Exam II Review

Shaoyun Yi

MATH 546/701I

University of South Carolina

June 8, 2020

A group isomorphism $\phi: (\mathsf{G}_1, \ast) \overset{\cong}{\longrightarrow} (\mathsf{G}_2, \cdot)$ • Find ϕ & Verify ϕ

- Find ϕ & Verify ϕ
- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1$ and all $\mathsf{n} \in \mathsf{Z}\colon\, \mathsf{n} = 0$ vs. $\mathsf{n} = -1$

- Find ϕ & Verify ϕ
- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1$ and all $\mathsf{n} \in \mathsf{Z}\colon\, \mathsf{n} = 0$ vs. $\mathsf{n} = -1$
- $o(a) = n \Rightarrow o(\phi(a)) = n$; abelian; cyclic
- Lagrange's Theorem:

- Find ϕ & Verify ϕ
- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1$ and all $\mathsf{n} \in \mathsf{Z}\colon\, \mathsf{n} = 0$ vs. $\mathsf{n} = -1$
- $o(a) = n \Rightarrow o(\phi(a)) = n$; abelian; cyclic
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.

- Find ϕ & Verify ϕ
- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1$ and all $\mathsf{n} \in \mathsf{Z}\colon\, \mathsf{n} = 0$ vs. $\mathsf{n} = -1$
- $o(a) = n \Rightarrow o(\phi(a)) = n$; abelian; cyclic
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = o(a) ||G|$ in addition if G is finite.

A group isomorphism $\phi: (\mathsf{G}_1, \ast) \overset{\cong}{\longrightarrow} (\mathsf{G}_2, \cdot)$

- Find ϕ & Verify ϕ
- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1$ and all $\mathsf{n} \in \mathsf{Z}\colon\, \mathsf{n} = 0$ vs. $\mathsf{n} = -1$
- $o(a) = n \Rightarrow o(\phi(a)) = n$; abelian; cyclic
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = o(a) ||G|$ in addition if G is finite.
	- Any group of prime order is cyclic (and so abelian).

Cayley's Theorem:

- Find ϕ & Verify ϕ
- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1$ and all $\mathsf{n} \in \mathsf{Z}\colon\, \mathsf{n} = 0$ vs. $\mathsf{n} = -1$
- $o(a) = n \Rightarrow o(\phi(a)) = n$; abelian; cyclic
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = o(a)$ or and addition if G is finite.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = O(a)$ ||0| in and
Any group of prime order is cyclic (and so abelian).
- Cayley's Theorem: Every group is isomorphic to a permutation group.
- \bullet Cyclic group C_n :

- Find ϕ & Verify ϕ
- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1$ and all $\mathsf{n} \in \mathsf{Z}\colon\, \mathsf{n} = 0$ vs. $\mathsf{n} = -1$
- $o(a) = n \Rightarrow o(\phi(a)) = n$; abelian; cyclic
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = o(a)$ or and addition if G is finite.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = O(a)$ ||0| in and
Any group of prime order is cyclic (and so abelian).
- Cayley's Theorem: Every group is isomorphic to a permutation group.
- Cyclic group C_n: Infinite: ≅ Z vs. Finite: ≅ Z_n $-\rightarrow$ multiplicative G

A group isomorphism $\phi: (\mathsf{G}_1, \ast) \overset{\cong}{\longrightarrow} (\mathsf{G}_2, \cdot)$

- Find ϕ & Verify ϕ
- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1$ and all $\mathsf{n} \in \mathsf{Z}\colon\, \mathsf{n} = 0$ vs. $\mathsf{n} = -1$
- $o(a) = n \Rightarrow o(\phi(a)) = n$; abelian; cyclic
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = o(a)$ or and addition if G is finite.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = O(a)$ ||0| in and
Any group of prime order is cyclic (and so abelian).
- Cayley's Theorem: Every group is isomorphic to a permutation group.
- Cyclic group C_n: Infinite: ≅ Z vs. Finite: ≅ Z_n $-\rightarrow$ multiplicative G Subgroups of **Z** vs. Subgroups of $\mathbb{Z}_{n} \rightarrow$ subgroup diagram

 \bullet Dihedral group D_n :

- Find ϕ & Verify ϕ
- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1$ and all $\mathsf{n} \in \mathsf{Z}\colon\, \mathsf{n} = 0$ vs. $\mathsf{n} = -1$
- $o(a) = n \Rightarrow o(\phi(a)) = n$; abelian; cyclic
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = o(a)$ or and addition if G is finite.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = O(a)$ ||0| in and
Any group of prime order is cyclic (and so abelian).
- Cayley's Theorem: Every group is isomorphic to a permutation group.
- Cyclic group C_n: Infinite: ≅ Z vs. Finite: ≅ Z_n $-\rightarrow$ multiplicative G Subgroups of **Z** vs. Subgroups of $\mathbb{Z}_{n} \rightarrow$ subgroup diagram
- Dihedral group D_n : Subgroups of D_3, D_4
- Alternating group A_n :

- Find ϕ & Verify ϕ
- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1$ and all $\mathsf{n} \in \mathsf{Z}\colon\, \mathsf{n} = 0$ vs. $\mathsf{n} = -1$
- $o(a) = n \Rightarrow o(\phi(a)) = n$; abelian; cyclic
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = o(a)$ or and addition if G is finite.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = O(a)$ ||0| in and
Any group of prime order is cyclic (and so abelian).
- Cayley's Theorem: Every group is isomorphic to a permutation group.
- Cyclic group C_n: Infinite: ≅ Z vs. Finite: ≅ Z_n $-\rightarrow$ multiplicative G Subgroups of **Z** vs. Subgroups of $\mathbb{Z}_{n} \rightarrow$ subgroup diagram
- Dihedral group D_n : Subgroups of D_3, D_4
- Alternating group A_n : Subgroups of A_3 , A_4

