§3.7 Homomorphisms

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

Review (Brief Version of Exam II Review)

- A group isomorphism ϕ : $(G_1, *) \rightarrow (G_2, \cdot)$ Find/Verify ϕ
- **Lagrange's Theorem** If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n$.
- Cayley's Theorem Every group is isomorphic to a permutation group.
	- Cyclic group: Infinite: \cong Z & Finite: \cong Z_n \rightsquigarrow multiplicative G
	- Dihedral group D_n of order $2n$
	- Alternating group A_n of order n!/2
- Product of two subgroups is not always a subgroup.

If $h^{-1}kh \in K$ for all $h \in H, k \in K$, then HK is a subgroup. $\leadsto G$ abelian

Direct product of $(two \leadsto n)$ groups: e.g., $\mathbf{Z}_n \cong \mathbf{Z}_{p_1^{\alpha_1}} \times \cdots \mathbf{Z}_{p_m^{\alpha_m}} \leadsto \varphi(n)$ The order of an element is the **lcm** of the orders of each component.

Group Homomorphism

A function $\phi: (G_1, *) \to (G_2, \cdot)$ is a group homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$.

Every isomorphism is a homomorphism, but conversely not true.

Example 1 (Determinant of an invertible matrix, $n > 1$)

Let $G_1 = \mathrm{GL}_n(\mathbf{R})$ and $G_2 = \mathbf{R}^{\times}$. Define $\phi : G_1 \to G_2$ by $\phi(A) = \det(A)$.

 ϕ is a group homomorphism. [Why?] However, ϕ is not an isomorphism.

 ϕ is not one-to-one since different matrices could have the same det.

 ϕ is onto. e.g., consider a diagonal matrix $\mathrm{diag}(\bm{s},1,\dots,1)$ for any $\bm{s} \in \mathsf{R}^{\times}.$

Example 2 (Parity of an integer)

Define $\phi : \mathbf{Z} \to \mathbf{Z}_2$ by $\phi(n) = [n]_2$. ϕ is a homomorphism. [Why?] But ϕ is not an isomorphism since it is not one-to-one. [Why?] ϕ is onto. Parity of an integer: *n* is even $\Leftrightarrow \phi(n) = [0]_2 \& n$ is odd $\Leftrightarrow \phi(n) = [1]_2$

Properties of Group Homomorphisms

Let
$$
\phi : (G_1, *, e_1) \rightarrow (G_2, \cdot, e_2)
$$
 be a group homomorphism.
\ni) $\phi(e_1) = e_2$.
\nii) $\phi(a^{-1}) = (\phi(a))^{-1}$ for all $a \in G_1$.
\niii) $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbb{Z}$.
\niv) If $o(a) = n$ in G_1 , then $o(\phi(a))$ in G_2 is a divisor of *n*.

Proof: Proofs of i)-iii) are the same as in the case of a group isomorphism.

\n- i)
$$
\phi(e_1) \cdot \phi(e_1) = \phi(e_1 * e_1) = \phi(e_1) \rightarrow \phi(e_1) = e_2
$$
.
\n- ii) $\phi(a) \cdot \phi(a^{-1}) = \phi(a \cdot a^{-1}) = \phi(e_1) \stackrel{i)}{=} e_2 \rightarrow \phi(a^{-1}) = (\phi(a))^{-1}$.
\n- iii) Just as in the case of an isomorphism, use an *induction* argument.
\n

iv)
$$
(\phi(a))^n \stackrel{\text{iii)}}{=} \phi(a^n) = \phi(e_1) \stackrel{\text{i)}}{=} e_2
$$
. Thus $o(\phi(a))|n$.

Example 3 (Exponential functions for groups)

Let G be a group and $a \in G$. Define $\phi : \mathsf{Z} \to G$ by $\phi(n) = a^n$ for all $n \in \mathsf{Z}$.

 ϕ is a homomorphism since $\phi(n+m)=$ $a^{n+m}=$ $a^na^m=\phi(n)\cdot\phi(m).$

 ϕ is onto if and only if $G = \langle a \rangle$.

 ϕ is one-to-one if and only if $o(a) = \infty$.

