§3.4 Isomorphisms

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

Group Table in (G, *) with |G| = 2

Group tables of the subgroup $(\{\pm 1\},\cdot)$ of $(\mathbf{Q}^{\times},\cdot)$ and the group $(\mathbf{Z}_2,+_{[\]})$

Multiplication in
$$(\{\pm 1\}, \cdot)$$

$$\begin{array}{c|cccc} \cdot & 1 & -1 \\ \hline 1 & 1 & -1 \\ -1 & -1 & 1 \end{array}$$

Addition in $(\mathbf{Z}_2, +_{[\]})$

$$\begin{array}{c|cc} + & [0] & [1] \\ \hline [0] & [0] & [1] \\ [1] & [1] & [0] \\ \end{array}$$

Group table in G with |G| = 2

All groups with order 2 must have the same algebraic properties.

Group Isomorphism

Let $(G_1,*)$ and (G_2,\cdot) be two groups, and let $\phi:G_1\to G_2$ be a function.

Then ϕ is said to be a **group isomorphism** if

- i) ϕ is one-to-one and onto, and
- ii) $\phi(a*b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$. (preserves general products)

In this case, G_1 is said to be **isomorphic** to G_2 , and we write $G_1 \cong G_2$.

To prove that two groups are **isomorphic**, you need to

- 1) **define a function** ϕ (well-defined), and then
- 2) **verify** that ϕ is a **group isomorphism**.

Sometimes your first guess for ϕ is might not work, so you might need to try several different functions until you find one satisfying the requirements

Shaoyun Yi Isomorphisms Spring 2022 3 / 14

Properties of Group Isomorphisms

Let $(G_1,*)$ and (G_2,\cdot) be groups, and let $\phi:G_1\to G_2$ be an isomorphism. Let e_1 and e_2 be the identity elements of G_1 and G_2 , respectively. Then

- i) $\phi(e_1) = e_2$.
- ii) $\phi(a^{-1}) = (\phi(a))^{-1}$ for all $a \in G_1$.
- iii) $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1$ and all $n \in \mathbf{Z}$.

Proof: i)
$$\phi(e_1) \cdot \phi(e_1) = \phi(e_1 * e_1) = \phi(e_1) = \phi(e_1) \cdot e_2 \longrightarrow \phi(e_1) = e_2$$

ii)
$$\phi(a^{-1}) \cdot \phi(a) = \phi(a^{-1} * a) = \phi(e_1) \stackrel{\text{i}}{=} e_2 \longrightarrow \phi(a^{-1}) = (\phi(a))^{-1}$$

iii) By induction, we have

$$\phi(a_1*a_2*\cdots*a_n)=\phi(a_1)\cdot\phi(a_2)\cdot\ldots\cdot\phi(a_n)\quad\text{for }a_1,a_2,\ldots,a_n\in G_1.$$

$$\rightarrow \phi(a^n) = (\phi(a))^n$$
 for any positive integer n . For $n < 0, n = -|n|$, then

$$\phi(a^n) = \phi((a^{-1})^{|n|}) = (\phi(a^{-1}))^{|n|} \stackrel{\text{ii}}{=} ((\phi(a))^{-1})^{|n|} = (\phi(a))^n.$$

Group isomorphisms preserve general products, the identity and inverses

$$\phi\colon (\textit{G}_1,*,\textit{e}_1) \stackrel{\cong}{\longrightarrow} (\textit{G}_2,\cdot,\textit{e}_2) \quad \begin{cases} \phi \text{ is one-to-one and onto, } \textit{and} \\ \phi(\textit{a}*\textit{b}) = \phi(\textit{a}) \cdot \phi(\textit{b}) \text{ for all } \textit{a},\textit{b} \in \textit{G}_1. \end{cases}$$

 ϕ preserves general products, the identity element and inverses of elements.

* To prove
$$G_1 \cong G_2$$
, you need to
$$\begin{cases} \text{define } \phi \text{ (well-defined)}, \text{ and then} \\ \text{verify that } \phi \text{ is an isomorphism.} \end{cases}$$

Prove that
$$(\mathbf{R}, +) \cong (\mathbf{R}^+, \cdot)$$
.

