§3.3 Constructing Examples

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

Review

• Subgroup *H*: {Closure Identity (*no worry about associativity*) Inverses

- W2: *H* is a subgroup \Leftrightarrow *H* is nonempty and $ab^{-1} \in H$ for all $a, b \in H$
- $|H| < \infty$: H is a subgroup $\Leftrightarrow H \neq \emptyset$ and $ab \in H$ for all $a, b \in H$
- Cyclic subgroup $\langle a \rangle$ is the **smallest** subgroup of G containing $a \in G$.
- G is cyclic if $G = \langle a \rangle$.
- $o(a) = |\langle a \rangle|$
- If o(a) = n is finite, then $a^k = e \Leftrightarrow n|k$.
- Lagrange's Theorem: If $|G| = n < \infty$ and $H \subseteq G$, then $|H| \mid n$.
 - o(a)|n for any $a \in G$. $\rightsquigarrow a^n = e \longrightarrow$ Euler's theorem
 - Any group of prime order is cyclic (and so abelian).
 - → Any group of order 2, 3, or 5 must be cyclic.

|G| = 4

For $a \in G$ with $a \neq e$, then either o(a) = 2 or o(a) = 4. i) If o(a) = 4, then $G = \langle a \rangle = \{e, a, a^2, a^3\}$.

ii) If there is no element of order 4, then o(a) = 2 for all $a \neq e$.

Each element must occur exactly once in each row and column. (Sudoku)

i)	е	а	a ²	a ³	ii	i)	е	а	b	с
	е				e					
а	а	a ²	a ³	е	а	а	а	е	с	b
	a ²				b	Ь	Ь	с	е	а
a ³	a ³	е	а	a ²	с	с	с	b	а	е

Both cases are abelian. \rightsquigarrow The group of order 4 is always abelian.

|G| = 6

We have seen two basic examples of groups of order 6:

- $Z_6 = \{[0], [1], [2], [3], [4], [5]\}$ is cyclic. (generator [a], (a, 6) = 1)
- $S_3 = \{(1), (12), (13), (23), (123), (132)\}$ is nonabelian.

 \rightarrow The order of the **smallest** nonabelian group is 6.

Let
$$e = (1), a = (123)$$
 and $b = (12)$.

Each element of S_3 in the form $a^i b^j$ uniquely, for i = 0, 1, 2 and j = 0, 1:

$$(1) = e, (123) = a, (132) = a^2, (12) = b, (13) = ab, (23) = a^2b.$$

Q: What is *ba*? **A:** $ba = a^2 b$

$$S_3 = \{e, a, a^2, b, ab, a^2b\},$$
 where $a^3 = e, \ b^2 = e, \ ba = a^2b.$

Q: What is ba^2 ? **A:** $ba^2 = (ba)a = (a^2b)a = a^2(ba) = a^2(a^2b) = ab$

Multiplication Table for S_3

Each element must occur exactly once in each row and column.

$S_3 = \{e, a, a^2, b, a^2\}$	ab, a²	² <i>b</i> }, w	here a	$a^3 = \epsilon$	e, b ² =	= <i>e</i> ,	ba = a	$a^2b \rightsquigarrow ba^2 = ab.$
		е	а	a ²	b	ab	a²b	
	е	e a a ² b ab	а	a ²	b	ab	a²b	
	а	а	a ²	е	ab	a²b	Ь	
	a ²	a ²	е	а	a²b	b	ab	
	b	Ь	a²b	ab	е	a ²	а	
	ab	ab	b	a²b	а	е	a ²	
	a²b	a²b	ab	Ь	a ²	а	е	

For $H, K \subset G$, $H \cap K$ is the largest subgroup contained in both H and K.

Q: What is the smallest subgroup containing both H and K?

Let G be a group, and let S and T be subsets of G. Then

 $ST = \{x \in G : x = st \text{ for some } s \in S, t \in T\}.$

If H and K are subgroups of G, then we call HK the **product** of H and K.

