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Review

(G1, ∗) ∼= (G2, ·): A group isomorphism φ : G1 → G2 satisfies

i) well-defined

ii) one-to-one and onto

1) Direct proof

2) Find its inverse function φ−1: φ−1φ = 1G1 , φφ
−1 = 1G2

3) If φ preserves the products, then φ is one-to-one if and only if
φ(x) = e2 implies x = e1 for all x ∈ G1.

4) If |G1| = |G2| <∞, then any one-to-one mapping must be onto.

iii) respects the two operations: φ(a ∗ b) = φ(a) · φ(b)

φ(an) = (φ(a))n for all a ∈ G1 and all n ∈ Z.

n = 0: φ(e1) = e2  preserve the identity

n = −1: φ(a−1) = (φ(a))−1  preserve inverses

Some structural properties preserved by group isomorphisms

If o(a) = n in G1, then o(φ(a)) = n in G2.

If G1 is abelian (resp. cyclic), then so is G2.

 Prove that two groups are not isomorphic. (Examples in #11/15)

Zmn
∼= Zm × Zn if gcd(m, n) = 1.
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1st Theorem

Every subgroup of a cyclic group G is cyclic.

Proof: Let G = 〈a〉 for some a ∈ G , and let H be any subgroup of G .

• If H is the trivial subgroup consisting only of e, then H = 〈e〉. 3

• If H is nontrivial, then it contains b 6= e. So b = an for some n ∈ Z.

Since a−n = (an)−1 ∈ H, we can assume that H contains a` with ` > 0.

Let m be the smallest positive integer s.t. am ∈ H. To show H = 〈am〉.

〈am〉 ⊆ H : It is clear since am ∈ H and H is a subgroup of G .

H ⊆ 〈am〉 : For any x ∈ H, we have x = ak for some k ∈ Z.

Write k = mq + r for q, r ∈ Z with 0 ≤ r < m. To show r = 0.

x = ak = amq+r = (am)qar  ar ∈ H [Why?]  r = 0 [Why?]

Thus x = (am)q ∈ 〈am〉. In conclusion, H = 〈am〉 and so H is cyclic.

Shaoyun Yi Cyclic Groups Spring 2022 3 / 18



2nd Theorem

Let G be a cyclic group.

{
i) If G is infinite, then G ∼= Z.

ii) If |G | = n <∞, then G ∼= Zn.

?i) Any two infinite cyclic groups are isomorphic to each other.

?ii) Two finite cyclic groups are isomorphic ⇔ they have the same order.

Proof: i) Let G = 〈a〉. Define φ : Z→ G by φ(m) = am for all m ∈ Z.

well-defined: Since G = 〈a〉.
respects the two operations: φ(m + k) = am+k = amak = φ(m)φ(k)
one-to-one: φ(m) = am = e implies m = 0.
onto: Since G = 〈a〉.  Thus φ is an isomorphism.

ii) Let G = 〈a〉 with |G | = n <∞. Define φ : Zn → G by φ([m]) = am for
all [m] ∈ Zn. To show φ is an isomorphism:

well-defined: If [k] = [m], then ak = am.
respects the two operations: φ([m] + [k]) = · · · = φ([m])φ([k])
one-to-one: φ([m]) = am = e  n|m, i.e., [m] = [0].
onto: Since G = 〈a〉.
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The Subgroups of Z

Recall that every subgroup of a cyclic group G is cyclic. (1st Theorem)

i) The subgroups of Z have the form mZ = 〈m〉, for m ∈ Z.

ii) mZ ⊆ nZ if and only if n|m.

iii) mZ = nZ if and only if m = ±n.

Proof: i) 3 ii) mZ ⊆ nZ ⇔ m = kn for some k ∈ Z iii) follows from ii). �

mZ ∼= Z for m 6= 0.

Proof: mZ is an infinite cyclic group and so mZ ∼= Z by 2nd Theorem i).

 In the case of infinite groups, it is possible to have a proper subgroup
that is isomorphic to the entire group.

Recall that for a finite cyclic group G with |G | = n, we have G ∼= Zn.

Q: What are all the subgroups of Zn?
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The Subgroups of Zn

Recall that every subgroup of a cyclic group G is cyclic. (1st Theorem)

For each [k] ∈ Zn, we obtain the cyclic subgroup 〈[k]〉 generated by [k].

It is possible to have 〈[k]〉 = 〈[`]〉, e.g., 〈[k]〉 = 〈[`]〉 = Zn for [k], [`] ∈ Z×n .

