Exam I Solution

Exam Date: May 26th (Tuesday) Exam Length: 100 minutes

- Please submit your work on Blackboard between 9 am and 9 pm.
- You are required to submit your work as a single pdf.
- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- Total score: 50 points .

(1) $[10 \; pts]$ Solve the following (system of) congruences.

(a) $5x \equiv 1 \pmod{13}$ $|x \equiv 8 \pmod{13}$ (i) Trial and error: $5 \cdot 8 \equiv 40 \equiv 1 \pmod{13}$ (ii) $\frac{k}{|5|^k} \frac{1}{|5|} \frac{2}{|-1|} \frac{3}{|{-5} \checkmark} \frac{4}{|1|} \frac{5}{\cdots} \frac{6}{\cdots} \frac{7}{8} \frac{9}{9}$ (iii) Euclidean Algorithm (Matrix form): $2 \cdot 13 + 5 \cdot$ \checkmark $(-5) = 1$ $\begin{bmatrix} 1 & 0 & 13 \\ 0 & 1 & 5 \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} 1 & -2 & 3 \\ -1 & 3 & 2 \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} 2 & -5 & 1 \\ -1 & 3 & 2 \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} 2 & -5 & 1 \\ -5 & 13 & 0 \end{bmatrix}$ (iv) Euler's theorem: Since $(5, 13) = 1$, we have $5^{\varphi(13)} \equiv 5^{12} \equiv 1 \pmod{13} \Rightarrow [5]^{-1} = [5]^{11} = ([5]^2)^5 [5] = [-1]^5 [5] = [-5] = [8]$ (b) $12x \equiv 40 \pmod{88}$ $x \equiv 18, 40, 62, 84 \pmod{88}$ $(12, 88) = 4|40\sqrt{ } \Rightarrow 3x \equiv 10 \pmod{22}$ So we need to find the solution to $3x \equiv 1 \pmod{22}$ first, it follows from any method in part (a) that $x \equiv 15 \pmod{22}$. Thus, $x \equiv 15 \cdot 10 \equiv 18 \pmod{22}$. That is, $x \equiv 18, 40, 62, 84 \pmod{88}$ are the desired solutions. (c) $x \equiv 14 \pmod{28}$ $x \equiv 15 \pmod{55}$ $x \equiv 70 \pmod{1540}$ $\begin{bmatrix} 1 & 0 & 28 \\ 0 & 1 & 55 \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} 1 & 0 & 28 \\ -1 & 1 & 27 \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & 27 \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} 2 & -1 & 1 \\ -55 & 28 & 0 \end{bmatrix}$ Thus, $2 \cdot 28 + (-1) \cdot 55 = 1$. By Chinese Remainder Theorem, the solution is $x \equiv 14(-55) + 15(56) \pmod{28 \cdot 55} \Rightarrow x \equiv 70 \pmod{1540}$ (2) $\lbrack 8 \text{ pts} \rbrack$ Let $S = \{x \in \mathbf{R} \mid x \neq 3\}$. Define $*$ on S by

$$
a * b = 12 - 3a - 3b + ab.
$$

Prove that $(S, *)$ is a group.

(i) Closure: We need to show $a * b \in S$ for any $a, b \in S$. That is, we need to show $a * b \neq 3$ for any real numbers $a \neq 3, b \neq 3$. $a * b = 12 - 3a - 3b + ab = 3 + (3 - a)(3 - b) \neq 3$ since $(3 - a)(3 - b) \neq 0$.

(ii) Associativity: For any $a, b, c \in S$, we need to show $(a * b) * c = a * (b * c)$.

$$
(a * b) * c = (12 - 3a - 3b + ab) * c
$$

= 12 - 3(12 - 3a - 3b + ab) - 3c + (12 - 3a - 3b + ab)c
= - 24 + 9a + 9b + 9c - 3ab - 3ac - 3bc + abc

$$
a * (b * c) = a * (12 - 3b - 3c + bc)
$$

= 12 - 3a - 3(12 - 3b - 3c + bc) + a(12 - 3b - 3c + bc)
= - 24 + 9a + 9b + 9c - 3bc - 3ab - 3ac + abc

(iii) Identity: The identity element $e = 4$. $a * 4 = 12 - 3a - 12 + 4a = a$ and $4 * a = 12 - 12 - 3a + 4a = a$.

(iv) Inverses: The inverse of a is $8 - 3a$ $3 - a$. It is well defined since $a \neq 3$. a∗ $8 - 3a$ $3 - a$ $= 12 - 3a - 3$ $8 - 3a$ $3 - a$ $+a$ $8 - 3a$ $3 - a$ $= 12 - 3a +$ $-24 + 9a + 8a - 3a^2$ $3 - a$ $= 4\checkmark$ $8 - 3a$ $3 - a$ $* a = 12 - 3$ $8 - 3a$ $3 - a$ $-3a+$ $8 - 3a$ $3 - a$ $a = 12 - 3a +$ $-24 + 9a + 8a - 3a^2$ $3 - a$ $= 4\checkmark$

(3) [6 pts] Let (G, \cdot) be an abelian group with identity element e. Let

$$
H = \{ a \in G \mid a \cdot a \cdot a \cdot a = e \}.
$$

Prove that H is a subgroup of G .

(i) Closure: For any $a, b \in H$, we need to show $a \cdot b \in H$. $(a \cdot b) \cdot (a \cdot b) \cdot (a \cdot b) \cdot (a \cdot b) = (a \cdot a \cdot a \cdot a) \cdot (b \cdot b \cdot b \cdot b) = e \cdot e = e \checkmark$

In the above calculation, $\frac{1}{n}$ holds since G is an abelian group.

