§3.6 Permutation Groups

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

Review for §3.5

- Every subgroup of a cyclic group *G* is cyclic.
- Let G be a cyclic group.
- $\begin{cases} i) & \text{if } G \text{ is infinite,} & \text{then } G \cong \mathbf{Z}. \\ ii) & \text{if } |G| = n < \infty, \text{ then } G \cong \mathbf{Z}_n. \end{cases}$
- i) Any two infinite cyclic groups are isomorphic to each other.
 - ii) Two finite cyclic groups are isomorphic \Leftrightarrow they have the same order.
- Subgroups of **Z** : For any $0 \neq m \in \mathbf{Z}$, $\langle m \rangle = m\mathbf{Z} \cong \mathbf{Z} = \langle 1 \rangle = \langle -1 \rangle$.
 - $m\mathbf{Z} \subseteq n\mathbf{Z} \Leftrightarrow n|m$ $m\mathbf{Z} = n\mathbf{Z} \Leftrightarrow m = \pm n$
- Subgroups of \mathbf{Z}_n : $d\mathbf{Z}_n = \langle [d] \rangle$ for any $d|n \rightarrow \mathbf{subgroup}$ diagram
 - i) d = (k, n): $\langle [k] \rangle = \langle [d] \rangle$ & $|\langle [k] \rangle| = |\langle [d] \rangle| = n/d$
 - ii) $\mathbf{Z}_n = \langle [k] \rangle \quad \Leftrightarrow \quad [k] \in \mathbf{Z}_n^{\times} \quad \Leftrightarrow \quad (k, n) = 1$
 - iii) If $d_1|n$ and $d_2|n$, then $\langle [d_1]\rangle\subseteq \langle [d_2]\rangle$ \Leftrightarrow $d_2|d_1$.
- $\mathbf{Z}_n \cong \mathbf{Z}_{p_1^{\alpha_1}} \times \mathbf{Z}_{p_2^{\alpha_2}} \times \cdots \times \mathbf{Z}_{p_m^{\alpha_m}} \longrightarrow \text{Euler's totient function } \varphi(n)$
- Let G be a finite abelian group. Its exponent $N = \max\{o(a) : a \in G\}$. In particular, G is cyclic $\Leftrightarrow N = |G|$.
- For small n, check \mathbf{Z}_n^{\times} cyclic or not without using *primitive root thm*.

Shaoyun Yi Permutation Groups Spring 2022 2 / 14

Review for §2.3

- A **permutation** $\sigma: S \to S$ is one-to-one and onto. Write $\sigma \in \operatorname{Sym}(S)$
- Sym(S) is a group under \circ .
- S_n is the **symmetric group** of degree n and $|S_n| = n!$.
- Cycle of length k: $\sigma = (a_1 a_2 \cdots a_k)$ has order k.
- Disjoint cycles are commutative.
- $\sigma \in S_n$ can be written as a *unique* product of disjoint cycles.
- The order of σ is the **lcm** of the orders of its disjoint cycles.
- A **transposition** is a cycle (a_1a_2) of length two.
- $\sigma \in S_n$ can be written as a product of transpositions. (NOT unique)
- Even permutation & Odd permutation
- A cycle of odd length is even. & A cycle of even length is odd.

Shaoyun Yi Permutation Groups Spring 2022

3 / 14

Any subgroup of Sym(S) is called a **permutation group**.

Cayley's Theorem

Every group G is isomorphic to a permutation group.

Proof: Given $a \in G$, define $\lambda_a : G \to G$ by $\lambda_a(x) = ax$. To show $\lambda_a \in \operatorname{Sym}(G)$:

- one-to-one: If $\lambda_a(x_1) = \lambda_a(x_2)$, then $ax_1 = ax_2$ and so $x_1 = x_2$.
- onto: For any $x \in G$, we have $\lambda_a(a^{-1}x) = a(a^{-1}x) = x$.

This implies that $\phi: G \to \operatorname{Sym}(G)$ defined by $\phi(a) = \lambda_a$ is well-defined.