Example 4 (Linear functions on Z_n)

For a fixed $m \in \mathbb{Z}$, define $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ by $\phi([x]) = [mx]$ for all $[x] \in \mathbb{Z}_n$. ϕ is well-defined: If $x \equiv y \pmod{n}$, then $mx \equiv my \pmod{n}$. ϕ is a homomorphism since $\phi([x] + [y]) = \cdots = \phi([x]) + \phi([y])$. ϕ is one-to-one and onto if and only if $(m, n) = 1$: $\dots \dots (\star)$ **Recall:** $mx \equiv y \pmod{n}$ has a solution if and only if $d|y$ with $d = (m, n)$. Moreover, if $d|y$, then there are d distinct solutions modulo n. \rightsquigarrow Consider a general argument, i.e., homomorphisms defined on cyclic gps In particular, we can give a group-theoretic proof for the above result $(*)$!

Homomorphisms Defined on Cyclic Groups

Let $C = \langle a \rangle$. Define a homomorphism $\phi : C \to G$ by $\phi(a) = g$. $\leadsto \phi(a^m) = g^m$ It follows that ϕ is completely determined by its value on a. If $o(a) = n < \infty$, then $o(g)|n$ since $g = \phi(a)$ and ϕ is a homomorphism.

 \rightsquigarrow Any homomorphism $\phi: \mathbf{Z}_n \to \mathbf{Z}_k$ is completely determined by $\phi([1]_n)$. Say, $\phi([1]_n) = [m]_k$ with $o([m]_k)|n$. So $n \cdot [m]_k = [nm]_k = [0]_k \rightsquigarrow k |mn$.

- $\phi([x]_n) = [xm]_k$ defines a homomorphism if and only if $k | mn$.
- **•** Every homomorphism ϕ : $\mathbb{Z}_n \to \mathbb{Z}_k$ must be of this form.
- $\phi(Z_n)$ is the cyclic subgroup generated by $[m]_k$ since $\phi([1]_n) = [m]_k$. $\rightarrow \phi$ is onto if and only if $[m]_k$ is a generator of \mathbb{Z}_k , i.e., $(m, k) = 1$.

 $\phi: \mathbf{Z}_{10} \to \mathbf{Z}_5$, $\phi([1]_{10}) = [2]_5$ is an onto homomorphism since $(2, 5) = 1$. However, ϕ is not one-to-one. For example, $\phi([1]_{10}) = \phi([6]_{10}) = [2]_5$. If $\phi([x]_{10}) = \phi([y]_{10})$, then $[2x]_5 = [2y]_5 \Leftrightarrow [2(x-y)]_5 = [0]_5 \Leftrightarrow 5|(x-y)$

Kernel and Image of a Homomorphism

Let ϕ : $G_1 \rightarrow G_2$ be a group homomorphism. The **kernel** of ϕ is the set $\ker(\phi) = \{x \in G_1 \mid \phi(x) = e_2\} \subseteq G_1$.

The image of ϕ is the set $\text{im}(\phi) = {\phi(x) | x \in G_1} \subseteq G_2$.

Recall that $\phi: \mathbf{Z}_{10} \to \mathbf{Z}_5$ with $\phi([1]_{10}) = [2]_5$ is an onto homomorphism. \rightsquigarrow im(ϕ) = Z₅ and ker(ϕ) = {[0]₁₀, [5]₁₀}.

Revisit Example 3: Exponential functions for groups

Define $\phi : \mathbf{Z} \to G$ by $\phi(n) = a^n$ for all $n \in \mathbf{Z}$. Then ϕ is a homomorphism. By definition, ker $(\phi) = \{n \mid a^n = e\}.$

• If $o(a) = m < \infty$, then ker $(\phi) = \langle m \rangle = mZ$.

• If $o(a) = \infty$, then ker $(\phi) = \{0\}$. $\leadsto \phi$ is 1-to-1 in this case. In either case, ker(ϕ) is a subgroup of Z. By definition, $\text{im}(\phi) = \{a^n \mid n \in \mathbb{Z}\} =: \langle a \rangle$, which is a subgroup of G. $\rightarrow \phi$ is onto if and only if $G = \langle a \rangle$.

More Properties of Group Homomorphisms

Let $\phi: G_1 \to G_2$ be a group homomorphism.

- i) ker(ϕ) is a subgroup of G_1 .
- ii) im(ϕ) is a subgroup of G_2 .
- iii) ϕ is one-to-one if and only if ker(ϕ) = { e_1 }.
- iv) ϕ is onto if and only if $\text{im}(\phi) = G_2$.