- Find ϕ & Verify ϕ
- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1$ and all $\mathsf{n} \in \mathsf{Z}\colon\, \mathsf{n} = 0$ vs. $\mathsf{n} = -1$
- $o(a) = n \Rightarrow o(\phi(a)) = n$; abelian; cyclic
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = o(a)$ or and addition if G is finite.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = O(a)$ ||0| in and
Any group of prime order is cyclic (and so abelian).
- Cayley's Theorem: Every group is isomorphic to a permutation group.
- Cyclic group C_n: Infinite: ≅ Z vs. Finite: ≅ Z_n $-\rightarrow$ multiplicative G Subgroups of **Z** vs. Subgroups of $\mathbb{Z}_{n} \rightarrow$ subgroup diagram
- Dihedral group D_n : Subgroups of D_3, D_4
- Alternating group A_n : Subgroups of A_3 , A_4
- \mathbf{Z}_n^{\times} : *not* always cyclic.

- Find ϕ & Verify ϕ
- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1$ and all $\mathsf{n} \in \mathsf{Z}\colon\, \mathsf{n} = 0$ vs. $\mathsf{n} = -1$
- $o(a) = n \Rightarrow o(\phi(a)) = n$; abelian; cyclic
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = o(a)$ or and addition if G is finite.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = O(a)$ ||0| in and
Any group of prime order is cyclic (and so abelian).
- Cayley's Theorem: Every group is isomorphic to a permutation group.
- Cyclic group C_n: Infinite: ≅ Z vs. Finite: ≅ Z_n $-\rightarrow$ multiplicative G Subgroups of **Z** vs. Subgroups of $\mathbb{Z}_{n} \rightarrow$ subgroup diagram
- Dihedral group D_n : Subgroups of D_3, D_4
- Alternating group A_n : Subgroups of A_3 , A_4
- \mathbf{Z}_n^{\times} : not always cyclic. $|\mathbf{Z}_n^{\times}| = \varphi(n) = \#$ of generators of \mathbf{Z}_n

- Find ϕ & Verify ϕ
- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1$ and all $\mathsf{n} \in \mathsf{Z}\colon\, \mathsf{n} = 0$ vs. $\mathsf{n} = -1$
- $o(a) = n \Rightarrow o(\phi(a)) = n$; abelian; cyclic
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = o(a)$ or and addition if G is finite.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = O(a)$ ||0| in and
Any group of prime order is cyclic (and so abelian).
- Cayley's Theorem: Every group is isomorphic to a permutation group.
- Cyclic group C_n: Infinite: ≅ Z vs. Finite: ≅ Z_n $-\rightarrow$ multiplicative G Subgroups of **Z** vs. Subgroups of $\mathbb{Z}_{n} \rightarrow$ subgroup diagram
- Dihedral group D_n : Subgroups of D_3, D_4
- Alternating group A_n : Subgroups of A_3 , A_4
- \mathbf{Z}_n^{\times} : not always cyclic. $|\mathbf{Z}_n^{\times}| = \varphi(n) = \#$ of generators of \mathbf{Z}_n
- Product of two subgroups: *not* always a subgroup.

- Find ϕ & Verify ϕ
- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1$ and all $\mathsf{n} \in \mathsf{Z}\colon\, \mathsf{n} = 0$ vs. $\mathsf{n} = -1$
- $o(a) = n \Rightarrow o(\phi(a)) = n$; abelian; cyclic
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = o(a)$ or and addition if G is finite.
	- Let $a \in G$. Then $\langle a \rangle \subseteq G$ and $|\langle a \rangle| = O(a)$ ||0| in and
Any group of prime order is cyclic (and so abelian).
- Cayley's Theorem: Every group is isomorphic to a permutation group.
- Cyclic group C_n: Infinite: ≅ Z vs. Finite: ≅ Z_n $-\rightarrow$ multiplicative G Subgroups of **Z** vs. Subgroups of $\mathbb{Z}_{n} \rightarrow$ subgroup diagram
- Dihedral group D_n : Subgroups of D_3, D_4
- Alternating group A_n : Subgroups of A_3 , A_4
- \mathbf{Z}_n^{\times} : not always cyclic. $|\mathbf{Z}_n^{\times}| = \varphi(n) = \#$ of generators of \mathbf{Z}_n
- Product of two subgroups: *not* always a subgroup.
- Direct product of 2 groups $\leadsto n$ groups: $\mathbf{Z}_n \cong \mathbf{Z}_{p_1^{\alpha_1}} \times \cdots \mathbf{Z}_{p_m^{\alpha_m}} \leadsto \varphi(n)$

Let G be an abelian group with subgroups H and K . Prove that if $HK = G$ and $H \cap K = \{e\}$, then $G \cong H \times K$.

Proof.

Let G be an abelian group with subgroups H and K . Prove that if $HK = G$ and $H \cap K = \{e\}$, then $G \cong H \times K$.

Proof.

Define $\phi : H \times K \to G$ by $\phi((h, k)) = hk$, for all $(h, k) \in H \times K$.

(i) well-defined:

Let G be an abelian group with subgroups H and K . Prove that if $HK = G$ and $H \cap K = \{e\}$, then $G \cong H \times K$.

Proof.

Define $\phi : H \times K \to G$ by $\phi((h, k)) = hk$, for all $(h, k) \in H \times K$.

- (i) well-defined: Trivial. (Why?)
- (ii) ϕ preserves the products:

Let G be an abelian group with subgroups H and K . Prove that if $HK = G$ and $H \cap K = \{e\}$, then $G \cong H \times K$.

Proof.