To show $G_{\lambda} := \phi(G)$ is a subgroup of Sym(G).

- i) Closure: For any $\lambda_a, \lambda_b \in G_\lambda$ with $a, b \in G$, to show $\lambda_a \lambda_b \in G_\lambda$. $\lambda_a \lambda_b(x) = \lambda_a(\lambda_b(x)) = \lambda_a(bx) = a(bx) = (ab)x = \lambda_{ab}(x) \text{ for all } x \in G.$
- ii) Identity λ_e : $\lambda_a \lambda_e = \lambda_{ae} = \lambda_a$ & $\lambda_e \lambda_a = \lambda_{ea} = \lambda_a$
- iii) Inverses $\lambda_{a^{-1}}$: $\lambda_a \lambda_{a^{-1}} = \lambda_e$ & $\lambda_{a^{-1}} \lambda_a = \lambda_e$

Define $\phi \colon G \to G_{\lambda}$ by $\phi(a) = \lambda_a$ (well-def., onto). To show ϕ is an isomorphism.

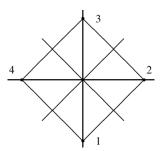
- 1) $\phi(a) = \phi(b) \rightsquigarrow \lambda_a(x) = \lambda_b(x)$, for all $x \in G \rightsquigarrow ax = bx \rightsquigarrow a = b$.
- 2) For any $a, b \in G$, we have $\phi(ab) = \lambda_{ab} = \lambda_a \lambda_b = \phi(a)\phi(b)$.

Thus $G \cong G_{\lambda}$, where G_{λ} is a permutation group.

Example: Rigid Motions of a Square

A rigid motion is a change in position where the distance between points is preserved and figures remain congruent (having the same size and shape) • Translation (slide) • Reflection (flip) • Rotation (turn) • A combination of these

Each rigid motion determines a permutation of the vertices of the square. There are a total of eight rigid motions of a square. $(4 \cdot 2 = 8)$



(1234) counterclockwise rotation through 90°

(13)(24) counterclockwise rotation through 180°

(1432) counterclockwise rotation through 270°

(1) counterclockwise rotation through 360°

(24) flip about vertical axis

(13) flip about horizontal axis

(12)(34) flip about diagonal

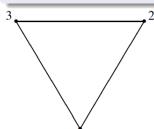
(14)(23) flip about diagonal

We do not obtain all (4! = 24) elements of S_4 as rigid motions. e.g., (12) Shaoyun Yi

Permutation Groups Spring 2022

Example: Rigid Motions of an Equilateral Triangle

The rigid motions of an equilateral triangle yield the group S_3 .



- (123) counterclockwise rotation through 120°
- (132) counterclockwise rotation through 240°
 - (1) counterclockwise rotation through 360°
 - (23) flip about vertical axis
 - (13) flip about angle bisector
 - (12) flip about angle bisector

Recall: Another notion for describing S_3 in §3.3

$$S_3 = \{e, a, a^2, b, ab, a^2b\},$$
 where $a^3 = e, b^2 = e, ba = a^2b = a^{-1}b.$

Another notion for describing Rigid Motions of a Square

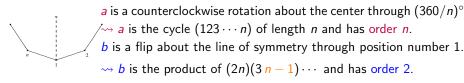
Let a = (1234) and b = (24). It can be shown that $ba = a^3b$.

$$S = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$$
, where $a^4 = e, b^2 = e, ba = a^3b = a^{-1}b$.

Rigid Motions of a Regular Polygon (*n*-gon)

There are 2n rigid motions of a regular n-gon.

Proof: There are n choices of a position in which to place first vertex A, and then two choices for second vertex since it must be adjacent to A.



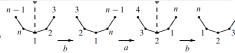
Consider the set $S = \{a^k, a^k b \mid 0 \le k < n\}$ of rigid motions with |S| = 2n.