Proof: i) ker(ϕ) is nonempty since $e_1 \in \text{ker}(\phi)$. For $a, b \in \text{ker}(\phi)$, to show $ab^{-1} \in \text{ker}(\phi)$: $\phi(ab^{-1}) = \phi(a)\phi(b^{-1}) = \phi(a)\phi(b)^{-1} = e_2e_2^{-1} = e_2.$ $\overline{\mathfrak{in}}$) in (ϕ) is nonempty since $e_2 \in \text{im}(\phi)$. For $x, y \in \text{im}(\phi)$, to show $xy^{-1} \in \text{im}(\phi)$ Say $\phi(\mathsf{a})=x$ and $\phi(\mathsf{b})=y$ for some $\mathsf{a},\mathsf{b}\in\mathsf{G}_1.$ So $\mathsf{x}\mathsf{y}^{-1}=\cdots=\phi(\mathsf{a}\mathsf{b}^{-1}).$ iii) ϕ is one-to-one $\overset{\S 3.4}\iff \phi(x)=e_2$ implies $x=e_1$, i.e., ker $(\phi)=\{e_1\}.$ iv) It is clear that ϕ is onto if and only if $\text{im}(\phi) = G_2$.

Let $\phi: G_1 \to G_2$ be a group homomorphism. Assume that ϕ is onto. If G_1 is abelian (resp. cyclic), then G_2 is also abelian (resp. cyclic).

Let $\phi: G_1 \to G_2$ be a group homomorphism. Assume that ϕ is onto.

i) If G_1 is abelian, then G_2 is also abelian.

ii) If G_1 is cyclic, then G_2 is also cyclic.

i) For $x, y \in G_2$, $\exists a, b \in G_1$ s.t. $\phi(a) = x, \phi(b) = y$ since ϕ is onto.

$$
xy = \phi(a)\phi(b) = \phi(ab) \stackrel{!}{=} \phi(ba) = \phi(b)\phi(a) = yx.
$$

ii) Let $G_1 = \langle a \rangle$ for a generator $a \in G_1$. To show $G_2 = \langle \phi(a) \rangle$.

- \bullet $\langle \phi(a) \rangle \subset G_2$: \checkmark [Why?]
- $G_2 \subseteq \langle \phi(a) \rangle$: To show every element y of G_2 is a power of $\phi(a)$. We can write $y = \phi(b)$ for some $b \in G_1$ since ϕ is onto.

We can also write $b = a^m$ for some $m \in \mathsf{Z}$. [Why?] This implies that $y = \phi(b) = \phi(a^m) = (\phi(a))^m$.

One comment: i) and ii) are not necessarily true if ϕ is not onto.

Homorphisms Between Cyclic Groups

In slide # 6, define a homomorphism $\phi : \mathbf{Z}_n \to \mathbf{Z}_k$ by $\phi([\mathbf{x}]_n) = [m\mathbf{x}]_k$

 ϕ well-defined \Leftrightarrow k|mn. Every homomorphism ϕ : $\mathbb{Z}_n \to \mathbb{Z}_k$ is of this form.

Next, find all homomorphisms from Z to Z, from Z to Z_n , and from Z_n to Z.

Let m be a fixed integer. Define a function $\phi : \mathbf{Z} \to \mathbf{Z}$ by $\phi(x) = mx$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

Proof: ϕ is a homomorphism since $\phi(x + y) = \cdots = \phi(x) + \phi(y)$. ϕ is completely determined by its value on 1. [Why?] Say $\phi(1) = m \in \mathbb{Z}$. For $x \in \mathbf{Z}^+, \phi(x) = \cdots = mx$. For $x \in \mathbf{Z}^-, x = -|x| : \phi(x) = \cdots = mx$.

Let $[m]_n \in \mathbb{Z}_n$. Define a function $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [mx]_n$. Then ϕ is a homomorphism. Every homomorphism must be of this form.

The proof is the same as for homomorphisms $Z \rightarrow Z$.

The only homomorphism $\mathbf{Z}_n \to \mathbf{Z}$ is defined by $\phi([x]_n) = 0$ for $[x]_n \in \mathbf{Z}_n$.

Say $o(|x|_n) = d|n \longrightarrow o(\phi(|x|_n))|d$. But in **Z**, only 0 has a finite order. Shaoyun Yi **Shaoyun Yi** [Homomorphisms](#page-0-0) Spring 2022 10 / 16

Let ϕ : $G_1 \rightarrow G_2$ be a homomorphism.

