$\S3.7$ Homomorphisms

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

Review (Brief Version of Exam II Review)

- A group isomorphism $\phi : (G_1, *) \to (G_2, \cdot)$ Find/Verify ϕ
- Lagrange's Theorem If $|G| = n < \infty$ and $H \subseteq G$, then |H||n.

• Cayley's Theorem Every group is isomorphic to a permutation group.

- Cyclic group: Infinite: $\cong Z$ & Finite: $\cong Z_n \longrightarrow$ multiplicative G
- Dihedral group D_n of order 2n
- Alternating group A_n of order n!/2
- Product of two subgroups is not always a subgroup.

If $h^{-1}kh \in K$ for all $h \in H, k \in K$, then HK is a subgroup. $\rightsquigarrow G$ abelian \bigcirc

 Direct product of (two → n) groups: e.g., Z_n ≅ Z_{p₁^{α1}} × ··· Z_{p_m^{αm}} → φ(n) The order of an element is the **Icm** of the orders of each component.

Group Homomorphism

A function $\phi : (G_1, *) \to (G_2, \cdot)$ is a **group homomorphism** if $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Every isomorphism is a homomorphism, but conversely not true.

Example 1 (Determinant of an invertible matrix, n > 1)

Let $G_1 = \operatorname{GL}_n(\mathbf{R})$ and $G_2 = \mathbf{R}^{\times}$. Define $\phi : G_1 \to G_2$ by $\phi(A) = \det(A)$.

 ϕ is a group homomorphism. [Why?] However, ϕ is not an isomorphism.

 ϕ is not one-to-one since different matrices could have the same det.

 ϕ is onto. e.g., consider a diagonal matrix $\operatorname{diag}(a, 1, \ldots, 1)$ for any $a \in \mathbf{R}^{\times}$.

Example 2 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. [Why?]

But ϕ is not an isomorphism since it is not one-to-one. [Why?] ϕ is onto. Parity of an integer: *n* is even $\Leftrightarrow \phi(n) = [0]_2$ & *n* is odd $\Leftrightarrow \phi(n) = [1]_2$

Properties of Group Homomorphisms

Let
$$\phi : (G_1, *, e_1) \to (G_2, \cdot, e_2)$$
 be a group homomorphism.
i) $\phi(e_1) = e_2$.
ii) $\phi(a^{-1}) = (\phi(a))^{-1}$ for all $a \in G_1$.
iii) $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbb{Z}$.
iv) If $o(a) = n$ in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n .

Proof: Proofs of i)-iii) are the same as in the case of a group isomorphism.

i)
$$\phi(e_1) \cdot \phi(e_1) = \phi(e_1 * e_1) = \phi(e_1) \qquad \rightsquigarrow \phi(e_1) = e_2.$$

ii) $\phi(a) \cdot \phi(a^{-1}) = \phi(a * a^{-1}) = \phi(e_1) \stackrel{\text{i)}}{=} e_2 \qquad \rightsquigarrow \phi(a^{-1}) = (\phi(a))^{-1}.$
iii) Just as in the case of an isomorphism, use an *induction* argument.

iv)
$$(\phi(a))^n \stackrel{\text{iii}}{=} \phi(a^n) = \phi(e_1) \stackrel{\text{i})}{=} e_2$$
. Thus $o(\phi(a))|n$.

Example 3 (Exponential functions for groups)

Let G be a group and $a \in G$. Define $\phi : \mathbf{Z} \to G$ by $\phi(n) = a^n$ for all $n \in \mathbf{Z}$.

- ϕ is a homomorphism since $\phi(n+m) = a^{n+m} = a^n a^m = \phi(n) \cdot \phi(m)$.
- ϕ is onto if and only if $G = \langle a \rangle$.

 ϕ is one-to-one if and only if $o(a) = \infty$.

Example 4 (Linear functions on Z_n)

For a fixed $m \in \mathbb{Z}$, define $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ by $\phi([x]) = [mx]$ for all $[x] \in \mathbb{Z}_n$. ϕ is well-defined: If $x \equiv y \pmod{n}$, then $mx \equiv my \pmod{n}$. ϕ is a homomorphism since $\phi([x] + [y]) = \cdots = \phi([x]) + \phi([y])$. ϕ is one-to-one and onto if and only if (m, n) = 1: $\cdots \cdots (\star)$ **Recall:** $mx \equiv y \pmod{n}$ has a solution if and only if d|y with d = (m, n). Moreover, if d|y, then there are d distinct solutions modulo n. \sim Consider a general argument, i.e., homomorphisms defined on cyclic gps In particular, we can give a group-theoretic proof for the above result (\star) !