Define $\phi : H \times K \to G$ by $\phi((h, k)) = hk$, for all $(h, k) \in H \times K$.

(i) well-defined: Trivial. (Why?)

(ii) ϕ preserves the products: For all $(h_1, k_1), (h_2, k_2) \in H \times K$ we have $\phi((h_1, k_1)(h_2, k_2)) = \phi((h_1h_2, k_1k_2))$

$$
=h_1h_2k_1k_2\dot{=}h_1k_1h_2k_2
$$

= $\phi((h_1, k_1))\phi((h_2, k_2))$

(iii) one-to-one:

Let G be an abelian group with subgroups H and K. Prove that if $HK = G$ and $H \cap K = \{e\}$, then $G \cong H \times K$.

Proof.

Define $\phi : H \times K \to G$ by $\phi((h, k)) = hk$, for all $(h, k) \in H \times K$.

(i) well-defined: Trivial. (Why?)

(ii) ϕ preserves the products: For all $(h_1, k_1), (h_2, k_2) \in H \times K$ we have $\phi((h_1, k_1)(h_2, k_2)) = \phi((h_1h_2, k_1k_2))$

$$
=h_1h_2k_1k_2\overset{!}{=}h_1k_1h_2k_2
$$

= $\phi((h_1,k_1))\phi((h_2,k_2))$

(iii) one-to-one: If $\phi((h, k)) = e$ for $(h, k) \in H \times K$, then we have $hk = e$. $hk = e \Rightarrow h = k^{-1} \in H \cap K$ (Why?)

Let G be an abelian group with subgroups H and K. Prove that if $HK = G$ and $H \cap K = \{e\}$, then $G \cong H \times K$.

Proof.

Define $\phi : H \times K \to G$ by $\phi((h, k)) = hk$, for all $(h, k) \in H \times K$.

(i) well-defined: Trivial. (Why?)

(ii) ϕ preserves the products: For all $(h_1, k_1), (h_2, k_2) \in H \times K$ we have $\phi((h_1, k_1)(h_2, k_2)) = \phi((h_1h_2, k_1k_2))$

$$
=h_1h_2k_1k_2\overset{!}{=}h_1k_1h_2k_2
$$

= $\phi((h_1,k_1))\phi((h_2,k_2))$

(iii) one-to-one: If $\phi((h, k)) = e$ for $(h, k) \in H \times K$, then we have $hk = e$. $hk = e \Rightarrow h = k^{-1} \in H \cap K$ (Why?)

It follows that $h = k = e$. (Why?)

Let G be an abelian group with subgroups H and K. Prove that if $HK = G$ and $H \cap K = \{e\}$, then $G \cong H \times K$.

Proof.

Define $\phi : H \times K \to G$ by $\phi((h, k)) = hk$, for all $(h, k) \in H \times K$.

(i) well-defined: Trivial. (Why?)

(ii) ϕ preserves the products: For all $(h_1, k_1), (h_2, k_2) \in H \times K$ we have $\phi((h_1, k_1)(h_2, k_2)) = \phi((h_1h_2, k_1k_2))$

$$
=h_1h_2k_1k_2\overset{!}{=}h_1k_1h_2k_2
$$

= $\phi((h_1,k_1))\phi((h_2,k_2))$

(iii) one-to-one: If $\phi((h, k)) = e$ for $(h, k) \in H \times K$, then we have $hk = e$. $hk = e \Rightarrow h = k^{-1} \in H \cap K$ (Why?)

It follows that $h = k = e$. (Why?) Thus, ϕ is one-to-one. (Why?) (iv) onto:

Let G be an abelian group with subgroups H and K. Prove that if $HK = G$ and $H \cap K = \{e\}$, then $G \cong H \times K$.

Proof.

Define $\phi : H \times K \to G$ by $\phi((h, k)) = hk$, for all $(h, k) \in H \times K$.

(i) well-defined: Trivial. (Why?)

(ii) ϕ preserves the products: For all $(h_1, k_1), (h_2, k_2) \in H \times K$ we have $\phi((h_1, k_1)(h_2, k_2)) = \phi((h_1h_2, k_1k_2))$

$$
=h_1h_2k_1k_2\overset{!}{=}h_1k_1h_2k_2
$$

= $\phi((h_1,k_1))\phi((h_2,k_2))$

(iii) one-to-one: If $\phi((h, k)) = e$ for $(h, k) \in H \times K$, then we have $hk = e$. $hk = e \Rightarrow h = k^{-1} \in H \cap K$ (Why?)

It follows that $h = k = e$. (Why?) Thus, ϕ is one-to-one. (Why?) (iv) onto: Trivial. (Why?)

Let G be a finite abelian group. Let $n \in \mathsf{Z}^{+}.$ Define a function

$$
\phi: G \to G \text{ by } \phi(g) = g^n, \text{ for all } g \in G.
$$

Then ϕ is a group isomorphism if and only if G has no nontrivial element whose order is a divisor of *n*.

Proof.

Let G be a finite abelian group. Let $n \in \mathsf{Z}^{+}.$ Define a function

$$
\phi: G \to G \text{ by } \phi(g) = g^n, \text{ for all } g \in G.
$$

Then ϕ is a group isomorphism if and only if G has no nontrivial element whose order is a divisor of n.

Proof.

(i) well-defined:

Let G be a finite abelian group. Let $n \in \mathsf{Z}^{+}.$ Define a function

$$
\phi: G \to G \text{ by } \phi(g) = g^n, \text{ for all } g \in G.
$$

Then ϕ is a group isomorphism if and only if G has no nontrivial element whose order is a divisor of n.