Proof: We need a function $\phi : \mathbf{R} \to \mathbf{R}^+$ that has the following properties:

- sends real numbers to positive real numbers
- sends addition to multiplication
- ullet sends the identity $e_1=0$ of $({f R},+)$ to the identity $e_2=1$ of $({f R}^+,\cdot)$

Try
$$\phi(x) = e^x$$
 i) $\phi(x) = e^x \in \mathbf{R}^+$ for all $x \in \mathbf{R}$.

ii)
$$\phi$$
 is one-to-one $(e^{x_1}=e^{x_2}\leadsto x_1=x_2)$ & onto $(\forall y\in\mathbf{R}^+, \, \mathsf{take}\,\, x=\mathsf{ln}\, y\in\mathbf{R})$

iii)
$$\phi(x_1 + x_2) = e^{x_1 + x_2} = e^{x_1} \cdot e^{x_2} = \phi(x_1) \cdot \phi(x_2)$$

Shaoyun Yi Isomorphisms Spring 2022

$$\phi\colon (G_1,*,e_1) \stackrel{\cong}{\longrightarrow} (G_2,\cdot,e_2) \quad \begin{cases} \phi \text{ is one-to-one and onto, } and \\ \phi(a*b) = \phi(a) \cdot \phi(b) \text{ for all } a,b \in G_1. \end{cases}$$

- i) The inverse of a group isomorphism is a group isomorphism.
- ii) The composite of two group isomorphisms is a group isomorphism.

Proof: i) Let $\phi: G_1 \to G_2$ be a group isomorphism. Then there is an inverse function $\theta: G_2 \to G_1$. To show that θ is a group isomorphism.

- θ is one-to-one and onto. \checkmark
- Let $a_2, b_2 \in G_2$ and $\theta(a_2) = a_1, \ \theta(b_2) = b_1. \leadsto \phi(a_1) = a_2, \ \phi(b_1) = b_2.$

$$\phi(a_1 * b_1) = \phi(a_1) \cdot \phi(b_1) = a_2 \cdot b_2 \iff \theta(a_2 \cdot b_2) = a_1 * b_1 = \theta(a_2) * \theta(b_2)$$

- ii) Let $\phi:(G_1,*)\to (G_2,\cdot)$ and $\psi:(G_2,\cdot)\to (G_3,\star)$ be isomorphisms.
- $\leadsto \psi \phi$ is one-to-one and onto. To show $\psi \phi$ preserves products. If ${\it a}, {\it b} \in {\it G}_1$

$$\psi\phi(\mathbf{a}*\mathbf{b}) = \psi(\phi(\mathbf{a}*\mathbf{b})) = \psi(\phi(\mathbf{a})\cdot\phi(\mathbf{b})) = \psi(\phi(\mathbf{a}))\star\psi(\phi(\mathbf{b})) = \psi\phi(\mathbf{a})\star\psi\phi(\mathbf{b})$$

The isomorphism \cong is an equivalence relation. (Reflexive, Symmetric, Transitive)

Shaoyun Yi Isomorphisms Spring 2022 6 / 14

Example 1

Prove
$$(\langle i \rangle, \cdot) \cong (\mathbf{Z}_4, +_{[\]})$$
. Recall $\langle i \rangle = \{1, i, -1, -i\}, \mathbf{Z}_4 = \{[0], [1], [2], [3]\}$

We have seen that both $(\langle i \rangle, \cdot)$ and $(\mathbf{Z}_4, +_{[\]})$ are cyclic groups of order 4.

The elements of \mathbf{Z}_4 appear in the addition table in \mathbf{Z}_4 precisely the same positions as the exponents of i did in the multiplication table in $\langle i \rangle$.

