$\S3.2$ Subgroups

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

• Group (G, *) $\begin{cases}
i) Closure \leftrightarrow * \\
ii) Associativity \leftrightarrow \swarrow^{*} \\
iii) Identity: Uniqueness by Associativity \\
iv) Inverses: Uniqueness by Associativity \\
eg. <math>(\mathbf{R}^{\times}, \cdot), (Sym(S), \circ), (M_n(\mathbf{R}), +_{matrix}), (GL_n(\mathbf{R}), \cdot_{matrix})
\end{cases}$

- Cancellation law
- Abelian group: eg. $(Z_n, + []), (Z_n^{\times}, \cdot [])$
- Finite group (order) v.s. Infinite group
- Equivalence relation: Reflexive/Symmetric/Transitive law
 eg. Conjugacy: x ~ y if y = axa⁻¹

Subgroup

Let G be a group, and let H be a subset of G. Then H is called a **subgroup** of G if H is itself a group, under the operation induced by G.

- Two special subgroups of any group G: 1 G; 2 Trivial subgroup $\{e\}$
- $Z \subseteq Q \subseteq R \subseteq C$: each group is a subgroup of the next under +
- $\{\pm 1\} \subseteq \mathbf{Q}^{\times} \subseteq \mathbf{R}^{\times} \subseteq \mathbf{C}^{\times}$: each group is a subgroup of the next under \cdot

 $\mathbf{R}^+ := \{x \in \mathbf{R} | x > 0\}$ is a subgroup of \mathbf{R}^{\times} under multiplication.

i) closure: 🗸 ii) associativity: 🗸 iii) identity: 1 iv) inverses: its inverse

 $n\mathbf{Z} := \{x \in \mathbf{Z} : x = nk \text{ for } k \in \mathbf{Z}\}$ is a subgroup of **Z** under addition.

i) closure: 🗸 ii) associativity: 🗸 iii) identity: 0 iv) inverses: its negative

The special linear group over \mathbf{R} : $\mathrm{SL}_n(\mathbf{R}) = \{A \in \mathrm{GL}_n(\mathbf{R}) | \det(A) = 1\}$ is a subgroup of $\mathrm{GL}_n(\mathbf{R})$ under matrix multiplication.

i) $\det(AB) = \det(A) \det(B)$ ii) \checkmark iii) I_n iv) A^{-1} , since $\det(A^{-1}) = 1$. Shaoyun Yi Subgroups Spring 2022 3 / 13

Two Simpler ways

Let G be a group with identity element e, and let H be a subset of G.

W1: H is a subgroup of G if and only if the following conditions hold:

i) $ab \in H$ for all $a, b \in H$; ii) $e \in H$; iii) $a^{-1} \in H$ for all $a \in H$.

That is, there is no worry about associativity.

Proof: (⇒): i) ✓ ii) Let e' be an identity element for H. To show e' = e.
e'e' = e' and e'e = e' ⇒ e'e' = e'e ⇒ e' = e
iii) If a ∈ H, then a must have an inverse b ∈ H. To show b = a⁻¹.

In *G*, we have
$$ab = e = aa^{-1}$$
. $\Rightarrow b = a^{-1}$

(\Leftarrow): associativity: For $a, b, c \in H$, (ab)c = a(bc) in G, so also in H.

W2: *H* is a subgroup of *G* iff *H* is nonempty and $ab^{-1} \in H$ for all $a, b \in H$

Proof: (\Rightarrow): Nonempty: By ii); $ab^{-1} \in H$: By i) and iii).

(⇐): Let
$$a \in H$$
. ii) $e = aa^{-1} \in H$; iii) $a^{-1} = ea^{-1} \in H$; i) $ab \in H$ [Why?]

Example

Let *H* be the set of all **diagonal** matrices in the group $G = GL_n(\mathbf{R})$.

Way 1: *H* is a subgroup of *G* if and only if the following conditions hold: i) $ab \in H$ for all $a, b \in H$; ii) $I_n \in H$; iii) $a^{-1} \in H$ for all $a \in H$.

The diagonal entries of any element in H must all be nonzero. [Why?] i) The product of two diagonal matrices is still a diagonal matrix. ii) The identity matrix I_n is obviously a diagonal matrix. iii) The inverse of $a \in H$ exists, and it is again a diagonal matrix.

Way 2: *H* is a subgroup of $G \Leftrightarrow H \neq \emptyset$ and $ab^{-1} \in H$ for all $a, b \in H$.

Nonempty: $I_n \in H$; The second condition: Easy to check.

Finite Subgroup

Let G be a group, and let H be a **finite**, nonempty subset of G. Then H is a subgroup of G if and only if $ab \in H$ for all $a, b \in H$.