Homomorphisms Defined on Cyclic Groups

Let $C = \langle a \rangle$. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g . \rightsquigarrow \phi(a^m) = g^m$ It follows that ϕ is completely determined by its value on a. If $o(a) = n < \infty$, then o(g)|n since $g = \phi(a)$ and ϕ is a homomorphism.

→ Any homomorphism ϕ : $\mathbf{Z}_n \to \mathbf{Z}_k$ is completely determined by $\phi([1]_n)$. Say, $\phi([1]_n) = [m]_k$ with $o([m]_k)|n$. So $n \cdot [m]_k = [nm]_k = [0]_k \rightarrow k|mn$.

- $\phi([x]_n) = [xm]_k$ defines a homomorphism if and only if k|mn.
- Every homomorphism $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$ must be of this form.
- φ(Z_n) is the cyclic subgroup generated by [m]_k since φ([1]_n) = [m]_k.
 → φ is onto if and only if [m]_k is a generator of Z_k, i.e., (m, k) = 1.

 $\phi \colon \mathbf{Z}_{10} \to \mathbf{Z}_5, \ \phi([1]_{10}) = [2]_5$ is an onto homomorphism since (2, 5) = 1. However, ϕ is not one-to-one. For example, $\phi([1]_{10}) = \phi([6]_{10}) = [2]_5$. If $\phi([x]_{10}) = \phi([y]_{10})$, then $[2x]_5 = [2y]_5 \Leftrightarrow [2(x-y)]_5 = [0]_5 \Leftrightarrow 5|(x-y)$

Kernel and Image of a Homomorphism

Let $\phi: G_1 \to G_2$ be a group homomorphism. The **kernel** of ϕ is the set ker $(\phi) = \{x \in G_1 \mid \phi(x) = e_2\} \subseteq G_1.$

The **image** of ϕ is the set $im(\phi) = \{\phi(x) \mid x \in G_1\} \subseteq G_2$.

Recall that $\phi \colon \mathbf{Z}_{10} \to \mathbf{Z}_5$ with $\phi([1]_{10}) = [2]_5$ is an onto homomorphism. $\rightsquigarrow \operatorname{im}(\phi) = \mathbf{Z}_5$ and $\operatorname{ker}(\phi) = \{[0]_{10}, [5]_{10}\}.$

Revisit Example 3: Exponential functions for groups

Define $\phi : \mathbf{Z} \to G$ by $\phi(n) = a^n$ for all $n \in \mathbf{Z}$. Then ϕ is a homomorphism. By definition, $\ker(\phi) = \{n \mid a^n = e\}$.

• If $o(a) = m < \infty$, then ker $(\phi) = \langle m \rangle = m Z$.

• If $o(a) = \infty$, then ker $(\phi) = \{0\}$. $\rightsquigarrow \phi$ is 1-to-1 in this case. In either case, ker (ϕ) is a subgroup of Z. By definition, $im(\phi) = \{a^n \mid n \in \mathbb{Z}\} =: \langle a \rangle$, which is a subgroup of G. $\rightsquigarrow \phi$ is onto if and only if $G = \langle a \rangle$.

More Properties of Group Homomorphisms

Let $\phi: G_1 \to G_2$ be a group homomorphism.

- i) ker(ϕ) is a subgroup of G_1 .
- ii) $im(\phi)$ is a subgroup of G_2 .
- iii) ϕ is one-to-one if and only if ker $(\phi) = \{e_1\}$.
- iv) ϕ is onto if and only if $im(\phi) = G_2$.