A: The product HK if it is a subgroup. But, HK is not always a subgroup.

If $h^{-1}kh \in K$ for all $h \in H, k \in K$, then *HK* is a subgroup of *G*. Therefore, if *G* is **abelian**, then the product of any two subgroups is again a subgroup.

Closure: For $g_1 = h_1 k_1$ and $g_2 = h_2 k_2$, $\rightsquigarrow g_1 g_2 = (h_1 k_1)(h_2 k_2) \stackrel{!}{\in} HK \checkmark$

Identity: $e = ee \in HK \checkmark$ Inverses: For $g = hk, \rightsquigarrow g^{-1} = k^{-1}h^{-1} \stackrel{!}{\in} HK \checkmark$

If G is a finite group, then $|HK| = |H||K|/|H \cap K|$.

For $H, K \subset G$, $H \cap K$ is the largest subgroup contained in both H and K.

• For any element $t \in H \cap K$, if $hk \in HK$, then we can write

$$hk = (ht)(t^{-1}k) \in HK.$$

 \rightsquigarrow Every element in *HK* can be written in at least $|H \cap K|$ different ways.

• On the other hand, if $hk = h'k' \in HK$, then $h'^{-1}h = k'k^{-1} \in H \cap K$. Set

$$t := h'^{-1}h = k'k^{-1} \in H \cap K.$$

 $\rightsquigarrow h' = ht^{-1} \text{ and } k' = tk \quad \rightsquigarrow h'k' = (ht^{-1})(tk) \text{ for some } t \in H \cap K.$

 \rightsquigarrow Every element in *HK* can be written in at most $|H \cap K|$ different ways.

 \rightsquigarrow Every element in *HK* can be written in exactly $|H \cap K|$ different ways:

$$|HK| = \frac{|H||K|}{|H \cap K|}$$
 for $H, K \subset G$ and $|G| < \infty$.

Example 1 ($G = Z_{15}^{\times}$, $H = \{[1], [11]\}$. $\rightsquigarrow G$ is abelian with $|G| = \varphi(15) = 8$) • $K = \{[1], [4]\}$: |HK| = 4. Computing all possible products in HK gives [1][1] = [1], [1][4] = [4], [11][1] = [11], [11][4] = [14]. $\rightsquigarrow HK = \{[1], [4], [11], [14]\}$ is a **subgroup** of order 4. • $L = \langle [7] \rangle = \{[1], [4], [7], [13]\}$: |HL| = 8 = |G|. List all products in HL: $HL = \{[1], [2], [4], [7], [8], [11], [13], [14]\} = \mathbf{Z}_{15}^{\times}$

If the operation is additive, then we write H + K, the sum of H and K.

 $a\mathbf{Z} + b\mathbf{Z} = (a, b)\mathbf{Z}$

Let $h \in H = a\mathbf{Z}$ and $k \in K = b\mathbf{Z}$. Let (a, b) = d. To show $H + K = d\mathbf{Z}$:

- $H + K \subseteq d\mathbf{Z}$: h + k is a linear combination of a and b. $\rightsquigarrow (a, b)|(h + k)$
- $d\mathbf{Z} \subseteq H + K$: *d* is the *smallest* positive linear combination of *a* and *b*. $\rightarrow d \in H + K$. It implies that $d\mathbf{Z} \subseteq H + K$ since $d\mathbf{Z} = \langle d \rangle$.

Direct Product of two Groups

The set of all ordered pairs (x_1, x_2) such that $x_1 \in G_1$ and $x_2 \in G_2$ is called the **direct product** of G_1 and G_2 , denoted by $G_1 \times G_2$. That is,

$$G_1 \times G_2 = \{(x_1, x_2) \colon x_1 \in G_1 \text{ and } x_2 \in G_2\}.$$

If G_1, G_2 are finite groups, then $|G_1 \times G_2| = |G_1| \cdot |G_2|$.

Let $(G_1, *, e_1)$ and (G_2, \cdot, e_2) be groups.

