Dy,
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Let H = { E 2} ’ ce€Zyand d = j:l} C GL2(Zp). Prove H = Dy,

H is a subgroup of GL2(Z,). (Check it!)
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Proof.
H is a subgroup of GL2(Z,). (Check it!) And |H| = 2p = |Dp|.
D, =
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Example 5

Let H = { E 2} ’ ce€Zyand d = il} C GL2(Zp). Prove H = Dy,

Proof.
H is a subgroup of GL2(Z,). (Check it!) And |H| = 2p = |Dp|.
D, = {a*,a"b | 0 < k < p}, where a? = e, b> = e, ba = a~1b.
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Example 5

d

Let H = { E 0} ’ ce€Zyand d = il} C GL2(Zp). Prove H = Dy,

Proof.

H is a subgroup of GL2(Z,). (Check it!) And |H| = 2p = |Dp|.
D, = {ak,a"b | 0 < k < p}, where aP = e, b?> = e, ba = a~1b. Let

1 0 1 0
A—L 1] and B—[O _1}

Then AP = b, B2 = I
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H is a subgroup of GL2(Z,). (Check it!) And |H| = 2p = |Dp|.
D, = {ak,a"b | 0 < k < p}, where aP = e, b?> = e, ba = a~1b. Let

1 0 1 0
A—L 1] and B—[O _1}

Then AP = I, B2 = I, and A¥ # AKB for 0 < k < p. (Check it!) Moreover,

A A B A [ A e

Thus, we can define ¢ : H — D, by ¢(A) = a and ¢(B) = b.
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Let H = { E 2} ’ ce€Zyand d = j:l} C GL2(Zp). Prove H = Dy,

Proof.

H is a subgroup of GL2(Z,). (Check it!) And |H| = 2p = |Dp|.
D, = {ak,a"b | 0 < k < p}, where aP = e, b?> = e, ba = a~1b. Let

1 0 1 0
A—L 1] and B—[O _1}

Then AP = I, B2 = I, and A¥ # AKB for 0 < k < p. (Check it!) Moreover,

A A B A [ A e

Thus, we can define ¢ : H — D, by ¢(A) = a and ¢(B) = b.
From the above calculations, it is clear that ¢ is a group isomorphism. [J
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Example 6: Prove that A3 2 S3 x Z».

Note 1 (Proposition 6 in §3.6)
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Does S3 x Z, have a subgroup of order 67 \
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Note 1 (Proposition 6 in §3.6)

A4 has no subgroup of order 6.

Does S3 x Z, have a subgroup of order 67 Yes!

S3 x {[0]2} is a subgroup of S3 x Z; of order 6. (Check it!)
In particular, this is just a concrete example of Homework 4 (8) part (a).
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Example 6: Prove that A; 22 S5 X Z5.

Note 1 (Proposition 6 in §3.6)

A4 has no subgroup of order 6.

Does S3 x Z, have a subgroup of order 67 Yes!

S3 x {[0]2} is a subgroup of S3 x Z; of order 6. (Check it!)
In particular, this is just a concrete example of Homework 4 (8) part (a).

Thus, A4 % 53 X 22.
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Example 7: Prove that S 2 A, X Z».
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Possible decomposition types of permutations of S;: (See §3.6)

(i) a single cycle of length 1,2,3 or 4
(i) two disjoint cycles of length 2
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Example 7: Prove that S 2 A, X Z».
The largest possible order of an element in Sy is 4. (Why?) \

Possible decomposition types of permutations of S;: (See §3.6)
(i) a single cycle of length 1,2,3 or 4
(i) two disjoint cycles of length 2

And so the possible decomposition types of permutations of Ay are
(a) a single cycle of length 1 or 3

(b) two disjoint cycles of length 2

It follows that there is an element of order 6 in As x Z. (Why?)

ThUS, 54 7'% A4 X ZQ.

Yi Exam |l Review June 8, 2020 9/9