Let g be any element in G₁. Then $gkg^{-1} \in \text{ker}(\phi)$ for all $k \in \text{ker}(\phi)$.

Proof:
$$
\phi(gkg^{-1}) = \phi(g)\phi(k)\phi(g^{-1}) = \phi(g)e_2\phi(g)^{-1} = e_2
$$

A subgroup H of the group G is called a **normal** subgroup if $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$.

1) For a homomorphism $\phi : G_1 \to G_2$, ker (ϕ) is a normal subgroup of G_1 .

2) If $H = G$ or $H = \{e\}$, then H is normal.

3) Any subgroup of an abelian group is normal.

Let $\phi: G_1 \to G_2$ be a homomorphism.

i) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 .

ii) If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .

iii) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of $\mathit{G}_1.$

iv) If H_2 is normal in G_2 , then $\phi^{-1}(H_2)$ is normal in $\mathit{G}_1.$

Proof: i) Nonempty: $e_2 \in \phi(H_1)$. For $x, y \in \phi(H_1)$, there exist $a, b \in H_1$ with $\phi(\mathsf{a}) = x$ and $\phi(\mathsf{b}) = y$, and $xy^{-1} = \cdots = \phi(\mathsf{a}\mathsf{b}^{-1}) \in \phi(\mathsf{H}_1)$. ii) Let $x \in G_2$ and $y \in \phi(H_1)$. To show $xyx^{-1} \in \phi(H_1)$. There exist $g \in G_1$ s.t. $\phi(g) = x$ [Why?] and $y = \phi(h)$ for some $h \in H_1$. $xyx^{-1} = \cdots = \phi(ghg^{-1}) \in \phi(H_1)$ [Why?] $\overline{\mathfrak{lii}}$) Note that $\phi^{-1}(H_2):=\{ \mathsf{a}\in\mathsf{G}_1\mid \phi(\mathsf{a})\in H_2\}.$ Nonempty: $\mathsf{e}_1\in\phi^{-1}(H_2).$ For any $a,b\in \phi^{-1}(H_2),$ $ab^{-1}\in \phi^{-1}(H_2)$ since $\phi(ab^{-1})\in H_2$ [Why?]. iv) Let $g \in \mathcal{G}_1$ and $h \in \phi^{-1}(\mathcal{H}_2)$. To show $ghg^{-1} \in \phi^{-1}(\mathcal{H}_2)$. This is true since $\phi(ghg^{-1})=\cdots=\phi(g)\phi(h)(\phi(g))^{-1}\in H_2$ [Why?]. \Box

Equivalence Relation on G_1 Associated with $\phi: G_1 \rightarrow G_2$

Natural equivalent relation on G_1 : For $a, b \in G_1$, $a \sim_b b$ if $\phi(a) = \phi(b)$, and write $[a]_{\phi}$ as the equivalence class of $a \in G_1$. Set $G_1/\phi := \{ [a]_{\phi} \}$.

The multiplication of equivalence classes in the set G_1/ϕ is well-defined, and G_1/ϕ is a group under this multiplication. The natural projection

 $\pi: G_1 \to G_1/\phi$

defined by $\pi(a) = [a]_{\phi}$ is a group homomorphism.

Proof: Multiplication is well-defined: to show $ac \sim_{\phi} bd$ if $a \sim_{\phi} b, c \sim_{\phi} d$. $\phi (a \mathsf{c}) = \phi (a) \phi (\mathsf{c}) \stackrel{!}{=} \phi (b) \phi (d) = \phi (bd). \qquad \leadsto a \mathsf{c} \sim_\phi b d$ Associativity: For all $a, b, c \in G_1$, $[a]_{\phi}([b]_{\phi}]c]_{\phi} = \cdots = ([a]_{\phi}[b]_{\phi})[c]_{\phi}$. Identity $[e]_{\phi}$: $[e]_{\phi}[a]_{\phi} = [ea]_{\phi} = [a]_{\phi}$ & $[a]_{\phi}[e]_{\phi} = [ae]_{\phi} = [a]_{\phi}$ $\mathsf{Inverses}\;[\mathsf{a}^{-1}]_\phi\!\!: \; [\mathsf{a}^{-1}]_\phi[\mathsf{a}]_\phi = [\mathsf{a}^{-1}\mathsf{a}]_\phi = [\mathsf{e}]_\phi\quad \& \quad [\mathsf{a}]_\phi[\mathsf{a}^{-1}]_\phi = [\mathsf{a}\mathsf{a}^{-1}]_\phi = [\mathsf{e}]_\phi$ Thus, G_1/ϕ is a group under the multiplication of equivalence classes. π is a homomorphism: For all $a, b \in G_1$, $\pi(ab) = \cdots = \pi(a)\pi(b)$.