- i) The direct product $G_1 \times G_2$ is a group under the operation defined for all $(a_1, a_2), (b_1, b_2) \in G_1 \times G_2$ by $(a_1, a_2)(b_1, b_2) = (a_1 * b_1, a_2 \cdot b_2)$.
- ii) If $a_1 \in G_1$ and $a_2 \in G_2$ have orders n and m, respectively, then the element (a_1, a_2) has order k = [n, m] in $G_1 \times G_2$.

i) Closure: \checkmark Associativity: For $(a_1, a_2), (b_1, b_2), (c_1, c_2) \in G_1 \times G_2$: $(a_1, a_2)((b_1, b_2)(c_1, c_2)) = \cdots = ((a_1, a_2)(b_1, b_2))(c_1, c_2) \checkmark$ Identity: $(e_1, e_2) \checkmark$ Inverses: $(a_1, a_2)^{-1} = (a_1^{-1}, a_2^{-1}) \checkmark$ ii) $(a_1, a_2)^{[n,m]} = (e_1, e_2) \rightsquigarrow k \mid [n,m] \checkmark$ If $(a_1, a_2)^k = (a_1^k, a_2^k) = (e_1, e_2),$ then $n \mid k$ and $m \mid k. \rightsquigarrow [n,m] \mid k. \checkmark$ Thus, k = [n,m].

Example: Klein four-group $\mathbf{Z}_2 \times \mathbf{Z}_2$

The addition table for $Z_2 \times Z_2 = \{([0], [0]), ([1], [0]), ([0], [1]), ([1], [1])\}$:

The pattern in this table is the same as the table below.

	e	а	b	С
е	е	а	b	С
а	а	е	с	b
a b	e a b	с	е	а
С	с	b	а	е

This group has order 4 and each element except the identity has order 2.

$\mathbf{Z}\times\mathbf{Z}$ is not cyclic.

Proof by contradiction: Suppose $Z \times Z = \langle (m, n) \rangle = \{k(m, n) : k \in Z\}$. However, $\langle (m, n) \rangle$ cannot contain both of (1,0) and (0,1). (Check it!)

Natural subgroups: $\langle (1,0) \rangle$ and $\langle (0,1) \rangle$. The "diagonal" subgroup $\langle (1,1) \rangle$.

 $\textbf{Z}_2 \times \textbf{Z}_3$ is cyclic and $\textbf{Z}_2 \times \textbf{Z}_4$ is not cyclic.

Proof: ([1], [1]) has order $[2, 3] = 6 = |\mathbf{Z}_2 \times \mathbf{Z}_3|$. $\rightsquigarrow \mathbf{Z}_2 \times \mathbf{Z}_3$ is cyclic. $|\mathbf{Z}_2 \times \mathbf{Z}_4| = 8$: In the first component the possible orders are 1, 2. In the second component the possible orders are 1, 2, 4.

 \rightarrow The largest possible least common multiple we can have is 4 < 8.

 \rightsquigarrow So there is no element of order 8 and the group is not cyclic.

 $Z_n \times Z_m$ is cyclic if and only if gcd(n, m) = 1.

Shaoyun Yi

$Z_n \times Z_m$ is cyclic if and only if gcd(n, m) = 1.

 $nm = [n, m] \cdot \gcd(n, m)$

Proof: (\Rightarrow): Assume $(a, b) \in \mathbb{Z}_n \times \mathbb{Z}_m$ has order $k = |\mathbb{Z}_n \times \mathbb{Z}_m| = nm$. Since o(a)|n, o(b)|m and k = [o(a), o(b)]. $\rightsquigarrow o(a) = n, o(b) = m$. If not,

$$nm = k = [o(a), o(b)] = rac{o(a) \cdot o(b)}{\gcd\left(o(a), o(b)
ight)} \le o(a) \cdot o(b) < nm.$$

 $\rightarrow nm = k = [n, m]$. Hence gcd(n, m) = 1.