Proof: $(\Rightarrow) \checkmark (\Leftarrow)$ By Way 2 \rightsquigarrow to show $b^{-1} \in H$ for all $b \in H$. Consider

$$\{b, b^2, b^3, \ldots\} \stackrel{!}{\subset} H.$$

Since |H| is finite, they cannot all be distinct. There exists some repetition:

$$b^n = b^m$$
 for some $n > m > 0$. $\Rightarrow b^{n-m} = e$

Hence $b^{-1} = b^{n-m-1} \in H$.

Example 1 (Subgroups of S_3)

- Two Special Subgroups: S_3 ; $\{(1)\}$;
- Order Two: $\{(1), (12)\}; \{(1), (13)\}; \{(1), (23)\};$
- Order Three: $\{(1), (123), (132)\}$

Cyclic Subgroup

Let G be a group, and let a be any element of G. The set

$$\langle a \rangle := \{ x \in G : x = a^n \text{ for some } n \in \mathbf{Z} \}$$

is called the cyclic subgroup generated by a.

G is called a **cyclic group** if there exists an element $a \in G$ s.t. $G = \langle a \rangle$. In this case, *a* is called a **generator** of *G*.

Let G be a group, and let
$$a \in G$$
.

- 1) The set $\langle a \rangle$ is a subgroup of *G*.
- If K is any subgroup of G such that a ∈ K, then (a) ⊆ K.
 That is, (a) is the smallest subgroup that contains a.

1) i)
$$a^m a^n = a^{m+n} \in \langle a \rangle$$
; ii) $e = a^0 \in \langle a \rangle$; iii) $(a^n)^{-1} = a^{-n} \in \langle a \rangle$.

2)
$$a \in K \Rightarrow a^n \in K$$
 for all $n \in \mathbf{Z}_{>0}$; $e = a^0 \in K$; $a^{-n} = (a^n)^{-1} \in K$.

If the operation is denoted additively rather than multiplicatively: $a^n \rightsquigarrow na$

Shaoyun Yi

$$(\mathbf{Z},+)$$
 is cyclic. In fact, $\mathbf{Z} = \langle 1 \rangle = \langle -1 \rangle$.

$$\mathbf{Z} = \langle a \rangle = \{ na \colon n \in \mathbf{Z} \} \Rightarrow a = \pm 1$$

 $(Z_n, +_{[]}) = \langle [1] \rangle$ is cyclic. And all possible generators are $\{a \colon (a, n) = 1\}$.

 $\mathsf{Z}_n = \langle [a] \rangle \Leftrightarrow [1]$ is a multiple of $[a] \Leftrightarrow [a]$ is a unit $\Leftrightarrow [a] \in \mathsf{Z}_n^{\times} \Leftrightarrow (a, n) = 1$

$(\mathbf{Z}_n^{\times}, \cdot_{[]})$ is not always cyclic.

- $\mathbf{Z}_5^{\times} = \{[1], [2], [3], [4]\} = \langle [2] \rangle = \langle [3] \rangle$ is cyclic. But [4] is not a generator
- $Z_8^{\times} = \{[1], [3], [5], [7]\}$ is not cyclic because $[a]^2 = [1]$ for all $[a] \in Z_8^{\times}$.

Every proper subgroup of S_3 is cyclic, but S_3 is not cyclic.

Trivial Subgroup: $\{(1)\} = \langle (1) \rangle$;

Order Two: $\{(1), (12)\} = \langle (12) \rangle; \{(1), (13)\} = \langle (13) \rangle; \{(1), (23)\} = \langle (23) \rangle;$ Order Three: $\{(1), (123), (132)\} = \langle (123) \rangle = \langle (132) \rangle;$

 S_3 is not cyclic since no cyclic subgroup is equal to all of S_3 .

Shaoyun Yi

Order of an Element $a \in G$

We say *a* has **finite order** if there exists a positive integer *n* s.t. $a^n = e$. The smallest such positive integer is called the **order** of *a*, denoted by o(a)If $a^n \neq e$ for any positive integer *n*, then *a* is said to have **infinite order**.

Every element of a finite group must have finite order. [Why?]

i) If a has infinite order, then
$$a^k \neq a^m$$
 for all integers $k \neq m$.
ii) If a has finite order $o(a)$ and $k \in \mathbb{Z}$, then $a^k = e \Leftrightarrow o(a)|k$.
iii) If $o(a) = n$, then $a^k = a^m \Leftrightarrow k \equiv m \pmod{n}$. We have $|\langle a \rangle| \stackrel{!}{=} o(a)$.
i) Assume $a^k = a^m$ for $k \ge m$. $\Rightarrow a^{k-m} = e \Rightarrow k - m = 0$
ii) $(\Leftarrow) : \checkmark (\Rightarrow) :$ Let $o(a) = n$. Write $k = nq + r$, where $0 \le r < n$. Thus,
 $a^r = \cdots = e \stackrel{!}{\Rightarrow} r = 0 \Rightarrow n|k$
iii) $a^k = a^m \Leftrightarrow a^{k-m} = e \stackrel{\text{ii}}{\Leftrightarrow} n|(k-m)$. Claim: $\langle a \rangle \stackrel{!}{=} \{e, a, \dots, a^{n-1}\} := S$
 $S \subset \langle a \rangle$ by definition of $\langle a \rangle$; S is a subgroup of G & $a \in S$, so $\langle a \rangle \stackrel{!}{\subseteq} S$.
Shaoyun Yi Subgroups Spring 2022 9/13