Define $\phi: \mathbf{Z}_4 \to \langle i \rangle$ by $\phi([n]) = i^n$. To show ϕ is a group isomorphism:

- Well-defined: If [n] = [m], i.e., $n \equiv m \pmod{4}$, then $i^n = i^m$.
- ullet ϕ is one-to-one and onto. \checkmark
- ϕ preserves the respective operations:

 $\phi([n] + [m]) = \phi([n+m]) = i^{n+m} = i^n \cdot i^m = \phi([n]) \cdot \phi([m])$

Shaoyun Yi Isomorphisms Spring 2022

Example 2

Let H be a subgroup of a group G. For any a in G, we have $aHa^{-1} \cong H$.

We have already showed that aHa^{-1} is a subgroup of G in Test 1 Review.

Proof: Define $\phi: H \to aHa^{-1}$ by $\phi(h) = aha^{-1}$ for all $h \in H$.

- Well-defined: It is easy to see that $\phi(h) \in aHa^{-1}$.
- one-to-one: $\phi(h_1) = \phi(h_2) \quad \rightsquigarrow ah_1a^{-1} = ah_2a^{-1} \quad \rightsquigarrow h_1 = h_2$
- onto: If $y \in aHa^{-1}$, then $y = aha^{-1}$ for some $h \in H$. Thus $\phi(h) = y$.
- ϕ respects multiplication in H: For $h, k \in H$,

$$\phi(hk) = ahka^{-1} = ah(a^{-1}a)ka^{-1} = (aha^{-1})(aka^{-1}) = \phi(h)\phi(k).$$

Isomorphisms

Thus, ϕ is a group isomorphism.

Shaoyun Yi

Spring 2022

8 / 14

Another way to show that ϕ is one-to-one and onto

Define a function $\phi^{-1}: G_2 \to G_1$, and **verify** that ϕ^{-1} is the inverse of ϕ . That is, need to check $\phi^{-1} \circ \phi = 1_{G_1}$ and $\phi \circ \phi^{-1} = 1_{G_2}$.

Recall
$$(\mathbf{R},+)\cong (\mathbf{R}^+,\cdot)$$
: We define $\phi\colon\mathbf{R}\to\mathbf{R}^+$ by letting $\phi(x)=e^x$.

To show ϕ is one-to-one and onto, define $\phi^{-1}: \mathbf{R}^+ \to \mathbf{R}$ by $\phi^{-1}(y) = \ln y$.

• Well-defined \checkmark • Verify that this is the inverse function of ϕ :

$$\phi(\phi^{-1}(y)) = \phi(\ln y) = e^{\ln y} = y, \quad \phi^{-1}(\phi(x)) = \phi^{-1}(e^x) = \ln e^x = x.$$

Recall $aHa^{-1} \cong H$: Define $\phi: H \to aHa^{-1}$ by letting $\phi(h) = aha^{-1}$.

To show that ϕ is one-to-one and onto, we define $\phi^{-1}: aHa^{-1} \to H$ by $\phi^{-1}(b) = a^{-1}ba$ for all $b \in aHa^{-1}$.

• Well-defined \checkmark • Verify that this is the inverse function of ϕ :

$$\phi(\phi^{-1}(b)) = \phi(a^{-1}ba) = a(a^{-1}ba)a^{-1} = b$$

$$\phi^{-1}(\phi(h)) = \phi^{-1}(aha^{-1}) = a^{-1}(aha^{-1})a = h$$

Shaoyun Yi Isomorphisms Spring 2022 9 / 14

Let $\phi: G_1 \to G_2$ be an isomorphism of groups.

- i) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 .
- ii) If G_1 is abelian, then so is G_2 .
- iii) If G_1 is cyclic, then so is G_2 .

Proof: i) Assume $a \in G_1$ with $o(a) = n \rightsquigarrow (\phi(a))^n = \phi(a^n) = \phi(e_1) = e_2 \rightsquigarrow o(\phi(a))|n$. To show $n|o(\phi(a))$: Since ϕ is an isomorphism, there exists ϕ^{-1} s.t. $\phi^{-1}(\phi(a)) = a$. So $a^{o(\phi(a))} = \phi^{-1}(\phi(a))^{o(\phi(a))} = \phi^{-1}(e_2) = e_1 \checkmark$.

