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Review (Brief Version of Exam Il Review)

o A group isomorphism ¢ : (G, %) — (Gg,-) Find/Verify ¢

e Lagrange’s Theorem If |G| = n < oo and H C G, then |H]||n.

o Cayley's Theorem Every group is isomorphic to a permutation group.
e Cyclic group: Infinite: 2 Z & Finite: 2 Z, ~» multiplicative G
o Dihedral group D, of order 2n
o Alternating group A, of order n!/2

Product of two subgroups is not always a subgroup.

If h~*kh € K for all h € H, k € K, then HK is a subgroup. ~» G abelian &

Direct product of (two ~ 1) groups: e.g., Z, = Z,o1 X -+ Zpan ~ ¢(n)

The order of an element is the lcm of the orders of each component.
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Group Homomorphism

A function ¢ : (G1,%) — (Ga,-) is a group homomorphism if
o(ax b) = ¢(a) - ¢(b) for all a,b € G;. J

Every isomorphism is a homomorphism, but conversely not true.

Let G = GL,(R) and G» = R*. Define ¢ : G; — G by ¢(A) = det(A).
¢ is a group homomorphism. [Why?] However, ¢ is not an isomorphism.
¢ is not one-to-one since different matrices could have the same det.

¢ is onto. e.g., consider a diagonal matrix diag(a,1,...,1) for any a € R*.

Example 2 (Parity of an integer)

Define ¢ : Z — Z, by ¢(n) = [n]2. ¢ is a homomorphism. [Why?]
But ¢ is not an isomorphism since it is not one-to-one. [Why?]| ¢ is onto.
Parity of an integer: nis even < ¢(n) = [0]2 & nis odd < ¢(n) = [1]2 )
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Properties of Group Homomorphisms

Let ¢ : (G1,%,€e1) = (Gp, -, €2) be a group homomorphism.

i) ¢(e1) = en.
i) pa~t) = (¢(a))_1 for all a € G;.
i) ¢(a") = (4(a ))n forallae Gy and all ne Z.
iv) If o(a) = nin Gy, then o(¢(a)) in Gy is a divisor of n.

.

Proof: Proofs of i)-iii) are the same as in the case of a group isomorphism
) ¢(e1) - d(e1) = d(ex * e1) = ¢(er) ~ ¢(er) = e

i) o(a) - o(a ) = dlaxa ) = sle) e~ o(ah) = (4(a)

iii) Just as in the case of an isomorphism, use an induction argument

v) (6(2)" 2 ¢(a") = ¢(er) L e. Thus o((a))[n. 0
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Example 3 (Exponential functions for groups)

Let G be a group and a € G. Define ¢ : Z — G by ¢(n) = a" for all n € Z.
¢ is a homomorphism since ¢(n+ m) = a"*™ = a"a™ = ¢(n) - p(m).

¢ is onto if and only if G = (a).

¢ is one-to-one if and only if o(a) = cc.

Example 4 (Linear functions on Z,)
For a fixed m € Z, define ¢ : Z,, — Z,, by ¢([x]) = [mx] for all [x] € Z,,.
¢ is well-defined: If x =y (mod n), then mx = my (mod n).

¢ is a homomorphism since ¢([x] + [y]) = --- = &([x]) + ¢([y])-
¢ is one-to-one and onto if and only if (m,n)=1: ... (%)

Recall: mx =y (mod n) has a solution if and only if d|y with d = (m, n).
Moreover, if d|y, then there are d distinct solutions modulo n.

~ Consider a general argument, i.e., homomorphisms defined on cyclic gps

In particular, we can give a group-theoretic proof for the above result (x) !
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Homomorphisms Defined on Cyclic Groups

Let C = (a). Define a homomorphism ¢ : C — G by ¢(a) = g. ~ ¢(a™) = g"
It follows that ¢ is completely determined by its value on a.