- a^k for $0 \le k < n$ are all distinct. $\rightsquigarrow a^k b$ for $0 \le k < n$ are all distinct.
- $a^i \neq a^j b$ for all $0 \leq i, j < n$ since a^k does not flip the *n*-gon.

$$S = \{a^k, a^k b \mid 0 \le k < n\}, \text{ where } a^n = e, b^2 = e, ba = a^{-1}b.$$

 a^{-1} : clockwise rotation through $(360/n)^{\circ}$

To show $ba = a^{-1}b \iff bab = a^{-1}$



Shaoyun Yi Permutation Groups Spring 2022 7 / 14

Dihedral Group D_n $(n \ge 3)$

Let $n \ge 3$ be an integer. The group of rigid motions of a regular n-gon is called the nth **dihedral group**, denoted by D_n . Note that $|D_n| = 2n$.

$$D_n = \{a^k, a^k b \mid 0 \le k < n\},$$
 where $a^n = e, b^2 = e, ba = a^{-1}b.$

- We will not list all subgroups of S_n $(n \ge 4)$ since there are too many.
- The "simple" subgroups of S_n : cyclic subgroup generated by $\sigma \in S_n$.
- The dihedral group D_n is one important example of subgroups of S_n .
- The alternating group A_n is another one important example. (soon!)

Every proper subgroup of $D_3 = S_3$ is cyclic. Its subgroup diagram:



Subgroups of D_4

$$D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}, \text{ where } a^4 = e, b^2 = e, ba = a^{-1}b = a^3b.$$

The possible orders of proper subgroups of D_4 are 1, 2, or 4. [Why?]

- I. Two special subgroups: $\{e\}$ (trivial subgroup) & D_4 (non-cyclic)
- II. The cyclic subgroups:
 - i) $a^4 = e$: $\langle a \rangle = \langle a^3 \rangle = \{e, a, a^2, a^3\}$ & $\langle a^2 \rangle = \{e, a^2\}$ & $\langle a^4 \rangle = \{e\}$
 - ii) Each of b, ab, a^2b , a^3b has order 2. $\{e,b\}$; $\{e,ab\}$; $\{e,a^2b\}$; $\{e,a^3b\}$
- III. Q: Are there proper subgroups of D_4 that are not cyclic? A: Yes.

If H is a non-cyclic proper subgroup, then $H \cong \mathbf{Z}_2 \times \mathbf{Z}_2$.

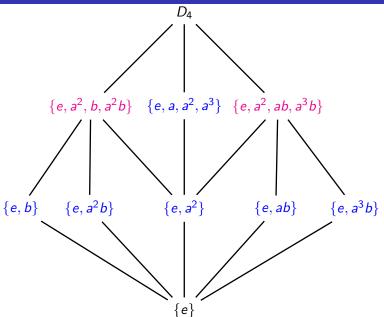
Proof: |H| = 4 and any non-identity element of H has order 2.

Say $H = \{e, x, y, xy\}$, and so yx = xy since H is abelian.

Consider all possible pairs of elements of order 2 to find all such H's.

- 1) $H_1 = \{e, a^2, b, a^2b\}$: $ba^2 = \cdots = a^2b \checkmark$
- 2) $H_2 = \{e, a^2, ab, a^3b\}$: $(ab)a^2 = \cdots = a^2(ab)$

Subgroup Diagram of D_4



Alternating Group A_n $(n \ge 2)$

The set of all even permutations of S_n is a subgroup of S_n .

Proof: $(|S_n| < \infty)$ Nonempty: (1); Closure: If σ and τ are even, so is $\tau \sigma$.

The set of all even permutations of S_n is called the **alternating group** A_n .

$$|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}$$
. This is the largest possible cardinality for a proper subgroup.

Proof: Let O_n be the set (not a subgroup) of odd permutations in S_n . So $S_n = A_n \bigsqcup O_n \qquad \rightsquigarrow |S_n| = |A_n| + |O_n|$.