Proof.

```
(i) well-defined: Trivial. (Why?)
```
(ii) ϕ preserves the products:

Let G be a finite abelian group. Let $n \in \mathsf{Z}^{+}.$ Define a function

$$
\phi: G \to G \text{ by } \phi(g) = g^n, \text{ for all } g \in G.
$$

Then ϕ is a group isomorphism if and only if G has no nontrivial element whose order is a divisor of n.

Proof.

(i) well-defined: Trivial. (Why?)

(ii) ϕ preserves the products: For any $g, h \in G$, we have

$$
\phi(gh)=(gh)^n\frac{1}{2}g^nh^n=\phi(g)\phi(h).
$$

(iii) one-to-one and onto:

Let G be a finite abelian group. Let $n \in \mathsf{Z}^{+}.$ Define a function

$$
\phi: G \to G \text{ by } \phi(g) = g^n, \text{ for all } g \in G.
$$

Then ϕ is a group isomorphism if and only if G has no nontrivial element whose order is a divisor of n.

Proof.

(i) well-defined: Trivial. (Why?)

(ii) ϕ preserves the products: For any $g, h \in G$, we have

$$
\phi(gh)=(gh)^n\frac{1}{2}g^nh^n=\phi(g)\phi(h).
$$

(iii) one-to-one and onto: If ϕ is one-to-one, then ϕ is also onto. (Why?)

Let G be a finite abelian group. Let $n \in \mathsf{Z}^{+}.$ Define a function

$$
\phi: G \to G \text{ by } \phi(g) = g^n, \text{ for all } g \in G.
$$

Then ϕ is a group isomorphism if and only if G has no nontrivial element whose order is a divisor of n.

Proof.

```
(i) well-defined: Trivial. (Why?)
```
⇔

(ii) ϕ preserves the products: For any $g, h \in G$, we have

$$
\phi(gh)=(gh)^n\frac{1}{g}g^nh^n=\phi(g)\phi(h).
$$

(iii) one-to-one and onto: If ϕ is one-to-one, then ϕ is also onto. (Why?) By Proposition 5 in §3.4, ϕ is one-to-one $\Leftrightarrow \phi(g) = e \Rightarrow g = e$.

Let G be a finite abelian group. Let $n \in \mathsf{Z}^{+}.$ Define a function

$$
\phi: G \to G \text{ by } \phi(g) = g^n, \text{ for all } g \in G.
$$

Then ϕ is a group isomorphism if and only if G has no nontrivial element whose order is a divisor of n.

Proof.

(i) well-defined: Trivial. (Why?)

(ii) ϕ preserves the products: For any $g, h \in G$, we have

$$
\phi(gh)=(gh)^n\frac{1}{2}g^nh^n=\phi(g)\phi(h).
$$

(iii) one-to-one and onto: If ϕ is one-to-one, then ϕ is also onto. (Why?) By Proposition 5 in §3.4, ϕ is one-to-one $\Leftrightarrow \phi(g) = e \Rightarrow g = e$.

$$
\Leftrightarrow g^n=e\Rightarrow g=e \Leftrightarrow
$$

Let G be a finite abelian group. Let $n \in \mathsf{Z}^{+}.$ Define a function

$$
\phi: G \to G \text{ by } \phi(g) = g^n, \text{ for all } g \in G.
$$

Then ϕ is a group isomorphism if and only if G has no nontrivial element whose order is a divisor of n .

Proof.

(i) well-defined: Trivial. (Why?)

(ii) ϕ preserves the products: For any $g, h \in G$, we have

$$
\phi(gh)=(gh)^n\frac{1}{2}g^nh^n=\phi(g)\phi(h).
$$

(iii) one-to-one and onto: If ϕ is one-to-one, then ϕ is also onto. (Why?) By Proposition 5 in §3.4, ϕ is one-to-one $\Leftrightarrow \phi(g) = e \Rightarrow g = e$.

$$
\Leftrightarrow g^n = e \Rightarrow g = e \Leftrightarrow o(g) \nmid n \text{ for all } g \neq e.
$$

Let G be a finite abelian group. Let $n \in \mathsf{Z}^{+}.$ Define a function

$$
\phi: G \to G \text{ by } \phi(g) = g^n, \text{ for all } g \in G.
$$

Then ϕ is a group isomorphism if and only if G has no nontrivial element whose order is a divisor of n .

Proof.

(i) well-defined: Trivial. (Why?)

(ii) ϕ preserves the products: For any $g, h \in G$, we have

$$
\phi(gh)=(gh)^n\frac{1}{2}g^nh^n=\phi(g)\phi(h).
$$

(iii) one-to-one and onto: If ϕ is one-to-one, then ϕ is also onto. (Why?) By Proposition 5 in §3.4, ϕ is one-to-one $\Leftrightarrow \phi(g) = e \Rightarrow g = e$.

$$
\Leftrightarrow g^n = e \Rightarrow g = e \Leftrightarrow o(g) \nmid n \text{ for all } g \neq e.
$$

That is, G has no non-identity element whose order is a divisor of n.

Any cyclic group of even order has exactly one element of order 2.

Proof.

Any cyclic group of even order has exactly one element of order 2.

Proof.

Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: $G \cong \mathbb{Z}_{2n}$.
Any cyclic group of even order has exactly one element of order 2.

Proof.

Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: $G \cong \mathbb{Z}_{2n}$. In \mathbb{Z}_{2n} , $o(x) = 2 \Rightarrow 2x \equiv 0 \pmod{2n} \Rightarrow x \equiv 0 \pmod{n} \Rightarrow x \equiv 0, n \pmod{2n}$ i.e., $x = [0]_{2n}$, $[n]_{2n}$.

Any cyclic group of even order has exactly one element of order 2.

Proof.

Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: $G \cong \mathbb{Z}_{2n}$. In \mathbb{Z}_{2n} . $o(x) = 2 \Rightarrow 2x \equiv 0 \pmod{2n} \Rightarrow x \equiv 0 \pmod{n} \Rightarrow x \equiv 0, n \pmod{2n}$ i.e., $x = \begin{bmatrix} 0 \end{bmatrix}_{2n}$, $\begin{bmatrix} n \end{bmatrix}_{2n}$. But $o(\begin{bmatrix} 0 \end{bmatrix}_{2n}) = 1$, $\begin{bmatrix} n \end{bmatrix}_{2n}$ is the only element of order 2 in \mathbb{Z}_{2n} .

Any cyclic group of even order has exactly one element of order 2.

Proof.

Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: $G \cong \mathbb{Z}_{2n}$. In \mathbb{Z}_{2n} . $o(x) = 2 \Rightarrow 2x \equiv 0 \pmod{2n} \Rightarrow x \equiv 0 \pmod{n} \Rightarrow x \equiv 0, n \pmod{2n}$ i.e., $x = \left[0\right]_{2n}$, $\left[n\right]_{2n}$. But $o(\left[0\right]_{2n}) = 1$, $\left[n\right]_{2n}$ is the only element of order 2 in \mathbb{Z}_{2n} . The proof is done. (Why?) [

Any cyclic group of even order has exactly one element of order 2.

Proof.

Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: $G \cong \mathbb{Z}_{2n}$. In \mathbb{Z}_{2n} . $o(x) = 2 \Rightarrow 2x \equiv 0 \pmod{2n} \Rightarrow x \equiv 0 \pmod{n} \Rightarrow x \equiv 0, n \pmod{2n}$ i.e., $x = [0]_{2n}$, $[n]_{2n}$. But $o([0]_{2n}) = 1$, $[n]_{2n}$ is the only element of order 2 in \mathbb{Z}_{2n} . The proof is done. (Why?) [Proposition 3 (a) in §3.4]

Another proof.

Any cyclic group of even order has exactly one element of order 2.

Proof.

Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: $G \cong \mathbb{Z}_{2n}$. In \mathbb{Z}_{2n} . $o(x) = 2 \Rightarrow 2x \equiv 0 \pmod{2n} \Rightarrow x \equiv 0 \pmod{n} \Rightarrow x \equiv 0, n \pmod{2n}$ i.e., $x = [0]_{2n}$, $[n]_{2n}$. But $o([0]_{2n}) = 1$, $[n]_{2n}$ is the only element of order 2 in \mathbb{Z}_{2n} . The proof is done. (Why?) [Proposition 3 (a) in §3.4]

Another proof.

 $G \cong \mathbb{Z}_{2n}$:

Any cyclic group of even order has exactly one element of order 2.

Proof.

Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: $G \cong \mathbb{Z}_{2n}$. In \mathbb{Z}_{2n} . $o(x) = 2 \Rightarrow 2x \equiv 0 \pmod{2n} \Rightarrow x \equiv 0 \pmod{n} \Rightarrow x \equiv 0, n \pmod{2n}$ i.e., $x = [0]_{2n}$, $[n]_{2n}$. But $o([0]_{2n}) = 1$, $[n]_{2n}$ is the only element of order 2 in \mathbb{Z}_{2n} . The proof is done. (Why?) [Proposition 3 (a) in §3.4]

Another proof.

 $G \cong \mathbb{Z}_{2n}$: In \mathbb{Z}_{2n} , there is exactly one subgroup H of order 2. (Why?)

Any cyclic group of even order has exactly one element of order 2.

Proof.

Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: $G \cong \mathbb{Z}_{2n}$. In \mathbb{Z}_{2n} . $o(x) = 2 \Rightarrow 2x \equiv 0 \pmod{2n} \Rightarrow x \equiv 0 \pmod{n} \Rightarrow x \equiv 0, n \pmod{2n}$ i.e., $x = [0]_{2n}$, $[n]_{2n}$. But $o([0]_{2n}) = 1$, $[n]_{2n}$ is the only element of order 2 in \mathbb{Z}_{2n} . The proof is done. (Why?) [Proposition 3 (a) in §3.4]

Another proof.

 $G \cong \mathbb{Z}_{2n}$: In \mathbb{Z}_{2n} , there is exactly one subgroup H of order 2. (Why?) Moreover, H is cyclic. (Why?)

Any cyclic group of even order has exactly one element of order 2.

Proof.

Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: $G \cong \mathbb{Z}_{2n}$. In \mathbb{Z}_{2n} . $o(x) = 2 \Rightarrow 2x \equiv 0 \pmod{2n} \Rightarrow x \equiv 0 \pmod{n} \Rightarrow x \equiv 0, n \pmod{2n}$ i.e., $x = [0]_{2n}$, $[n]_{2n}$. But $o([0]_{2n}) = 1$, $[n]_{2n}$ is the only element of order 2 in \mathbb{Z}_{2n} . The proof is done. (Why?) [Proposition 3 (a) in §3.4]

Another proof.

 $G \cong \mathbb{Z}_{2n}$: In \mathbb{Z}_{2n} , there is exactly one subgroup H of order 2. (Why?) Moreover, H is cyclic. (Why?) Thus, $H \cong Z_2$. (Why?)

Any cyclic group of even order has exactly one element of order 2.

Proof.

Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: $G \cong \mathbb{Z}_{2n}$. In \mathbb{Z}_{2n} . $o(x) = 2 \Rightarrow 2x \equiv 0 \pmod{2n} \Rightarrow x \equiv 0 \pmod{n} \Rightarrow x \equiv 0, n \pmod{2n}$ i.e., $x = [0]_{2n}$, $[n]_{2n}$. But $o([0]_{2n}) = 1$, $[n]_{2n}$ is the only element of order 2 in \mathbb{Z}_{2n} . The proof is done. (Why?) [Proposition 3 (a) in §3.4]

Another proof.