Proof: i) $\operatorname{ker}(\phi)$ is nonempty since $e_1 \in \operatorname{ker}(\phi)$. For $a, b \in \operatorname{ker}(\phi)$, to show $ab^{-1} \in \operatorname{ker}(\phi)$: $\phi(ab^{-1}) = \phi(a)\phi(b^{-1}) = \phi(a)\phi(b)^{-1} = e_2e_2^{-1} = e_2$. ii) $\operatorname{im}(\phi)$ is nonempty since $e_2 \in \operatorname{im}(\phi)$. For $x, y \in \operatorname{im}(\phi)$, to show $xy^{-1} \in \operatorname{im}(\phi)$ Say $\phi(a) = x$ and $\phi(b) = y$ for some $a, b \in G_1$. So $xy^{-1} = \cdots = \phi(ab^{-1})$. iii) ϕ is one-to-one $\stackrel{\S{3.4}}{\longleftrightarrow} \phi(x) = e_2$ implies $x = e_1$, i.e., $\operatorname{ker}(\phi) = \{e_1\}$. iv) It is clear that ϕ is onto if and only if $\operatorname{im}(\phi) = G_2$.

Let $\phi : G_1 \to G_2$ be a group homomorphism. Assume that ϕ is onto. If G_1 is abelian (resp. cyclic), then G_2 is also abelian (resp. cyclic).

Let $\phi : G_1 \to G_2$ be a group homomorphism. Assume that ϕ is onto.

i) If G_1 is abelian, then G_2 is also abelian.

ii) If G_1 is cyclic, then G_2 is also cyclic.

i) For $x, y \in G_2$, $\exists a, b \in G_1$ s.t. $\phi(a) = x, \phi(b) = y$ since ϕ is onto.

$$xy = \phi(a)\phi(b) = \phi(ab) \stackrel{!}{=} \phi(ba) = \phi(b)\phi(a) = yx.$$

ii) Let $G_1 = \langle a \rangle$ for a generator $a \in G_1$. To show $G_2 = \langle \phi(a) \rangle$.

- $\langle \phi(a) \rangle \subseteq G_2 : \checkmark [Why?]$
- G₂ ⊆ ⟨φ(a)⟩ : To show every element y of G₂ is a power of φ(a).
 We can write y = φ(b) for some b ∈ G₁ since φ is onto.

We can also write $b = a^m$ for some $m \in \mathbb{Z}$. [Why?] This implies that $y = \phi(b) = \phi(a^m) = (\phi(a))^m$.

One comment: i) and ii) are not necessarily true if ϕ is not onto.

Homorphisms Between Cyclic Groups

In slide # 6, define a homomorphism $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$ by $\phi([x]_n) = [mx]_k$

 ϕ well-defined $\Leftrightarrow k|mn$. Every homomorphism $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$ is of this form.

Next, find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Let *m* be a fixed integer. Define a function $\phi : \mathbb{Z} \to \mathbb{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof: ϕ is a homomorphism since $\phi(x + y) = \cdots = \phi(x) + \phi(y)$. ϕ is completely determined by its value on 1. [Why?] Say $\phi(1) = m \in \mathbb{Z}$. For $x \in \mathbb{Z}^+, \phi(x) = \cdots = mx$. For $x \in \mathbb{Z}^-, x = -|x| : \phi(x) = \cdots = mx$.

Let $[m]_n \in \mathbb{Z}_n$. Define a function $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [mx]_n$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

The proof is the same as for homomorphisms $\mathbf{Z} \rightarrow \mathbf{Z}$.

 $\rightarrow o(\phi([x]_n$

The **only** homomorphism $\mathbb{Z}_n \to \mathbb{Z}$ is defined by $\phi([x]_n) = 0$ for $[x]_n \in \mathbb{Z}_n$.

Say $o([x]_n) = d|n$ Shaoyun Yi n))|d. Bu Homomorphisms

Spring 2022 10 / 16

But in **Z**, only 0 has a finite order.

Let $\phi : G_1 \to G_2$ be a homomorphism.

Let g be any element in G_1 . Then $gkg^{-1} \in ker(\phi)$ for all $k \in ker(\phi)$.

Proof:
$$\phi(gkg^{-1}) = \phi(g)\phi(k)\phi(g^{-1}) = \phi(g)e_2\phi(g)^{-1} = e_2$$

A subgroup H of the group G is called a **normal** subgroup if $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$.

- 1) For a homomorphism $\phi: G_1 \to G_2$, ker(ϕ) is a normal subgroup of G_1 .
- 2) If H = G or $H = \{e\}$, then H is normal.
- 3) Any subgroup of an abelian group is normal.

Let $\phi : G_1 \to G_2$ be a homomorphism.

i) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 .

ii) If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .

iii) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 .

iv) If H_2 is normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .

Proof: i) Nonempty: $e_2 \in \phi(H_1)$. For $x, y \in \phi(H_1)$, there exist $a, b \in H_1$ with $\phi(a) = x$ and $\phi(b) = y$, and $xy^{-1} = \cdots = \phi(ab^{-1}) \in \phi(H_1)$. ii) Let $x \in G_2$ and $y \in \phi(H_1)$. To show $xyx^{-1} \in \phi(H_1)$. There exist $g \in G_1$ s.t. $\phi(g) = x$ [Why?] and $y = \phi(h)$ for some $h \in H_1$.

$$xyx^{-1} = \cdots = \phi(ghg^{-1}) \in \phi(H_1)$$
 [Why?]

iii) Note that $\phi^{-1}(H_2) := \{a \in G_1 \mid \phi(a) \in H_2\}$. Nonempty: $e_1 \in \phi^{-1}(H_2)$. For any $a, b \in \phi^{-1}(H_2), ab^{-1} \in \phi^{-1}(H_2)$ since $\phi(ab^{-1}) \in H_2$ [Why?]. iv) Let $g \in G_1$ and $h \in \phi^{-1}(H_2)$. To show $ghg^{-1} \in \phi^{-1}(H_2)$. This is true since $\phi(ghg^{-1}) = \cdots = \phi(g)\phi(h)(\phi(g))^{-1} \in H_2$ [Why?].

Equivalence Relation on G_1 Associated with $\phi: G_1 \rightarrow G_2$

Natural equivalent relation on G_1 : For $a, b \in G_1$, $a \sim_{\phi} b$ if $\phi(a) = \phi(b)$, and write $[a]_{\phi}$ as the equivalence class of $a \in G_1$. Set $G_1/\phi := \{[a]_{\phi}\}$.

The multiplication of equivalence classes in the set G_1/ϕ is well-defined, and G_1/ϕ is a group under this multiplication. The natural projection

 $\pi: G_1 \to G_1/\phi$

defined by $\pi(a) = [a]_{\phi}$ is a group homomorphism.

Proof: Multiplication is well-defined: to show $ac \sim_{\phi} bd$ if $a \sim_{\phi} b, c \sim_{\phi} d$. $\phi(ac) = \phi(a)\phi(c) \stackrel{!}{=} \phi(b)\phi(d) = \phi(bd)$. $\rightsquigarrow ac \sim_{\phi} bd$ Associativity: For all $a, b, c \in G_1$, $[a]_{\phi}([b]_{\phi}[c]_{\phi}) = \cdots = ([a]_{\phi}[b]_{\phi})[c]_{\phi}$. Identity $[e]_{\phi} : [e]_{\phi}[a]_{\phi} = [ea]_{\phi} = [a]_{\phi}$ & $[a]_{\phi}[e]_{\phi} = [ae]_{\phi} = [a]_{\phi}$ Inverses $[a^{-1}]_{\phi}$: $[a^{-1}]_{\phi}[a]_{\phi} = [a^{-1}a]_{\phi} = [e]_{\phi}$ & $[a]_{\phi}[a^{-1}]_{\phi} = [aa^{-1}]_{\phi} = [e]_{\phi}$ Thus, G_1/ϕ is a group under the multiplication of equivalence classes. π is a homomorphism: For all $a, b \in G_1$, $\pi(ab) = \cdots = \pi(a)\pi(b)$.