Examples

In the multiplicative group \mathbf{C}^{\times} , consider the powers of *i*:

 $\langle i \rangle = \{1, i, -1, -i\},\$

which is a cyclic subgroup of \mathbf{C}^{\times} of order 4.

Furthermore, let $z = e^{2\pi i/n}$. We can see that

 $\langle z \rangle = \{ z^k \mid k \in \mathbf{Z} \}$ is the set of complex *n*th roots of unity,

which is a cyclic subgroup of \mathbf{C}^{\times} of order *n*. Note that $i = e^{2\pi i/4}$.

The situation is quite different if we consider $\langle 2i \rangle$, which is infinite:

$$\langle 2i \rangle = \left\{ \dots, \frac{1}{8}i, -\frac{1}{4}, -\frac{1}{2}i, 1, 2i, -4, -8i, \dots \right\}.$$

Lagrange's Theorem

If H is a subgroup of the finite group G, then |H| is a divisor of |G|.

Proof: Let |G| = n and |H| = m. To show $m \mid n$. For $a, b \in G$, we define $a \sim b$ if $ab^{-1} \in H$.

Then \sim is an equivalence relation. (*reflexive* \checkmark *symmetric* \checkmark *transitive* \checkmark) Let $[a] := \{b \in G : a \sim b\}$ denote the equivalence class of a. Consider

 $\rho_a: H \to [a], \quad \rho_a(h) = ha \quad \text{for all } h \in H.$

Claim: The function ρ_a a one-to-one correspondence between H and [a]. i) Well-defined: $\rho_a(h) = ha \in [a]$ since $a(ha)^{-1} = h^{-1} \in H$. ii) one-to-one: If $\rho_a(h_1) = \rho_a(h_2)$, then $h_1a = h_2a$. $\Rightarrow h_1 = h_2$ iii) onto: If $b \in [a]$, then $ab^{-1} = h \in H$. $\Rightarrow b = h^{-1}a = \rho_a(h^{-1})$ It follows that each equivalence class [a] has m = |H| elements. Since the equivalence classes partition G, each element of G belongs to precisely one of the equivalence classes. Thus

|G|=n=mt,

where t is the number of distinct equivalence classes. Hence $m \mid n$.

Shaoyun Yi

The converse of Lagrange's theorem is false. (See an example in $\S3.6$.)

 $[a] := \{b \in G : ab^{-1} \in H\} = \{b \in G : b = ha \text{ for some } h \in H\} = Ha$

Note: $Ha = [a] \stackrel{!}{=} [b] = Hb$ for any $b \in [a]$.

Example 2 (Consider $G = S_3 = \{(1), (12), (13), (23), (123), (132)\}$)

1) $H = \langle (123) \rangle = \langle (132) \rangle = \{ (1), (123), (132) \}$: Two equivalent classes

i) H forms the first equivalence class: H = H(1) = H(123) = H(132)

ii) Any other equivalence class must be **disjoint** from the first one and have the **same number of elements**, so the only possibility is

 $H(12) = \{(12), (13), (23)\} = H(13) = H(23).$

2) $K = \langle (12) \rangle = \{ (1), (12) \}$: Three equivalent classes

i) K forms the first equivalence class: K = K(1) = K(12)

ii)
$$K(13) = \{(13), (132)\} = K(132)$$

iii)
$$K(23) = \{(23), (123)\} = K(123)$$

Corollary 3

Let G be a finite group of order n. For any $a \in G$, o(a)|n. In particular, $a^n = e$.

Proof: $\langle a \rangle$ is a subgroup and $|\langle a \rangle| = o(a)$. Thus o(a)|n by Lagrange's thm

Euler's Theorem: $a^{\varphi(n)} \equiv 1 \pmod{n}$ if (a, n) = 1.

Proof: $G = \mathbf{Z}_n^{\times}$ with $|G| = \varphi(n)$: For any $[a] \in G$, we have $[a]^{\varphi(n)} = [1]$.

Corollary 4

Any group G of prime order is cyclic.

Proof: Let |G| = p, where p is a prime number. Let $a \in G, a \neq e$. Then

$$o(a) = |\langle a \rangle| \neq 1$$
, and so $|\langle a \rangle|$ must be p. [Why?]

This implies that $\langle a \rangle = G$, and hence G is cyclic.