 $G \cong \mathbb{Z}_{2n}$: In \mathbb{Z}_{2n} , there is exactly one subgroup H of order 2. (Why?) Moreover, H is cyclic. (Why?) Thus, $H \cong Z_2$. (Why?) It follows that H has only one generator. (Why?)

Any cyclic group of even order has exactly one element of order 2.

Proof.

Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: $G \cong \mathbb{Z}_{2n}$. In \mathbb{Z}_{2n} . $o(x) = 2 \Rightarrow 2x \equiv 0 \pmod{2n} \Rightarrow x \equiv 0 \pmod{n} \Rightarrow x \equiv 0, n \pmod{2n}$ i.e., $x = \begin{bmatrix} 0 \end{bmatrix}_{2n}$, $\begin{bmatrix} n \end{bmatrix}_{2n}$. But $o(\begin{bmatrix} 0 \end{bmatrix}_{2n}) = 1$, $\begin{bmatrix} n \end{bmatrix}_{2n}$ is the only element of order 2 in \mathbb{Z}_{2n} . The proof is done. (Why?) [Proposition 3 (a) in §3.4]

Another proof.

 $G \cong \mathbb{Z}_{2n}$: In \mathbb{Z}_{2n} , there is exactly one subgroup H of order 2. (Why?) Moreover, H is cyclic. (Why?) Thus, $H \cong Z_2$. (Why?) It follows that H has only one generator. (Why?) Similarly as above, the proof is done.

Example 1

 Z_{15}^{\times} is not cyclic:

Any cyclic group of even order has exactly one element of order 2.

Proof.

Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: $G \cong \mathbb{Z}_{2n}$. In \mathbb{Z}_{2n} . $o(x) = 2 \Rightarrow 2x \equiv 0 \pmod{2n} \Rightarrow x \equiv 0 \pmod{n} \Rightarrow x \equiv 0, n \pmod{2n}$ i.e., $x = [0]_{2n}$, $[n]_{2n}$. But $o([0]_{2n}) = 1$, $[n]_{2n}$ is the only element of order 2 in \mathbb{Z}_{2n} . The proof is done. (Why?) [Proposition 3 (a) in §3.4]

Another proof.

 $G \cong \mathbb{Z}_{2n}$: In \mathbb{Z}_{2n} , there is exactly one subgroup H of order 2. (Why?) Moreover, H is cyclic. (Why?) Thus, $H \cong Z_2$. (Why?) It follows that H has only one generator. (Why?) Similarly as above, the proof is done.

Example 1

 \textbf{Z}_{15}^{\times} is not cyclic: $[-1]_{15}$ and $[4]_{15}$ have order 2. (Much easier!) $\mathsf{Z}_{21}^{\widetilde{\times}}$ is not cyclic:

Any cyclic group of even order has exactly one element of order 2.

Proof.

Let G be a cyclic group of order 2n. Thm 2 (b) in §3.5: $G \cong \mathbb{Z}_{2n}$. In \mathbb{Z}_{2n} $o(x) = 2 \Rightarrow 2x \equiv 0 \pmod{2n} \Rightarrow x \equiv 0 \pmod{n} \Rightarrow x \equiv 0, n \pmod{2n}$ i.e., $x = \begin{bmatrix} 0 \end{bmatrix}_{2n}$, $\begin{bmatrix} n \end{bmatrix}_{2n}$. But $o(\begin{bmatrix} 0 \end{bmatrix}_{2n}) = 1$, $\begin{bmatrix} n \end{bmatrix}_{2n}$ is the only element of order 2 in \mathbb{Z}_{2n} . The proof is done. (Why?) [Proposition 3 (a) in §3.4]

Another proof.

 $G \cong \mathbb{Z}_{2n}$: In \mathbb{Z}_{2n} , there is exactly one subgroup H of order 2. (Why?) Moreover, H is cyclic. (Why?) Thus, $H \cong Z_2$. (Why?) It follows that H has only one generator. (Why?) Similarly as above, the proof is done.

Example 1

 \textbf{Z}_{15}^{\times} is not cyclic: $[-1]_{15}$ and $[4]_{15}$ have order 2. (Much easier!) $\textbf{Z}_{21}^{\widetilde{\times}}$ is not cyclic: $[-1]_{21}$ and $[8]_{21}$ have order 2. (Much easier!)

Remark 1 (From previous example:)

In \mathbb{Z}_{2n} , the equation $2x \equiv 0 \pmod{2n}$ has exactly 2 solutions.

That is, the equation $x^2 = e$ has exactly 2 solutions in $G \cong \mathbf{Z}_{2n}$.

Remark 1 (From previous example:)

In \mathbb{Z}_{2n} , the equation $2x \equiv 0 \pmod{2n}$ has exactly 2 solutions. That is, the equation $x^2 = e$ has exactly 2 solutions in $G \cong \mathbf{Z}_{2n}$.

Let G be a finite cyclic group of order n. Let $m \in \mathsf{Z}^+$ be a divisor of n. Show that the equation $x^m = e$ has exactly m solutions.

Proof.

Remark 1 (From previous example:)

In \mathbb{Z}_{2n} , the equation $2x \equiv 0 \pmod{2n}$ has exactly 2 solutions. That is, the equation $x^2 = e$ has exactly 2 solutions in $G \cong \mathbf{Z}_{2n}$.

Let G be a finite cyclic group of order n. Let $m \in \mathsf{Z}^+$ be a divisor of n. Show that the equation $x^m = e$ has exactly m solutions.

Proof.

 $G \cong \mathbb{Z}_n$: To show $mx \equiv 0 \pmod{n}$ has exactly m solutions, where $m|n$.