In Zn, let d = (k, n). Then 〈[k]〉 = 〈[d ]〉. And so |〈[k]〉| = |〈[d ]〉| = n/d .

Proof: 〈[k]〉 ⊆ 〈[d ]〉: d |k  [k] ∈ 〈[d ]〉  〈[k]〉 ⊆ 〈[d ]〉
〈[d ]〉 ⊆ 〈[k]〉: d = sk + tn for s, t ∈ Z.  [d ] ∈ 〈[k]〉  〈[d ]〉 ⊆ 〈[k]〉
The order of [d ] is n/d , and so [k] has order n/d .

i) Zn = 〈[k]〉 ⇔ [k] ∈ Z×n ⇔ (k, n) = 1

ii) If H is any subgroup of Zn, then H = 〈[d ]〉 for some divisor d of n.

iii) If d1|n and d2|n, then 〈[d1]〉 ⊆ 〈[d2]〉 if and only if d2|d1.

iii)’ If d1|n and d2|n and d1 6= d2, then 〈[d1]〉 6= 〈[d2]〉.

Proof: ii) 〈[k]〉 = 〈[d ]〉, d = (k , n) iii) 〈[d1]〉 ⊆ 〈[d2]〉 ⇔ d1 = md2,m ∈ Z
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Multiplicative Version for a Finite Cyclic Group of Order n

Recall that for a finite cyclic group G with |G | = n, we have G ∼= Zn.

In Zn, let d = (k, n). Then 〈[k]〉 = 〈[d ]〉. And so |〈[k]〉| = |〈[d ]〉| = n/d .

Multiplicative version: Let G = 〈a〉 be a finite cyclic group of order n.

Let d = (k , n). Then 〈ak〉 = 〈ad〉. And so o(ak) = |〈ak〉| = |〈ad〉| = n/d .

i) Zn = 〈[k]〉 ⇔ [k] ∈ Z×n ⇔ (k , n) = 1
ii) If H is any subgroup of Zn, then H = 〈[d ]〉 for some divisor d of n.
iii) If d1|n and d2|n, then 〈[d1]〉 ⊆ 〈[d2]〉 if and only if d2|d1.

iii)’ If d1|n and d2|n and d1 6= d2, then 〈[d1]〉 6= 〈[d2]〉.

Multiplicative version: Let G = 〈a〉 be a finite cyclic group of order n.

i) G = 〈ak〉 ⇔ (k , n) = 1.

ii) If H is any subgroup of G , then H = 〈ad〉 for some divisor d of n.

iii) If d1|n and d2|n, then 〈ad1〉 ⊆ 〈ad2〉 if and only if d2|d1.

iii)’ If d1|n and d2|n and d1 6= d2, then 〈ad1〉 6= 〈ad2〉.
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Examples

Recall that in Zn, let d = (k, n). Then 〈[k]n〉 = 〈[d ]n〉.

Let G = Z24. List all possible choices of [k]24 such that 〈[k]24〉 = 〈[4]24〉.

A: 4|24: So 〈[k]24〉 = 〈[4]24〉 if and only if (k , 24) = 4. It follows that

(
k

4
, 6) = 1  

k

4
= 1, 5.

Thus the possible choices are [k]24 = [4]24, [20]24.

Let G = Z18. List all possible choices of [k]18 such that 〈[k]18〉 = 〈[4]18〉.

A: 4 - 18, but (4, 18) = 2. So 〈[k]18〉 = 〈[4]18〉 = 〈[2]18〉 ⇔ (k, 18) = 2

 (
k

2
, 9) = 1  

k

2
= 1, 2, 4, 5, 7, 8.

.  The possible choices are [k]18 = [2]18, [4]18, [8]18, [10]18, [14]18, [16]18.

Q: Can we list all the subgroups of Z18?
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Example: List all the Subgroups of Z18

In Zn, let d = (k, n). Then 〈[k]〉 = 〈[d ]〉 of order n/d . Furthermore,

i) Zn = 〈[k]〉 ⇔ [k] ∈ Z×n ⇔ (k , n) = 1

ii) If H is any subgroup of Zn, then H = 〈[d ]〉 for some divisor d of n.

iii) If d1|n and d2|n, then 〈[d1]〉 ⊆ 〈[d2]〉 if and only if d2|d1.

iii)’ If d1|n and d2|n and d1 6= d2, then 〈[d1]〉 6= 〈[d2]〉.