(\Leftarrow): Assume gcd(n, m) = 1. Consider the cyclic subgroup $\langle ([1]_n, [1]_m) \rangle$: $o([1]_n) = n$ and $o([1]_m) = m$.

It follows that

$$o(([1]_n, [1]_m)) = [o([1]_n), o([1]_m)] = [n, m] = \frac{nm}{\gcd(n, m)} = nm.$$

Thus $\mathbf{Z}_n \times \mathbf{Z}_m = \langle ([1]_n, [1]_m) \rangle$, namely, is cyclic.

Shaoyun Yi

Spring 2022 12 / 15

Example from Matrices

 $|\operatorname{GL}_2(\mathbf{Z}_p)| = (p^2 - 1) \cdot (p^2 - p)$, where p is a prime number.

Proof: 1st row: There are $p^2 - 1$ choices since (0, 0) cannot be a choice. 2nd row: There are $p^2 - p$ choices. (scalars of 1st row cannot be choices)

 $|GL_2(\mathbf{Z}_2)| = 6$: These 6 elements and their orders are as follows.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
order
$$1 \qquad 3 \qquad 3 \qquad 2 \qquad 2 \qquad 2$$

We simply use 0 and 1 to denote the congruence classes $[0]_2$ and $[1]_2$. The group $\operatorname{GL}_2(\mathbf{Z}_2)$ is nonabelian. e.g. $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$.

 S_3 is also nonabelian with order 6. In fact, they are "the same" group! (see §3.4) Shaoyun Yi Constructing Examples Spring 2022 13/15

Subgroup Generated by a Nonempty S of the Group G

A finite product of elements of S and their inverses is called a **word** in S. The set of all words in S is denoted by $\langle S \rangle$.

For example, for $a, b, c \in S$, then $a^{-1}a^{-1}bab^{-1}acb^{-1}cbc^{-1}c^{-1} \in \langle S \rangle$.

 $\langle S \rangle$ is a subgroup of G, and is equal to the intersection of all subgroups of G that contain S. That is, $\langle S \rangle$ is the smallest subgroup that contains S.

Proof: Closure: If x, y are two words in S, then xy is again a word in S. Identity: $e = aa^{-1} \in \langle S \rangle$. Here $a \in S$ always exists since S is nonempty. Inverses: $x^{-1} \in \langle S \rangle$: reverses the order & changes the sign of exponent. If $S \subseteq H$, where H is a subgroup of G, then it contains all words in S. So $\langle S \rangle \subseteq H \rightsquigarrow \langle S \rangle$ is the intersection of all subgroups of G that contain S.

 $S = \{a\}$: In this case, $\langle S \rangle = \langle a \rangle$ is a cyclic subgroup. Easy!

 $S = \{a, b\}$: If G is nonabelian, then it is complicated to describe $\langle S \rangle$!

Definition of a Field

Let *F* be a set with two binary operations + and \cdot with respective identity elements 0 and 1, where $0 \neq 1$. Then *F* is called a **field** if

- 1) the set of all elements of F is an abelian group under +;
- 2) the set of all nonzero elements of F is an abelian group under \cdot ;
- 3) $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$ for all $a, b, c \in F$.

3) distributive laws give a connection between addition & multiplication.

For any element
$$a \in F$$
, we have $a \cdot 0 = 0$ and $0 \cdot a = 0$.

 $0 + a \cdot 0 = a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0 \rightsquigarrow 0 = a \cdot 0$. Similarly, $0 \cdot a = 0$.

Example 2

- $\mathbf{Q}, \mathbf{R}, \mathbf{C}, \mathbf{Z}_p$, where p is a prime number, are fields. But **Z** is not a field.
- Let F be a field. Then $GL_n(F)$ is a group under matrix multiplication.

i) Closure \checkmark ii) Associativity \checkmark iii) Identity: I_n iv) Inverses: $A^{-1} \in \operatorname{GL}_n(F)$ Shaoyun Yi Constructing Examples Spring 2022 15 / 15