Exam II

Exam Date: June 9th (Tuesday) Exam Length: 100 minutes

- Please submit your work on Blackboard between 9 am and 9 pm.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- Open-book and Open-notes.
- Honors Code: No consulting any online sources. No consulting with each other.

(0) Write the following honors code with your full name at the end.

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code. As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam. <u>Full name</u>

- (1) $[8 \ pts]$ True or False:
 - (a) Let p be a prime number. Then $\mathbf{Z}_p \times \mathbf{Z}_p \cong \mathbf{Z}_{p^2}$.
 - (b) $13\mathbf{Z} \cong 17\mathbf{Z}$.
 - (c) Every subgroup of a non-cyclic group is non-cyclic.
 - (d) Let σ be any permutation in S_n . Then σ^2 must be in A_n .
- (2) [8 pts] Let $G = \{x \in \mathbf{R} \mid x > 0 \text{ and } x \neq 1\}$, and define * on G by $a * b = a^{\ln b}$.

In Homework 2 (5), we have already shown that (G, *) is an abelian group with the identity element e (the natural number e).

Show that the group (G, *) is isomorphic to the multiplicative group \mathbf{R}^{\times} .

- (3) [6 pts] Let G be a finite group of order 125 (i.e., |G| = 125) with the identity element e. Assume that G contains an element a with $a^{25} \neq e$. Prove that G is cyclic.
- (4) (a) $[3 \ pts]$ Let $\sigma = (17593)(2467)(385) \in S_9$. Find the order of σ in S_9 .
 - (b) [3 pts] Let $\tau = (14376)(2589)(23)(1457) \in S_9$. Find the order of τ in S_9 .
 - (c) [3 pts] Which of the permutations σ, τ are in A_9 ? Show work to support your answer.
- (5) (a) [3 pts] Let G be a group and let $g \in G$ be an element of order 100. List all possible powers of g that have order 5.
 - (b) [3 pts] Let $G = \mathbb{Z}_{100}$. List all possible choice of $[k]_{100}$ such that $\langle [k]_{100} \rangle = \langle [35]_{100} \rangle$.
 - (c) [4 pts] Give the subgroup diagram of \mathbf{Z}_{100} .
- (6) $[9 \ pts]$ Let $D_n = \{a^k, a^k b \mid 0 \le k < n\}$, where $a^n = e, b^2 = e$, and $ba = a^{-1}b$. Moreover, in Homework 7 (3), we have shown that $ba^m = a^{-m}b$ for all $m \in \mathbb{Z}$.
 - (a) [2 pts] Show that $(a^k b)^2 = e$ for each $0 \le k < n$.
 - (b) [4 pts] Find the order of each element of D_{10} .
 - (c) [3 pts] Is D_{10} isomorphic to $\mathbf{Z}_4 \times \mathbf{Z}_5$? Show work to support your answer.