The divisors of 18 are 1, 2, 3, 6, 9, 18. So the subgroups of Z18 are:

[d ]18 〈[d ]18〉 |〈[d ]18〉| = 18/d

[1] Z18 18
[2] {[0], [2], [4], [6], [8], [10], [12], [14], [16]} 9
[3] {[0], [3], [6], [9], [12], [15]} 6
[6] {[0], [6], [12]} 3
[9] {[0], [9]} 2

[18] {[0]} 1

Q: How can we connect all of them by iii)?
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Subgroup Diagram

For small n, we can easily give a diagram showing all subgroups of Zn and
the inclusion relations between them. This is called a subgroup diagram.

Larger subgroups on top, smaller subgroups on bottom. A line connecting
two subgroups  the subgroup on bottom is contained in the one on top.

The subgroup diagram of Z18 (using 〈[d1]〉 ⊆ 〈[d2]〉 ⇔ d2|d1) :

The subgroups are obtained from the divisors of 18: 1, 2, 3, 6, 9, 18.
18 = 21 · 32: Think about any divisor d = 2i3j with i = 0, 1 and j = 0, 1, 2.
Note: 1Z18 = 〈[1]18〉 = Z18 (entire group) and 18Z18 = 〈[0]18〉 = {[0]18}.

Z18

2Z183Z18

6Z189Z18

18Z18
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Examples: The Subgroup Diagrams of Z20 and Z27

If d1|n and d2|n, then 〈[d1]〉 ⊆ 〈[d2]〉 if and only if d2|d1.

20 = 22 · 51: Think about any divisor d = 2i5j with i = 0, 1, 2 and j = 0, 1.

27 = 33: Think about any divisor d = 3i with i = 0, 1, 2, 3.

Z20

5Z202Z20

10Z204Z20

20Z20

Z27

3Z27

9Z27

27Z27
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Direct Product of Cyclic Groups

Recall that we introduced the direct product of two groups in §3.3.

Direct product G1 × · · · ×Gn of n groups G1, . . . ,Gn is defined as follows:

The elements are n-tuples (g1, . . . , gn), where gi ∈ Gi for each i .

The operation is componentwise multiplication:

(g1, . . . , gn)(g ′1, . . . , g
′
n) = (g1g

′
1, . . . , gng

′
n)

The order of an element is the lcm of the orders of each component.

Zmn
∼= Zm ×Zn if (m, n) = 1  Zm1···mk

∼= Zm1 × · · · ×Zmk
if (mi ,mj) = 1, i 6= j

Let n ∈ Z+ which has the prime decomposition n = pα1
1 pα2

2 · · · pαm
m . Then

Zn
∼= Zp

α1
1
× Zp

α2
2
× · · · × Zpαm

m
, where p1 < p2 < . . . < pm.

Proof: The element ([1], [1], . . . , [1]) has order n in RHS (of order n).

For example, Z18
∼= Z2 × Z9. However, Z18 6∼= Z2 × Z3 × Z3.
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∗Revisit Euler’s Totient Function ϕ(n)∗

ϕ(n) := #{a : (a, n) = 1 and 0 < a ≤ n} = |Z×n | = no. of generators of Zn

Let n ∈ Z+ which has the prime decomposition n = pα1
1 pα2

2 · · · pαm
m . Then

ϕ(n) = n
(

1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pm

)
, where p1 < p2 < . . . < pm.

Proof: Use Zp
α1
1
×Zp

α2
2
× · · · ×Zpαm

m
∼= Zn to count the generators of Zn,

since an isomorphism preserves generators.

g = (g1, . . . , gm) is a generator ⇔ it has order n : [o(g1), . . . , o(gm)] = n

 o(gi ) = pαi
i for each i [Why?] Thus gi is a generator in Zpi

αi for each i .

 The total number of possible generators is equal to the product of the
number of generators in each component.

For any prime p, the elements that are not generators are the multiples of
p in Zpα , and there are pα−1 such multiples in Zpα . Thus

ϕ(pα) = pα − pα−1 = pα
(

1− 1

p

)
.
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Zp
α1
1 p

α2
2 ···p

αm
m

∼= Zp
α1
1
× Zp

α2
2
× · · · × Zpαmm

If G1
∼= H1 and G2

∼= H2, then G1 × G2
∼= H1 × H2. (??)

Proof: Let θ1 : G1 → H1, θ2 : G2 → H2. Define φ : G1 ×G2 → H1 ×H2 by

φ
(
(x1, x2)

)
=
(
θ1(x1), θ2(x2)

)
, for all (x1, x2) ∈ G1 × G2.

To show φ is a group isomorphism. (HW)

Z4 × Z10
∼= Z2 × Z20

Z10
∼= Z2 × Z5 and Z20

∼= Z4 × Z5. Then by (??) we have

Z4 × Z10
∼= Z4 × Z2 × Z5 and Z2 × Z20

∼= Z2 × Z4 × Z5.