If o(a) = n < oo, then o(g)|n since g = ¢(a) and ¢ is a homomorphism.
~> Any homomorphism ¢: Z,, — Z, is completely determined by ¢([1],).
Say, ¢([1],) = [m]k with o([m]x)|n. So n - [m]x = [nm]x = [0]x ~~ k|mn.
e ¢([x]n) = [xm]k defines a homomorphism if and only if k|mn.
@ Every homomorphism ¢ : Z,, — Z; must be of this form.

e ¢(Z,) is the cyclic subgroup generated by [m]y since ¢([1],) = [m]«.

~~ ¢ is onto if and only if [m]x is a generator of Zy, i.e., (m, k) = 1.

¢: Z1o — Zs, ¢([1]10) = [2]5 is an onto homomorphism since (2,5) = 1.
However, ¢ is not one-to-one. For example, ¢([1]10) = ¢([6]10) = [2]5.
If ¢([x]10) = ¢([yl10). then [2x]s = [2y]s < [2(x —y)]s = [0]5 < 5|(x — )
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Kernel and Image of a Homomorphism

Let ¢ : Gi — Gy be a group homomorphism. The kernel of ¢ is the set
ker(¢) = {x € G1 | ¢(x) = &2} C Gj.
The image of ¢ is the set im(¢) = {¢(x) | x € G1} C G.

Recall that ¢: Z19 — Zs with ¢([1]10) = [2]5 is an onto homomorphism.
~ im(¢) = Zs and ker(¢) = {[0]10, [5]10}-
Revisit Example 3: Exponential functions for groups
Define ¢ : Z — G by ¢(n) = a" for all n € Z. Then ¢ is a homomorphism.
By definition, ker(¢) = {n | a" = e}.
e If o(a) = m < oo, then ker(¢) = (m) = mZ.
o If o(a) = oo, then ker(¢) = {0}. ~ ¢ is 1-to-1 in this case.
In either case,ker(¢) is a subgroup of Z.
By definition, im(¢) = {a" | n € Z} =: (a), which is a subgroup of G.
~> ¢ is onto if and only if G = (a).

.
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More Properties of Group Homomorphisms

Let ¢ : G — G, be a group homomorphism.
i) ker(¢) is a subgroup of G;.

i) im(¢) is a subgroup of Gp.
iii) ¢ is one-to-one if and only if ker(¢) = {e1}.
iv) ¢ is onto if and only if im(¢) = G,.

Proof: i) ker(¢) is nonempty since e; € ker(¢). For a, b € ker(¢), to show
ab ! € ker(@): o(ab™) = 3(a)o(b ) = B(a)o(b) " = ereyt = e

ii) im(¢) is nonempty since e; € im(¢). For x,y € im(¢), to show xy ! € im(¢)

Say ¢(a) = x and ¢(b) = y for some a,b € G1. So xy ™t = ... = ¢(ab71).
iii) ¢ is one-to-one 824 ¢(x) = ey implies x = ey, i.e., ker(¢) = {e1}.
iv) It is clear that ¢ is onto if and only if im(¢) = Gp. O

Let ¢ : G — G, be a group homomorphism. Assume that ¢ is onto.

If Gy is abelian (resp. cyclic), then G is also abelian (resp. cyclic).

Shaoyun Yi Homomorphisms Spring 2022 8 /16



Let ¢ : G; — G, be a group homomorphism. Assume that ¢ is onto.

i) If Gi is abelian, then G is also abelian.

i) If Gy is cyclic, then G is also cyclic.

i) For x,y € G, 3 a,b € Gy s.t. ¢(a) = x,¢p(b) =y since ¢ is onto.

xy = 6(a)6(b) = é(ab) = ¢(ba) = 6(b)(a) = yx.
ii) Let G; = (a) for a generator a € Gy. To show G = (¢(a)).
o (§(a)) C Gy : v/ [Why?)
e Gy C (¢(a)) : To show every element y of Gy is a power of ¢(a).
We can write y = ¢(b) for some b € Gy since ¢ is onto.
We can also write b = a™ for some m € Z. [Why?]| This implies that

y = ¢(b) = ¢(a") = (¢(a))™. O

One comment: i) and ii) are not necessarily true if ¢ is not onto. ]
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Homorphisms Between Cyclic Groups

In slide # 6, define a homomorphism ¢ : Z, — Z, by ¢([x],) = [mx]«

¢ well-defined < k|mn. Every homomorphism ¢ : Z,, — Z is of this form.