- ii) Let $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$ for $a_1, b_1 \in G_1$ and $a_2, b_2 \in G_2$. Then $a_2 \cdot b_2 = \phi(a_1) \cdot \phi(b_1) = \phi(a_1 * b_1) \stackrel{!}{=} \phi(b_1 * a_1) = \phi(b_1) \cdot \phi(a_1) = b_2 \cdot a_2$.
- iii) Assume $G_1=\langle a \rangle$. For any $y \in G_2$, we have $y=\phi(x)$ for some $x \in G_1$.

Write $x = a^n$ for some $n \in \mathbf{Z}$. Then

$$y = \phi(x) = \phi(a^n) = (\phi(a))^n.$$

Thus G_2 is cyclic, generated by $\phi(a)$.

This gives us a technique for proving that two groups are **not isomorphic**.

$$\phi: G_1 \stackrel{\cong}{\longrightarrow} G_2 \quad \begin{cases} \text{If a has order n in G_1, then $\phi(a)$ has order n in G_2.} \\ \text{If G_1 is abelian (resp. cyclic), then so is G_2.} \end{cases}$$

$$(\mathsf{R},+)
ot\cong (\mathsf{R}^{ imes},\cdot)$$

In $(\mathbf{R}^{\times}, \cdot)$, there is an element of order 2. $(x^2 = 1 \implies x = \pm 1 \implies -1 \checkmark)$ In $(\mathbf{R}, +)$, there is no element of order 2. (If so, $x + x = 2x = 0 \implies x = 0$)

$$(\mathsf{R}^{ imes},\cdot)
ot\cong(\mathsf{C}^{ imes},\cdot)$$

In $(\mathbf{R}^{\times}, \cdot)$, only 1 and -1 have finite orders, i.e., o(1) = 1 and o(-1) = 2. In $(\mathbf{C}^{\times}, \cdot)$, there are elements of other finite orders. e.g., o(i) = 4.

$\mathbf{Z}_4 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2$

 \mathbf{Z}_4 is cyclic. That is, there is an element ([1]₄ or [3]₄) of order 4 in \mathbf{Z}_4 .

 $\mathbf{Z}_2 \times \mathbf{Z}_2$ is not cyclic. Any non-identity element must have order 2.

$\mathbf{Z}_9 \times \mathbf{Z}_9 \not\cong \mathbf{Z}_3 \times \mathbf{Z}_3 \times \mathbf{Z}_3 \times \mathbf{Z}_3$

In the 1st group, there are elements of order 9. e.g., $([1]_9, [1]_9)$. In the 2nd group, any non-identity element must have order 3.

Shaoyun Yi Isomorphisms Spring 2022

11 / 14

Examples: Groups of Order 6: \mathbf{Z}_6 , $\mathbf{Z}_2 \times \mathbf{Z}_3$, S_3 , $\mathrm{GL}_2(\mathbf{Z}_2)$

- \star The first two groups (**Z**₆ and **Z**₂ \times **Z**₃) are abelian (in fact, cyclic).
- \star The last two groups (S_3 and $\mathrm{GL}_2(\mathbf{Z}_2)$) are nonabelian.

$$\textbf{Z}_6 \cong \textbf{Z}_2 \times \textbf{Z}_3$$

Proof: Let
$$\mathbf{Z}_6 = \langle [1]_6 \rangle$$
, $\mathbf{Z}_2 \times \mathbf{Z}_3 = \langle [1]_2, [1]_3 \rangle$. Define $\phi : \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$ by $\phi([1]_6) = ([1]_2, [1]_3)$. Equivalently, $\phi([n]_6) = ([n]_2, [n]_3)$.

- well-defined: If $[n]_6 = [m]_6$, then $[n]_2 = [m]_2$, $[n]_3 = [m]_3$. $\leadsto \phi([n]_6) = \phi([m]_6)$
- one-to-one: For $\phi([n]_6) = \phi([m]_6)$, to show $[n]_6 = [m]_6$:

$$[n]_2 = [m]_2, [n]_3 = [m]_3 \longrightarrow 2|(n-m), 3|(n-m) \stackrel{!}{\leadsto} 6|(n-m)$$

- Since $|\mathbf{Z}_6| = |\mathbf{Z}_2 \times \mathbf{Z}_3| = 6$, any one-to-one mapping must be onto.
- For any $m, n \in \mathbf{Z}$, $\phi([n]_6 + [m]_6) = \cdots = \phi([n]_6)\phi([m]_6)$.