Remark 1 (From previous example:)

In \mathbb{Z}_{2n} , the equation $2x \equiv 0 \pmod{2n}$ has exactly 2 solutions. That is, the equation $x^2 = e$ has exactly 2 solutions in $G \cong \mathbf{Z}_{2n}$.

Let G be a finite cyclic group of order n. Let $m \in \mathsf{Z}^+$ be a divisor of n. Show that the equation $x^m = e$ has exactly m solutions.

Proof.

 $G \cong \mathbb{Z}_n$: To show $mx \equiv 0 \pmod{n}$ has exactly m solutions, where $m|n$. Then the proof is done by using Theorem 10 (2) in Chapter 1. (Why?)

Theorem 2 (Theorem 10 in Chapter 1)

Remark 1 (From previous example:)

In \mathbb{Z}_{2n} , the equation $2x \equiv 0 \pmod{2n}$ has exactly 2 solutions. That is, the equation $x^2 = e$ has exactly 2 solutions in $G \cong \mathbf{Z}_{2n}$.

Let G be a finite cyclic group of order n. Let $m \in \mathsf{Z}^+$ be a divisor of n. Show that the equation $x^m = e$ has exactly m solutions.

Proof.

 $G \cong \mathbb{Z}_n$: To show $mx \equiv 0 \pmod{n}$ has exactly m solutions, where $m|n$. Then the proof is done by using Theorem 10 (2) in Chapter 1. (Why?)

Theorem 2 (Theorem 10 in Chapter 1)

Let a, b and $n > 1$ be integers.

- (1) The congruence $ax \equiv b \pmod{n}$ has a solution if and only if b is divisible by d, where $d = (a, n)$.
- (2) If d|b, then there are d distinct solutions modulo n, and these solutions are congruent modulo n/d .

$$
\text{Let } H = \left\{ \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} \middle| \ c \in \mathbf{Z}_p \text{ and } d = \pm 1 \right\} \subseteq \text{GL}_2(\mathbf{Z}_p). \text{ Prove } H \cong D_p.
$$

Proof.

Let
$$
H = \left\{ \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} \mid c \in \mathbb{Z}_p \text{ and } d = \pm 1 \right\} \subseteq \text{GL}_2(\mathbb{Z}_p).
$$
 Prove $H \cong D_p$.

Proof.

H is a subgroup of $\mathrm{GL}_2(\mathbf{Z}_p)$. (Check it!)

Let
$$
H = \left\{ \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} \mid c \in \mathbb{Z}_p \text{ and } d = \pm 1 \right\} \subseteq \text{GL}_2(\mathbb{Z}_p)
$$
. Prove $H \cong D_p$.

Proof.

H is a subgroup of $GL_2(\mathbb{Z}_p)$. (Check it!) And $|H| = 2p = |D_p|$. $D_p =$

Let
$$
H = \left\{ \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} \middle| c \in \mathbb{Z}_p \text{ and } d = \pm 1 \right\} \subseteq \text{GL}_2(\mathbb{Z}_p).
$$
 Prove $H \cong D_p$.

Proof.

H is a subgroup of $\operatorname{GL}_2(\mathbf{Z}_p)$. (Check it!) And $|H| = 2p = |D_p|$. $D_p = \{a^k, a^k b \mid 0 \le k < p\}$, where $a^p = e, b^2 = e, ba = a^{-1}b$.

Let
$$
H = \left\{ \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} \middle| c \in \mathbb{Z}_p \text{ and } d = \pm 1 \right\} \subseteq \text{GL}_2(\mathbb{Z}_p).
$$
 Prove $H \cong D_p$.

Proof.

H is a subgroup of $\mathrm{GL}_2(\mathbb{Z}_p)$. (Check it!) And $|H| = 2p = |D_p|$. $D_p=\{a^k, a^kb\mid 0\leq k< p\}$, where $a^p=e, b^2=e, ba=a^{-1}b$. Let

$$
A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
$$

Let
$$
H = \left\{ \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} \middle| c \in \mathbb{Z}_p \text{ and } d = \pm 1 \right\} \subseteq \text{GL}_2(\mathbb{Z}_p).
$$
 Prove $H \cong D_p$.

Proof.

H is a subgroup of $GL_2(\mathbb{Z}_p)$. (Check it!) And $|H| = 2p = |D_p|$. $D_p=\{a^k, a^kb\mid 0\leq k< p\}$, where $a^p=e, b^2=e, ba=a^{-1}b$. Let

$$
A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
$$

Then $A^p = I_2, B^2 = I_2$

Let
$$
H = \left\{ \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} \middle| c \in \mathbb{Z}_p \text{ and } d = \pm 1 \right\} \subseteq \text{GL}_2(\mathbb{Z}_p).
$$
 Prove $H \cong D_p$.

Proof.

H is a subgroup of $\operatorname{GL}_2(\mathbb{Z}_p)$. (Check it!) And $|H| = 2p = |D_n|$. $D_p=\{a^k, a^kb\mid 0\leq k< p\}$, where $a^p=e, b^2=e, ba=a^{-1}b$. Let

$$
A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
$$

Then $A^p = I_2, B^2 = I_2$ and $A^k \neq A^k B$ for $0 \leq k < p$. (Check it!)

Let
$$
H = \left\{ \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} \middle| c \in \mathbb{Z}_p \text{ and } d = \pm 1 \right\} \subseteq \text{GL}_2(\mathbb{Z}_p).
$$
 Prove $H \cong D_p$.

Proof.