Next, find all homomorphisms from Z to Z, from Z to Z,,, and from Z, to Z.

Let m be a fixed integer. Define a function ¢ : Z — Z by ¢(x) = mx.
Then ¢ is a homomorphism. Every homomorphism must be of this form. J

Proof: ¢ is a homomorphism since ¢(x + y) = - - = ¢(x) + ¢(y).
¢ is completely determined by its value on 1. [Why?] Say ¢(1) = m € Z,
Forx eZt,¢p(x)=--=mx. Forxe€Z ,x=—|x|:¢(x)="--=mx,

Let [m], € Z,. Define a function ¢ : Z — Z,, by ¢(x) = [mx],.
Then ¢ is a homomorphism. Every homomorphism must be of this form. J

The proof is the same as for homomorphisms Z — Z.
The only homomorphism Z, — Z is defined by ¢([x],) = 0 for [x], € Z,. J
Say o([x]») =d|n ~» o(¢([x]n))|d. Butin Z, only 0 has a finite order.
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Normal Subgroup

Let ¢ : G; — G, be a homomorphism.
Let g be any element in G;. Then gkg™! € ker(¢) for all k € ker(¢).

Proof: ¢(gkg™') = d(g)o(k)p(g ™) = d(g)ead(g) ' = & O

A subgroup H of the group G is called a normal subgroup if ghg™! € H
forall he H and g € G.

1) For a homomorphism ¢ : Gi — Gy, ker(¢) is a normal subgroup of G;.
2) If H= G or H = {e}, then H is normal.

3) Any subgroup of an abelian group is normal.
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Let ¢ : G; — G, be a homomorphism.
i) If Hy is a subgroup of Gj, then ¢(Hi) is a subgroup of Go.
If ¢ is onto and Hj is normal in Gj, then ¢(Hy) is normal in Gp.

1\

)
iii) If Hy is a subgroup of G, then ¢~1(H,) is a subgroup of Gj.
iv) If Hy is normal in G,, then ¢~1(H,) is normal in G;.

Proof: i) Nonempty: ex € ¢(Hi). For x,y € ¢(H1), there exist a, b € H;
with ¢(a) = x and ¢(b) =y, and xy L = ... = ¢(ab™1) € 4(H,).

i) Let x € Gy and y € ¢(H1). To show xyx—t € ¢(Hy).

There exist g € Gy s.t. ¢(g) = x [Why?] and y = ¢(h) for some h € H;.

xyx L= = ¢(ghg ") € ¢(H1) [Why?]
iii) Note that ¢~1(Ha) := {a € G1 | ¢(a) € Ha}. Nonempty: €1 € ¢~ L(Ha).
For any a,b € ¢ 1(H,),ab™ ! € ¢~ (H,) since p(ab™t) € Hy [Why?].

iv) Let g € G and h € ¢~ 1(H,). To show ghg™t € ¢ 1(Ha).
This is true since ¢(ghg 1) = - = ¢(g)d(h)(d(g))~t € Ha [Why?]. [
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Equivalence Relation on G; Associated with ¢: G — G,

Natural equivalent relation on Gy: For a,b € Gy, a ~y b if ¢(a) = ¢(b),
and write [a]y as the equivalence class of a € G;.  Set Gi/¢ = {[a]s}.

The multiplication of equivalence classes in the set Gi/¢ is well-defined,
and Gi/¢ is a group under this multiplication. The natural projection

w: G — Gi/¢

defined by 7(a) = [a], is a group homomorphism.