The set of equivalence classes $G_1/\phi=\{[a]_\phi\},\, [a]_\phi=\{b\in G_1\mid \phi(b)=\phi(a)\}$. We know $\pi: G_1 \to G_1/\phi$ defined by $\pi(a) = [a]_{\phi}$ is a group homomorphism. Theorem Let ϕ : $G_1 \rightarrow G_2$ be a homomorphism. There exists a group **isomorphism** $\overline{\phi}$: $G_1/\phi \rightarrow \phi(G_1)$ defined by $\overline{\phi}([a]_{\phi}) = \phi(a)$ for all $[a]_{\phi} \in G_1/\phi$. $G_1 \stackrel{\pi}{\to} G_1/\phi \stackrel{\phi}{\to} \phi(G_1) \stackrel{\iota}{\to} G_2$ gives $\phi = \iota \circ \overline{\phi} \circ \pi$, ι is the inclusion mapping **Proof:** well-defined: If $[a]_{\phi} = [b]_{\phi}$, then $\overline{\phi}([a]_{\phi}) = \phi(a) = \phi(b) = \overline{\phi}([b]_{\phi})$. one-to-one: If $\overline{\phi}([a]_{\phi}) = \overline{\phi}([b]_{\phi})$, then $\phi(a) = \phi(b)$. Thus $[a]_{\phi} = [b]_{\phi}$. onto: $\text{im}(\overline{\phi}) = {\{\overline{\phi}(\text{[}a\text{]}_{\phi}) \mid a \in G_1\}} = {\phi(a) \mid a \in G_1} = \text{im}(\phi) = \phi(G_1)$ $\overline{\phi}$ is a group homomorphism: For any $[a]_{\phi}$, $[b]_{\phi} \in G_1/\phi$, $\overline{\phi}([\mathsf{a}]_{\phi}[\mathsf{b}]_{\phi}) = \overline{\phi}([\mathsf{a}\mathsf{b}]_{\phi}) = \phi(\mathsf{a}\mathsf{b}) = \phi(\mathsf{a})\phi(\mathsf{b}) = \overline{\phi}([\mathsf{a}]_{\phi})\overline{\phi}([\mathsf{b}]_{\phi}).$

Look ahead: Fundamental Homomorphism Theorem $G_1/\text{ker}(\phi) \cong \text{im}(\phi)$

Reprove 2nd Theorem in §3.5

Every cyclic group G is isomorphic to either **Z** or **Z**_n for some $n \in \mathbb{Z}^+$.

Use Fundamental Homomorphism Theorem $G_1/\text{ker}(\phi) \cong \text{im}(\phi)$:

Given $G = \langle a \rangle$, define $\phi : \mathbf{Z} \to G$ by $\phi(m) = a^m$. By Example 3, ϕ is onto.

- If $o(a) = \infty$, then ϕ is one-to-one. So the equivalence classes of the factor set \mathbf{Z}/ϕ are just the subsets of Z consisting of single elements. Thus $\mathsf{Z}/\ker(\phi) = \mathsf{Z}/\phi = \mathsf{Z} \cong \mathrm{im}(\phi) = G$.
- If $o(a) = n < \infty$, then $a^m = a^k \Leftrightarrow m \equiv k \pmod{n}$, i.e., $\phi(m) = \phi(k)$ if and only if $m \equiv k$ (mod *n*). This implies that $\mathbb{Z}/\ker(\phi) = \mathbb{Z}/\phi$ is the additive group of congruence classes modulo n. Thus $\mathbf{Z}_n \cong G$.

e.g., Define $\phi : \mathbf{Z} \to \mathbf{Z}_n$ by $\phi(x) = [x]_n$. So ϕ is an onto homomorphism. \rightsquigarrow ker(ϕ) = n**Z**. By Fundamental Homomorphism Theorem, **Z**/n**Z** ≅ **Z**_n.

We just use $G_1 / \text{ker}(\phi)$ to replace G_1 / ϕ without its formal definition right now. Looking ahead: We will give a formal proof of $G_1/\text{ker}(\phi) \cong \text{im}(\phi)$ in §3.8.