H is a subgroup of $\operatorname{GL}_2(\mathbb{Z}_p)$. (Check it!) And $|H| = 2p = |D_n|$. $D_p=\{a^k, a^kb\mid 0\leq k< p\}$, where $a^p=e, b^2=e, ba=a^{-1}b$. Let

$$
A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
$$

Then $A^p = I_2, B^2 = I_2$ and $A^k \neq A^k B$ for $0 \leq k < p$. (Check it!) Moreover,

$$
\mathit{BA} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \mathit{A}^{-1}\mathit{B}.
$$

Let
$$
H = \left\{ \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} \middle| c \in \mathbb{Z}_p \text{ and } d = \pm 1 \right\} \subseteq \text{GL}_2(\mathbb{Z}_p).
$$
 Prove $H \cong D_p$.

Proof.

H is a subgroup of $\operatorname{GL}_2(\mathbb{Z}_p)$. (Check it!) And $|H| = 2p = |D_n|$. $D_p=\{a^k, a^kb\mid 0\leq k< p\}$, where $a^p=e, b^2=e, ba=a^{-1}b$. Let

$$
A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
$$

Then $A^p = I_2, B^2 = I_2$ and $A^k \neq A^k B$ for $0 \leq k < p$. (Check it!) Moreover,

$$
\mathcal{B}A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = A^{-1}B.
$$

Thus, we can define $\phi : H \to D_{p}$ by $\phi(A) = a$ and $\phi(B) = b$.

Let
$$
H = \left\{ \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} \mid c \in \mathbb{Z}_p \text{ and } d = \pm 1 \right\} \subseteq \text{GL}_2(\mathbb{Z}_p).
$$
 Prove $H \cong D_p$.

Proof.

H is a subgroup of $GL_2(\mathbb{Z}_p)$. (Check it!) And $|H| = 2p = |D_p|$. $D_p=\{a^k, a^kb\mid 0\leq k< p\}$, where $a^p=e, b^2=e, ba=a^{-1}b$. Let

$$
A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
$$

Then $A^p = I_2, B^2 = I_2$ and $A^k \neq A^k B$ for $0 \leq k < p$. (Check it!) Moreover,

$$
\mathit{BA} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \mathit{A}^{-1}\mathit{B}.
$$

Thus, we can define $\phi : H \to D_{p}$ by $\phi(A) = a$ and $\phi(B) = b$. From the above calculations, it is clear that ϕ is a group isomorphism.

Example 6: Prove that $A_4 \not\cong S_3 \times \mathbf{Z}_2$.

Note 1 (Proposition 6 in §3.6)

A₄ has no subgroup of order 6.

Question 1

A₄ has no subgroup of order 6.

Question 1

Does $S_3 \times Z_2$ have a subgroup of order 6?

 A_4 has no subgroup of order 6.

Question 1

Does $S_3 \times Z_2$ have a subgroup of order 6? Yes!

Claim 1

 A_4 has no subgroup of order 6.

Question 1

Does $S_3 \times Z_2$ have a subgroup of order 6? Yes!

Claim 1

 $S_3 \times \{ [0]_2 \}$ is a subgroup of $S_3 \times \mathbb{Z}_2$ of order 6. (Check it!)

 A_4 has no subgroup of order 6.

Question 1

Does $S_3 \times Z_2$ have a subgroup of order 6? Yes!

Claim 1

 $S_3 \times \{ [0]_2 \}$ is a subgroup of $S_3 \times \mathbb{Z}_2$ of order 6. (Check it!) In particular, this is just a concrete example of Homework 4 (8) part (a) .

 A_4 has no subgroup of order 6.

Question 1

Does $S_3 \times Z_2$ have a subgroup of order 6? Yes!

Claim 1

 $S_3 \times \{ [0]_2 \}$ is a subgroup of $S_3 \times \mathbb{Z}_2$ of order 6. (Check it!) In particular, this is just a concrete example of Homework 4 (8) part (a) .

Thus, $A_4 \not\cong S_3 \times \mathbb{Z}_2$.

Example 7: Prove that $S_4 \not\cong A_4 \times \mathbb{Z}_2$.

Claim 2

Example 7: Prove that $S_4 \not\cong A_4 \times \mathbf{Z}_2$.

Claim 2

The largest possible order of an element in S_4 is 4. (Why?)
The largest possible order of an element in S_4 is 4. (Why?)

Possible decomposition types of permutations of S_4 : (See §3.6)

- (i) a single cycle of length 1, 2, 3 or 4
- (ii) two disjoint cycles of length 2

The largest possible order of an element in S_4 is 4. (Why?)

Possible decomposition types of permutations of S_4 : (See §3.6)

- (i) a single cycle of length 1, 2, 3 or 4
- (ii) two disjoint cycles of length 2

And so the possible decomposition types of permutations of A_4 are

- (a) a single cycle of length 1 or 3
- (b) two disjoint cycles of length 2

The largest possible order of an element in S_4 is 4. (Why?)

Possible decomposition types of permutations of S_4 : (See §3.6)

- (i) a single cycle of length $1, 2, 3$ or 4
- (ii) two disjoint cycles of length 2

And so the possible decomposition types of permutations of A_4 are

- (a) a single cycle of length 1 or 3
- (b) two disjoint cycles of length 2

It follows that there is an element of order 6 in $A_4 \times Z_2$. (Why?)

The largest possible order of an element in S_4 is 4. (Why?)

Possible decomposition types of permutations of S_4 : (See §3.6)

- (i) a single cycle of length 1, 2, 3 or 4
- (ii) two disjoint cycles of length 2

And so the possible decomposition types of permutations of A_4 are

- (a) a single cycle of length 1 or 3
- (b) two disjoint cycles of length 2

It follows that there is an element of order 6 in $A_4 \times Z_2$. (Why?)

Thus, $S_4 \not\cong A_4 \times \mathbf{Z}_2$.