- i) For each odd permutation $\sigma \in O_n$, the permutation $(12)\sigma$ is even. If σ and τ are two distinct odd permutations, then $(12)\sigma \neq (12)\tau$. Thus, $|A_n| \geq |O_n|$.
- ii) Similarly, we can show that $|O_n| \ge |A_n|$.

iii) Therefore,
$$|A_n| = |O_n| = \frac{|S_n|}{2} = \frac{n!}{2}$$
.

e.g., $S_3 = \{(1), (12), (13), (23), (123), (132)\} \rightarrow A_3 = \{(1), (123), (132)\}$

Example: List all the Elements of A_4 with $|A_4| = 12$.

The **decomposition type** of a permutation σ in S_n is the list of all the cycle lengths involved in a decomposition of σ into disjoint cycles.

- \rightarrow Possible decomposition types of permutations of S_4 :
 - I. a single cycle of length 1, 2, 3 or 4
 - II. two disjoint cycles of length 2
- → Only single cycles of length 1 or 3 and two disjoint cycles of length 2 could possibly be even. Note that the single cycle of length 1 is just (1).
 - i) single cycle of length 3: Choose any three of the numbers 1, 2, 3, 4: $\binom{4}{2}$ = Four choices: 123, 124, 134, For each choice, there are **two** (3!/3) ways to make a cycle. (123), (132); (124), (142); (134), (143); (234), (243).
 - ii) two disjoint cycles of length 2: Choose any two of the #s 1, 2, 3, 4: $\binom{4}{2} = \text{Six choices}:$ 12, 13, 14, 23, 24, \rightarrow Three (6/2) different products of two disjoint transpositions.
 - (12)(34),(13)(24). (14)(23).

 $\rightarrow A_4 = \{(1), (123), (132), \dots, (234), (243), (12)(34), (13)(24), (14)(23)\}$ Shaoyun Yi

Permutation Groups

The Converse of Lagrange's Theorem is False

Recall that $A_4 = \{(1), (123), (132), \dots, (234), (243), (12)(34), (13)(24), (14)(23)\}$ In particular, every non-identity element of A_4 has order 2 or 3.

A_4 has no subgroup of order 6.

Proof by contradiction: Suppose that H is a subgroup of order 6 in A_4 .

H must contain an element of order 2.

Proof: If not,
$$\{h, h^{-1}\} \in H$$
 with $h \neq h^{-1}$ for any $h \neq e \& \{e, e^{-1}\} = \{e\}$. $\longrightarrow H$ has an odd number of elements, which is impossible.

m has an odd number of elements, which is impossible.

H must contain an element of order 3.

Proof: If not, assume that every non-identity element of H has order 2.

Let $x, y \in H - \{e\}$ with $x \neq y$. So o(xy) = 2 since $xy \in H$ and $xy \neq e$.

And then xy = yx since $xy = (xy)^{-1} = y^{-1}x^{-1} = yx$.

- \rightsquigarrow $\{e, x, y, xy\}$ is a subgroup of H of order 4, a contradiction. [Why?]
- \Rightarrow H must contain (abc) and (ab)(cd) for distinct a, b, c, d. So H contains (abc)(ab)(cd) = (acd) and (ab)(cd)(abc) = (bdc).
 - (abc)(ab)(ca) = (aca) and (ab)(ca)(abc) = (bac).

Two Examples

$$A_4 \not\cong S_3 \times \mathbf{Z}_2$$

Proof: A_4 has no subgroup of order 6, but $S_3 \times \mathbf{Z}_2$ does (e.g., $S_3 \times \{[0]_2\}$)

$$S_4 \not\cong A_4 \times \mathbf{Z}_2$$

Proof: The largest possible order of an element in S_4 is 4.

Recall that the possible decomposition types of permutations of S_4 are

- I) a single cycle of length 1, 2, 3 or 4
- II) two disjoint cycles of length 2

And so the possible decomposition types of permutations of A_4 are

- i) a single cycle of length 1 or 3
- ii) two disjoint cycles of length 2

It follows that there is an element of order 6 in $A_4 \times \mathbf{Z}_2$. [Why?]

However, S_4 has no element of order 6. Thus $S_4 \not\cong A_4 \times \mathbf{Z}_2$.