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Group Table in (G, %) with |G| =2

Group tables of the subgroup ({+1},-) of (Q*,-) and the group (Z2,+|)

Multiplication in ({£1},") Addition in (Z2, +11)
1 -1 + [ 0] [1]
1)1 -1 [0] | [0] [1]

-1]-1 1 (1] | [1] 0]

Group table in G with |G| =2

x| e a
ele a
ala e

All groups with order 2 must have the same algebraic properties. )
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Group Isomorphism

Let (Gi,*) and (Gg,-) be two groups, and let ¢ : G — G, be a function.
Then ¢ is said to be a group isomorphism if

i) ¢ is one-to-one and onto, and

i) ¢(ax*b)=p(a)-¢(b) for all a,b € G1. (preserves general products)
In this case, G; is said to be isomorphic to G,, and we write G; = Gp.

To prove that two groups are isomorphic, you need to
1) define a function ¢ (well-defined), and then
2) verify that ¢ is a group isomorphism.

Sometimes your first guess for ¢ is might not work, so you might need to
try several different functions until you find one satisfying the requirements
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Properties of Group Isomorphisms

Let (Gi,*) and (Gg,-) be groups, and let ¢ : G; — G, be an isomorphism
Let e; and e be the identity elements of G; and Gy, respectively. Then

i) ¢(e1) = e.
i) ¢p(a”t) = (qb(a))_l for all a € G;.
i) ¢(a") = (gb(a))n for all a€ Gy and all n € Z.

Proof: i) ¢(e1) - ¢(e1) = d(er x e1) = d(e1) = Pp(e1) - &2~ P(e1) = &

i) p(a1)- ¢(a) = p(atxa) = pler) L& ~ p(at) = (6(a))

iii) By induction, we have
dlayxap*---xap) =¢(a1) d(az) - ...
~ ¢(a") = (¢(a))" for any positive integer n. For n < 0,n =

o = o((a )" = (6(a1)" 2 ((¢(a)) )" = (s(a))". O

Group isomorphisms preserve general products, the identity and inverses J
Spring 2022 4 /14

¢(an) for ai,as,...,an € Gi.
—|n|, then
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¢ is one-to-one and onto, and

¢Z (G]_,*,61) — (GZ,-,EZ) {¢(a* b) — ¢(a) . (Z)(b) for all a,be Gy.

¢ preserves general products, the identity element and inverses of elements.

define ¢ (well-defined), and then

* To prove G; = Gy, you need to . ) ) )
verify that ¢ is an isomorphism.

Prove that (R, +) = (RT, ). ]

Proof: We need a function ¢ : R — R™ that has the following properties:
@ sends real numbers to positive real numbers
@ sends addition to multiplication
@ sends the identity e; = 0 of (R, +) to the identity e = 1 of (RT,")

‘Try d(x) = ex‘ i) #(x) = e* € R for all x € R.

ii) ¢ is one-to-one (¥ = €2 ~~ x; = xp) & onto (Vy € RT, take x =Iny € R)

i) o(x1 +x) = M2 = X . e = ¢(x1) - p(x) O
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¢ is one-to-one and onto, and

¢: (G1,* e1) — (G, -, €2) {¢(a* b) = &(a) - ¢(b) for all a,b € G.

i) The inverse of a group isomorphism is a group isomorphism. J

i) The composite of two group isomorphisms is a group isomorphism.

Proof: i) Let ¢ : Gi — Gy be a group isomorphism. Then there is an
inverse function 6 : Go — Gy. To show that ¢ is a group isomorphism.

e @ is one-to-one and onto. v/

e Let a5, b € Gy and (9(82) = a1, G(bz) =b;. ~ (;5(81) = ao, qb(bl) = by.
(;5(31 *x bl) = ¢(a1) . ¢(b1) = a4 - b2 ~ 9(:32 . b2) = a1 * b1: 0(22) * e(bz)
i) Let ¢ : (G1,%) = (Gp,-) and ¢ : (Gy,-) — (Gs,*) be isomorphisms.