Finally, it is easy to see that Z4 × Z2 × Z5
∼= Z2 × Z4 × Z5.

Z4 × Z15 6∼= Z6 × Z10

Similarly, Z4 × Z15
∼= Z4 × Z3 × Z5 and Z6 × Z10

∼= Z2 × Z3 × Z2 × Z5.

The first has an element of order 4, while the second has none.
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Exponent of a Group G

Let G be a finite group of order n. For any a ∈ G , o(a)|n.

If N is the least common multiple (lcm) of o(a) for all a ∈ G , then

aN = e for all a ∈ G . In particular, N is a divisor of |G |.

Let G be a group. If there exists a N ∈ Z+ such that aN = e for all a ∈ G ,
then the smallest such positive integer is called the exponent of G .

The exponent of any finite group is the lcm of the orders of its elements.

For example, the exponent of S3 is 6; the exponent of Z4 × Z2 × Z2 is 4.

Let G be a group, and let a, b ∈ G be elements such that ab = ba.
Let o(a) = m and o(b) = n. If gcd(m, n) = 1, then o(ab) = mn.

Proof: Let k = o(ab). To show k = mn. Since (ab)mn ?
= e  k|mn.

(ab)k = e  (ab)mk = e  (ab)mk ?
= amkbmk = bmk = e  n|mk  n|k

 (ab)nk = e  (ab)nk
?
= ankbnk = ank = e  m|nk  m|k !

 mn|k
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Characterize Cyclic Groups Among all Finite Abelian Groups

Let G be a finite abelian group. The exponent of G = max{o(a) : a ∈ G}.
In particular, G is cyclic if and only if its exponent is equal to its order.

Proof: Let o(a) be the largest order. To show o(a) = the exponent of G .

It suffices to show that o(b)|o(a) for all b ∈ G . Proof by contradiction:

Suppose that o(b) is not a divisor of o(a). Then there exists a prime p :

o(a) = pαn, o(b) = pβm, where (p, n) = (p,m) = 1 and β > α ≥ 0.

 o(ap
α

) = n and o(bm) = pβ. And so these orders are relatively prime.

 o(ap
α
bm) = npβ [Why?] We obtain a contradiction since npβ > o(a).

Q: When is Z×n cyclic?

The Primitive Root Theorem

Z×n is cyclic if and only if n = 1, 2, 4, pk or 2pk , where p is any odd prime.

We will NOT prove or use it in this course, but a bonus project for you.
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Z×15 = {[1], [2], [4], [7], [8], [11], [13], [14]} is not cyclic.

Since |Z×15| = 8, we need to check if there is an element of order 8 or not.

A sort of algorithm to attack this type of question:

If o([2]) = 8, then the group is cyclic.

If o([2]) 6= 8, then we need to try other elements, until we either find
one that has order 8, or exhaust all the possible elements and show
that neither one of them has order 8, i.e., the group is not cyclic.

i) [2]2 = [4], [2]3 = [8], [2]4 = [16] = [1], so o([2]) = 4.

ii) There is no need to try [4], [8] since [4], [8] ∈ 〈[2]〉.
iii) [7]2 = [49] = [4], [7]3 = [28] = [13], [7]4 = [91] = [1], so o([7]) = 4.

iv) [11]2 = [121] = [1] (or [11]2 = [−4]2 = [16] = [1]), so o([11]) = 2.

v) There is no need to try [13] since [13] ∈ 〈[7]〉.
vi) [14]2 = [−1]2 = [1], so o([14]) = 2.

In conclusion, there is no element of order 8, thus the group is not cyclic.
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Prove that Z×7
∼= Z×14 Without Constructing a Function φ

I. |Z×7 | = |Z×14| = 6. In fact, we have

Z×7 = {[1], [2], [3], [4], [5], [6]}, Z×14 = {[1], [3], [5], [9], [11], [13]}.

II. 1) If both of them are cyclic, then they are isomorphic.

2) If one is cyclic and the other is not, then they are not isomorphic.

III. Check Z×7 :

i) [2]2 = [4], [2]3 = [1], so o([2]) = 3.

ii) [3]2 = [9] = [2], [3]3 = [6], so o([3]) = 6. [Why?] (Lagrange’s Thm)

Therefore Z×7 is cyclic.

IV. Check Z×14: [3]2 = [9], [3]3 = [13], so o([3]) = 6.  Z×14 is cyclic.

V. By II. 1), we conclude that Z×7
∼= Z×14

∼= Z6.
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