Shaoyun Yi

The set of equivalence classes $G_1/\phi = \{[a]_{\phi}\}, [a]_{\phi} = \{b \in G_1 \mid \phi(b) = \phi(a)\}$. We know $\pi: G_1 \to G_1/\phi$ defined by $\pi(a) = [a]_{\phi}$ is a group homomorphism. Theorem Let $\phi: G_1 \to G_2$ be a homomorphism. There exists a group **isomorphism** $\overline{\phi}: G_1/\phi \to \phi(G_1)$ defined by $\overline{\phi}([a]_{\phi}) = \phi(a)$ for all $[a]_{\phi} \in G_1/\phi$. $G_1 \xrightarrow{\pi} G_1/\phi \xrightarrow{\phi} \phi(G_1) \xrightarrow{\iota} G_2$ gives $\phi = \iota \circ \overline{\phi} \circ \pi$, ι is the inclusion mapping **Proof:** well-defined: If $[a]_{\phi} = [b]_{\phi}$, then $\overline{\phi}([a]_{\phi}) = \phi(a) = \phi(b) = \overline{\phi}([b]_{\phi})$. one-to-one: If $\overline{\phi}([a]_{\phi}) = \overline{\phi}([b]_{\phi})$, then $\phi(a) = \phi(b)$. Thus $[a]_{\phi} = [b]_{\phi}$. onto: $\operatorname{im}(\overline{\phi}) = \{\overline{\phi}([a]_{\phi}) \mid a \in G_1\} = \{\phi(a) \mid a \in G_1\} = \operatorname{im}(\phi) = \phi(G_1)$ $\overline{\phi}$ is a group homomorphism: For any $[a]_{\phi}, [b]_{\phi} \in G_1/\phi$, $\phi([a]_{\phi}[b]_{\phi}) = \phi([ab]_{\phi}) = \phi(ab) = \phi(a)\phi(b) = \phi([a]_{\phi})\phi([b]_{\phi}).$

Look ahead: Fundamental Homomorphism Theorem $G_1/\ker(\phi) \cong \operatorname{im}(\phi)$

Let $\phi: G_1 \rightarrow G_2$ be a homomorphism, and $a, b \in G_1$. TFAE:
$(1) \ \phi(a) = \phi(b) \Leftrightarrow a \sim_{\phi} b \Leftrightarrow [a]_{\phi} = [b]_{\phi};$
(2) $ab^{-1} \in \ker(\phi);$
(3) $a = kb$ for some $k \in ker(\phi)$;
(4) $b^{-1}a \in \ker(\phi);$
(5) $a = bk$ for some $k \in \text{ker}(\phi)$;
Proof: (1) \Rightarrow (2) $\phi(ab^{-1}) = \cdots = e_2 \rightsquigarrow ab^{-1} \in \text{ker}(\phi)$
$(2) \Rightarrow (3) \ ab^{-1} = k \in \ker(\phi) \rightsquigarrow a = kb \qquad (3) \Rightarrow (1) \ \phi(a) = \cdots = \phi(b)$
Similarly, we can show that $(1) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1)$. \Box
In proof of Lagrange's theorem: Let H be a subgroup of the group G .
For $a, b \in G$ define $a \sim b$ if $ab^{-1} \in H$. Then \sim is an equivalence relation.
\rightsquigarrow Let $H = \ker(\phi)$. Write $G/\ker(\phi)$ for G/ϕ . So $G_1/\phi \cong \phi(G_1)$ becomes
Fundamental Homomorphism Theorem: $G_1/\ker(\phi) \cong \phi(G_1) = \operatorname{im}(\phi)$

Reprove 2nd Theorem in §3.5

Every cyclic group G is isomorphic to either Z or Z_n for some $n \in Z^+$.

Use Fundamental Homomorphism Theorem $G_1/\ker(\phi) \cong \operatorname{im}(\phi)$:

Given $G = \langle a \rangle$, define $\phi : \mathbf{Z} \to G$ by $\phi(m) = a^m$. By Example 3, ϕ is onto.

- If o(a) = ∞, then φ is one-to-one. So the equivalence classes of the factor set Z/φ are just the subsets of Z consisting of single elements. Thus Z/ker(φ) = Z/φ = Z ≅ im(φ) = G.
- If $o(a) = n < \infty$, then $a^m = a^k \Leftrightarrow m \equiv k \pmod{n}$, i.e., $\phi(m) = \phi(k)$ if and only if $m \equiv k \pmod{n}$. This implies that $\mathbb{Z}/\ker(\phi) = \mathbb{Z}/\phi$ is the additive group of congruence classes modulo n. Thus $\mathbb{Z}_n \cong G$.

e.g., Define $\phi : \mathbf{Z} \to \mathbf{Z}_n$ by $\phi(x) = [x]_n$. So ϕ is an onto homomorphism. $\rightsquigarrow \ker(\phi) = n\mathbf{Z}$. By Fundamental Homomorphism Theorem, $\mathbf{Z}/n\mathbf{Z} \cong \mathbf{Z}_n$.

We just use $G_1/\ker(\phi)$ to replace G_1/ϕ without its formal definition right now. Looking ahead: We will give a formal proof of $G_1/\ker(\phi) \cong \operatorname{im}(\phi)$ in §3.8.