Proof: MuItipIicati?n is well-defined: to show ac ~y bd if a ~y b,c ~¢ d.
¢(ac) = ¢(a)o(c) = ¢(b)o(d) = ¢(bd).  ~ ac ~¢ bd

Associativity: For all a, b, c € Gy, [al¢([b]glcls) = -+ = ([a]g[b]s)[c]e-
Identity [e], : [e]g[als = [ea]p = [als &  [alylely = [aely = [a]s
Inverses [a~!]y: [a 7 ylaly = [a"als = [els & [als[a™"]s = [aa~ ]y = [e]
Thus, G1/¢ is a group under the multiplication of equivalence classes.

7 is a homomorphism: For all a,b € Gy, w(ab) = --- = w(a)w(b). O
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The set of equivalence classes G1/¢ = {[a]s}, [a]ly = {b € G1 | (b (a)}. )
We know 7: Gy — Gi1/¢ defined by 7(a) = [a] is a group homomorphism.

Let ¢ : Gi — G be a homomorphism. There exists a group isomorphism
¢:G1/p — ¢(G1) defined by ¢([a]s) = #(a) for all [a]s € G1/¢.

Gi 5 Gi/d % (1) Y G gives , ¢ is the inclusion mapping
Proof: well-defined: If [a]s = [b]s, then B([als) = &(a) = ¢(b) = B([b]s)-
one-to-one: If ¢([a]s) = B([b]y), then ¢(a) = ¢(b). Thus [a], = [bly.
onto: im(¢) = {4([als) | a € Gi1} = {¢(a) | a € G1} = im(¢) = ¢(G1)

¢ is a group homomorphism: For any [a], [b]s € G1/9,

#([als[bls) = o([ably) = d(ab) = ¢(a)d(b) = &([als)d([bls)- 0

Look ahead: Fundamental Homomorphism Theorem G;/ ker(¢) = im(¢) J
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Let ¢ : Gi — G be a homomorphism, and a, b € G;. TFAE:

) (@) =0(b) & a~gb < [aly = [bly;

(1
(2) ab™! € ker(9);

(3) a = kb for some k € ker(¢);
(4

(5

) b~la € ker(¢);
) a = bk for some k € ker(¢);

Proof: (1) = (2) ¢g(ab ) =---=e ~ ab ! € ker(9)
(2) = @3)abt=keker(p) ~a=kb (3)=(1)¢(a)=

Similarly, we can show that (1) = (4) = (5) = (1).

In proof of Lagrange's theorem: Let H be a subgroup of the group G.

For a,b € G define a~ b if ab~! € H. Then ~ is an equivalence relation.

~ Let H = ker(¢). Write G/ ker(¢) for G/¢. So Gi/¢ = ¢(G1) becomes
Fundamental Homomorphism Theorem: G;/ ker(¢) = ¢(G1) = im(¢) )
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Reprove 2nd Theorem in §3.5

Every cyclic group G is isomorphic to either Z or Z, for some n € Z+.

Use Fundamental Homomorphism Theorem G;/ ker(¢) = im(¢)):

Given G = (a), define ¢ : Z — G by ¢(m) = a™. By Example 3, ¢ is onto.
o If o(a) = oo, then ¢ is one-to-one. So the equivalence classes of the
factor set Z/¢ are just the subsets of Z consisting of single elements.

Thus Z/ ker(¢) = Z/¢ = Z = im(¢) = G.

e If o(a) = n < oo, then a™ = 2k & m = k (mod n), i.e., ¢(m) = ¢(k)
if and only if m = k (mod n). This implies that Z/ ker(¢) = Z/¢ is
the additive group of congruence classes modulo n. Thus Z, = G.

v

e.g., Define ¢ : Z — Z,, by ¢(x) = [x]n. So ¢ is an onto homomorphism.
~ ker(¢) = nZ. By Fundamental Homomorphism Theorem, Z/nZ = Z,,.

We just use G/ ker(¢) to replace Gy/¢ without its formal definition right now.
Looking ahead: We will give a formal proof of G/ ker(¢) = im(¢) in §3.8. J
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