~> )¢ is one-to-one and onto. To show ¢ preserves products. If a,b € Gy

d(ax b) = y(p(axb))=((a)-¢(b))=1(¢(a))x¢)(d(b))= d(a) x Yo(b)

The isomorphism = is an equivalence relation. (Reflexive, Symmetric, Transitive)J

Shaoyun Yi Isomorphisms Spring 2022 6 /14



Prove ((i),) = (Z4,+})- Recall (i) = {1,i,—1,—i}, Z4 = {[0], [1], [2], [3]}

We have seen that both ((/),-) and (Z4, +( ) are cyclic groups of order 4.
|2 ol [ @B

i° [0] | [o] [1] [2] 3]
{‘1) (1[4 [2] 8] [0]
I2

00 1
1|2 2
2|2 3 [2] |21 3] [0] [1]
330 (811381 [0 1] [2]

The elements of Z, appear in the addition table in Z, precisely the same
positions as the exponents of / did in the multiplication table in (7). J

I i
I I i
I I l
1 I i
] I i

Define ¢ : Z4 — (i) by ¢([n]) = i". To show ¢ is a group isomorphism:
o Well-defined: If [n] = [m], i.e., n=m (mod 4), then i" = i".
@ ¢ is one-to-one and onto. v

@ ¢ preserves the respective operations:
¢([n] + [m]) = ¢([n + m]) = i"*™ = i" - i™ = ¢([n]) - 6([m]) O
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Let H be a subgroup of a group G. For any a in G, we have aHa ! = H. \

We have already showed that aHa=! is a subgroup of G in Test 1 Review.

Proof: Define ¢ : H — aHa™! by ¢(h) = aha™? for all h € H.
o Well-defined: It is easy to see that ¢(h) € aHa !
e one-to-one: @¢(hy) = ¢(ha) ~» ahja™! = ahpa™! ~ hy = hy
e onto: If y € aHa™!, then y = aha™! for some h € H. Thus ¢(h) = y.
@ ¢ respects multiplication in H: For h,k € H,
d(hk) = ahka=! = ah(a 'a)ka=! = (aha=1)(aka=1) = ¢ (h)d(k).

Thus, ¢ is a group isomorphism. O
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Another way to show that ¢ is one-to-one and onto

Define a function ¢~ : Go — Gi, and verify that ¢! is the inverse of ¢.
That is, need to check ¢ o ¢ = lg, and ¢o ot = 1lg,.

Recall (R,4) = (R",-): We define ¢: R — R* by letting ¢(x) = e*.

To show ¢ is one-to-one and onto, define =% : R — R by ¢~1(y) =Iny.
e Well-defined v/ e Verify that this is the inverse function of ¢:

(o7 () = d(ny) =€ =y, ¢7(B(x)) = o7 (e¥) =IneX = x.

Recall aHa™! = H: Define ¢: H — aHa™! by letting ¢(h) = aha™'.

To show that ¢ is one-to-one and onto, we define ¢~ : aHa=! — H by
¢~ (b) = a~lbha forall b€ aHa 1.
o Well-defined v e Verify that this is the inverse function of ¢:
6(¢~1(b)) = ¢(a~1ha) = a(a~1ba)at = b
¢ H(p(h)) = ¢~(aha™') = a*(aha t)a = h
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Let ¢ : Gi — Gp be an isomorphism of groups.
i) If a has order n in Gi, then ¢(a) has order n in G,.
ii) If Gy is abelian, then so is Gp.

iii) If Gy is cyclic, then so is Gp.

Proof: i) Assume a € G; with o(a) =n ~» (¢(a))" = ¢(a") = ¢(e1) = e
~ o(¢(a))|n. To show njo(¢(a)): Since ¢ is an isomorphism, there exists
o7t st ¢ (#(a) = 2. So 2% = 671 (¢(2))° D) = ¢ () = e V.
ii) Let ¢(a1) = a2 and ¢(b1) = by for a, by € Gy and az, b, € Gp. Then
a2+ by = §(a1) - @(br) = éla x bi) = $(br x a1) = $(b1) - §(a1) = bz - 2.
iii) Assume Gy = (a). For any y € Gy, we have y = ¢(x) for some x € G;.
Write x = a" for some n € Z. Then
y =¢(x) = ¢(a") = (¢(a))".
Thus Gy is cyclic, generated by ¢(a). O

This gives us a technique for proving that two groups are not isomorphic.J
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b: G — G {If a has order n in Gy, then ¢(a) has order nin G.

If Gy is abelian (resp. cyclic), then so is Gp.