Shaoyun Yi Isomorphisms Spring 2022 12 / 14

$$\mathrm{GL}_2(\mathbf{Z}_2)\cong S_3$$

In §3.3, we described S_3 by letting e = (1), a = (123) and b = (12) and so $S_3 = \{e, a, a^2, b, ab, a^2b\}$, where $a^3 = e$, $b^2 = e$, $ba = a^2b$.

Also in $\S 3.3$, we saw that those 6 elements in $\mathrm{GL}_2(\boldsymbol{Z}_2)$ and their orders are

To establish the connection between S_3 and $\mathrm{GL}_2(\mathbf{Z}_2)$, let

$$\tilde{e} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \tilde{a} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \ \tilde{b} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}. \quad \leadsto \ \tilde{a}^3 = \tilde{e}, \ \tilde{b}^2 = \tilde{e}, \ \tilde{b}\tilde{a} = \tilde{a}^2\tilde{b}$$

Each element of $\mathrm{GL}_2(\mathbf{Z}_2)$ can be expressed uniquely as one of $\tilde{e},\ \tilde{a},\ \tilde{a}^2,\ \tilde{b},\ \tilde{a}\tilde{b},\ \tilde{a}^2\tilde{b}$

Let
$$\phi((123)) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
, $\phi((12)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and extend this to all elements by $\phi((123)^i(12)^j) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^i \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^j$ for $i = 0, 1, 2$ and $j = 0, 1$.

To show: ϕ is a group isomorphism.

The unique forms of the respective elements show ϕ is one-to-one and onto The multiplication tables are identical shows ϕ respects the two operations.

An easier way to check that ϕ which preserves products is one-to-one

Let $\phi: G_1 \to G_2$ be a function s.t. $\phi(a*b) = \phi(a) \cdot \phi(b)$ for all $a, b \in G_1$. Then ϕ is one-to-one if and only if $\phi(x) = e_2$ implies $x = e_1$.

Proof: (\Rightarrow) If ϕ is one-to-one, then only e_1 can map to e_2 .

$$(\Leftarrow)$$
 For $\phi(x_1) = \phi(x_2)$ for some $x_1, x_2 \in G_1$, to show $x_1 = x_2$.

$$\phi(x_1 * x_2^{-1}) = \phi(x_1) \cdot \phi(x_2^{-1}) = \phi(x_1) \cdot (\phi(x_2))^{-1} = \phi(x_2) \cdot (\phi(x_2))^{-1} = e_2$$

\$\sim x_1 * x_2^{-1} = e_1\$ (by assumption), and thus \$x_1 = x_2\$.

$$\mathbf{Z}_{mn} \cong \mathbf{Z}_m \times \mathbf{Z}_n$$
 if $gcd(m, n) = 1$.

Proof: Recall that (in §3.3) $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if gcd(m, n) = 1.

Define $\phi \colon \mathbf{Z}_{mn} \to \mathbf{Z}_m \times \mathbf{Z}_n$ by $\phi([x]_{mn}) = ([x]_m, [x]_n)$. Show ϕ is an isomorphism.

- well-defined: If $[x]_{mn} = [y]_{mn}$, then $[x]_m = [y]_m$ and $[x]_n = [y]_n$.
- For $x, y \in \mathbb{Z}$, $\phi([x]_{mn} + [y]_{mn}) = \cdots = \phi([x]_{mn})\phi([y]_{mn})$.
- one-to-one: $\phi([x]_{mn}) = ([0]_m, [0]_n) \rightsquigarrow m|x, n|x \stackrel{!}{\rightsquigarrow} mn|x \rightsquigarrow [x]_{mn} = [0]_{mn}$
- Since $|\mathbf{Z}_{mn}| = |\mathbf{Z}_m \times \mathbf{Z}_n|$, any one-to-one mapping must be onto.

Shaoyun Yi Isomorphisms Spring 2022