- (ii) Identity: The identity element $e \in H$ since $e \cdot e \cdot e \cdot e = e$.
- (iii) Inverses: For any element $a \in H$, its inverse is a^{-1} . $a^{-1} \cdot a^{-1} \cdot a^{-1} = (a \cdot a \cdot a \cdot a)^{-1} = e^{-1} = e \checkmark$
- (4) (a) [4 pts] Find the cyclic subgroup of S_8 generated by the element (135)(68).

Using the property that the disjoint cycles commute with each other makes your calculations simpler.

$$
((135)(68))^2 = (135)^2(68)^2 = (153)
$$

\n
$$
((135)(68))^3 = (153)(135)(68) = (68)
$$

\n
$$
((135)(68))^4 = (68)(135)(68) = (135)(68)^2 = (135)
$$

\n
$$
((135)(68))^5 = (135)(135)(68) = (153)(68)
$$

\n
$$
((135)(68))^6 = (153)(68)(135)(68) = (153)(135)(68)(68) = (1)
$$

Thus, the cyclic subgroup of S_8 generated by the element $(135)(68)$ is $\langle (135)(68) \rangle = \{(1), (135), (153), (68), (135)(68), (153)(68)\}.$

(b) $[4 \; pts]$ Find a subgroup H of S_8 that contains 15 elements. You do not have to list all of the elements in H . Just prove it. That is, Prove that H (the one you find) is a subgroup of order 15 in S_8 .

As we know that the order of a product of disjoint cycles is the least common multiple of their lengths, then the element (12345)(678) is a desired example since lcm[3, 5] = 15. In particular, let $H = \langle (12345)(678) \rangle$. Since the cyclic subgroup H is generated by $(12345)(678)$, thus $|H| = |\langle (12345)(678) \rangle| = o((12345)(678)) = 15$.

(5) $\lbrack 8 \text{ pts} \rbrack$ Let G be a group and the center of G is defined as

 $Z(G) = \{x \in G \mid xg = gx$ for all $g \in G\}.$

In Homework 3, we have showed that the center $Z(G)$ is a subgroup of G. Let H be a subgroup of G . Prove that the set

$$
HZ(G) = \{hz \mid h \in H, z \in Z(G)\}
$$

is a subgroup of G .

- (i) Closure: For $h_1z_1, h_2z_2 \in HZ(G)$, we need to show that $(h_1z_1)(h_2z_2) \in HZ(G)$. $(h_1z_1)(h_2z_2) = ((h_1z_1)h_2)z_2 = (h_1(z_1h_2))z_2 = (h_1(h_2z_1))z_2 = (h_1h_2)(z_1z_2)\checkmark$ In the above calculation, $\frac{1}{n}$ holds by the definition of $Z(G)$. $(h_1z_1)(h_2z_2) = (h_1h_2)(z_1z_2) \in HZ(G)$ since H and $Z(G)$ are subgroups of G.
- (ii) Identity: The identity element $e \in HZ(G)$ since $e = ee \in HZ(G)$.
- (iii) Inverses: For any element $hz \in HZ(G)$, its inverse is $h^{-1}z^{-1} \in HZ(G)$. $(hz)(h^{-1}z^{-1}) = hzh^{-1}z^{-1} = h(zh^{-1})z^{-1} = h(h^{-1}z)z^{-1} = (hh^{-1})(zz^{-1}) = e$ $(h^{-1}z^{-1})(hz) = h^{-1}z^{-1}hz = h^{-1}(z^{-1}h)z = h^{-1}(hz^{-1})z = (h^{-1}h)(z^{-1}z) = e$
- (6) (a) [3 pts] What is the order of $([15]_{20}, [20]_{24})$ in $\mathbb{Z}_{20} \times \mathbb{Z}_{24}$?

Since $gcd(15, 20) = 5$, then $o([15]_{20}) = o([5]_{20}) = 4$, and since $gcd(20, 24) = 4$, then $o([20]_{24}) = o([4]_{24}) = 6$. Thus, the order of $([15]_{20}, [20]_{24})$ is lcm[4, 6] = 12.

(b) [3 pts] What is the largest order of an element in $\mathbb{Z}_{20} \times \mathbb{Z}_{24}$? And use your answer to show that $\mathbb{Z}_{20} \times \mathbb{Z}_{24}$ is not cyclic.

In \mathbb{Z}_{20} , the possible orders are $1, 2, 4, 5, 10$, and 20 . In \mathbb{Z}_{24} , the possible orders are $1, 2, 3, 4, 6, 8, 12$, and 24. The largest possible least common multiple we can have is $\text{lcm}[20, 24] = 120$. So there is no element of order $|\mathbf{Z}_{20} \times \mathbf{Z}_{24}| = 480$ and the group is not cyclic.

(c) [4 pts] Let $G = \mathbb{Z}_{10}^{\times} \times \mathbb{Z}_{10}^{\times}$. Let $H = \langle (3, 7) \rangle$ and $K = \langle (7, 7) \rangle$. Find HK in G. Here, $(3, 7)$ means $([3]_{10}, [7]_{10})$. Just use the simplified notations in your answer.

 $H = \langle (3, 7) \rangle = \{(1, 1), (3, 7), (9, 9), (7, 3)\}\$ $K = \langle (7, 7) \rangle = \{(1, 1), (7, 7), (9, 9), (3, 3)\}\$ $HK = \{(1, 1), (3, 7), (9, 9), (7, 3), (1, 9), (9, 1), (3, 3), (7, 7)\}$