In (RX ) there is an element of order 2. (x? =1 ~x =41 ~ —1V)
In (R,+), there is no element of order 2. (If so, x +x =2x =0 ~» x = O)

(RX ) onIy 1 and —1 have finite orders, i.e., o(1) =1 and o(—1) = 2.

In (C*,-), there are elements of other finite orders. e.g., o(i) = 4.

Z4¥22X22

Z, is cyclic. That is, there is an element ([1]4 or [3]4) of order 4 in Z,.

Z, x Z, is not cyclic. Any non-identity element must have order 2.

ZgXZg%Z3XZ3XZ3XZ3
In the 1st group, there are elements of order 9. e.g., ([1]o, [1]o).

N

In the 2nd group, any non-identity element must have order 3.
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Examples: Groups of Order 6: Zg, Z; X Z3, S3, GLy(Z5)

* The first two groups (Zs and Z; x Z3) are abelian (in fact, cyclic).

* The last two groups (S3 and GL2(Z3)) are nonabelian.
Lo =2, X Z3

J

Proof: Let Zg — ([L]6), Zo x Z3 — ([1]2, [1]3). Define ¢ : Zg — Z» x Z3 by
o([1]6) = ([1]2,[1]3). Equivalently, ¢([n]e) = ([n]2, [n]3).

o well-defined: If [n]e = [m]s, then [n]2 = [m]2, [n]s = [m]s. ~ ¢([nls) = ¢([m]s)

e one-to-one: For ¢([n]s) = ¢([m]s), to show [n]s = [ml]esi

[nl2 = [m]2, [n]ls =[m]s  ~2|(n—m), 3|(n—m) ~6[(n—m)

e Since |Zs| = |Z> x Z3| = 6, any one-to-one mapping must be onto.

e For any myn € Z, ¢([n]e + [ml]e) = --- = &([nle)d([m]s)- u
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GL2(Z2) ~ S5 J

In §3.3, we described S3 by letting e = (1), a = (123) and b = (12) and so
S3 = {e,a,a%, b,ab,a’b}, where a> =e, b> =e, ba= a°b.

Also in §3.3, we saw that those 6 elements in GL2(Z2) and their orders are

10] [11 01 011 [11 10
01 10 11 10 01 11
order 1 3 3 2 2 2

To establish the connection between S3 and GLy(Z53), let
=391, a=1[131,b=1[93]. — & =6 b>=¢, ba=5b
Each element of GLy(Z,) can be expressed uniquely as one of &, 3, 32, b, b, 3b
Let ¢((123)) = [ 3], ¢((12)) = [93] and extend this to all elements by
o((123)/(12)) = [181'[938Y fori=0,1,2 and j =0,1.
To show: ¢ is a group isomorphism.

The unique forms of the respective elements show ¢ is one-to-one and onto

The multiplication tables are identical shows ¢ respects the two operations.
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An easier way to check that ¢ which preserves products is one-to-one

Let ¢ : Gi — G be a function s.t. ¢(ax b) = ¢(a) - ¢(b) for all a,b € G;.
Then ¢ is one-to-one if and only if ¢(x) = ex implies x = e;. J

Proof: (=) If ¢ is one-to-one, then only e; can map to e;.

(«=) For o(x1) = ¢(x2) for some x1,x2 € Gy, to show x; = xo.

d0a x5 1) = o(x1) - 0061 = ¢(x) - (802)) ™ = ¢(x) - (¢0e)) ™ = &

~3 XY K x{l = e; (by assumption), and thus x; = x». O
Zyn =22y x Z, if gcd(m, n) = 1. J

Proof: Recall that (in §3.3) Z,,, x Z,, is cyclic if and only if gcd(m, n) = 1.
Define ¢: Zpp — Zm X Zy by ¢([X]mn) = ([X]m, [X]n). Show ¢ is an isomorphism.
o well-defined: If [x]mn = [y]mn, then [X]m = [y]m and [x]n = [y]n. V

o For x,y € Z, ¢([X]mn + [yImn) = - - = &([x]mn)S([y]mn)-

e one-to-one: ¢([X]mn) = ([0]m, [0]n) ~~ m|x, n|x - mn|x  ~ [X]mn = [0]mn

e Since |Z,,,| = |Z,, X Z,|, any one-to-one mapping must be onto. O
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