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Review

Group (G , ∗)


i) Closure ! ∗
ii) Associativity ! �

��( )

iii) Identity: Uniqueness by Associativity

iv) Inverses: Uniqueness by Associativity

eg. (R×, ·), (Sym(S), ◦), (Mn(R),+matrix), (GLn(R), ·matrix)

Cancellation law

Abelian group: eg. (Zn,+[ ]), (Z×n , ·[ ])

Finite group (order) v.s. Infinite group

Equivalence relation: Reflexive/Symmetric/Transitive law

eg. Conjugacy: x ∼ y if y = axa−1
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Subgroup

Let G be a group, and let H be a subset of G . Then H is called a
subgroup of G if H is itself a group, under the operation induced by G .

• Two special subgroups of any group G : 1) G ; 2) Trivial subgroup {e}
• Z ⊆ Q ⊆ R ⊆ C: each group is a subgroup of the next under +

• {±1} ⊆ Q× ⊆ R× ⊆ C×: each group is a subgroup of the next under ·

R+ := {x ∈ R|x > 0} is a subgroup of R× under multiplication.

i) closure: 3 ii) associativity: 3 iii) identity: 1 iv) inverses: its inverse

nZ := {x ∈ Z : x = nk for k ∈ Z} is a subgroup of Z under addition.

i) closure: 3 ii) associativity: 3 iii) identity: 0 iv) inverses: its negative

The special linear group over R: SLn(R) = {A ∈ GLn(R)| det(A) = 1} is
a subgroup of GLn(R) under matrix multiplication.

i) det(AB) = det(A) det(B) ii) 3 iii) In iv) A−1, since det(A−1) = 1.
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Two Simpler ways

Let G be a group with identity element e, and let H be a subset of G .

W1: H is a subgroup of G if and only if the following conditions hold:

i) ab ∈ H for all a, b ∈ H; ii) e ∈ H; iii) a−1 ∈ H for all a ∈ H.

That is, there is no worry about associativity.

Proof: (⇒): i) 3 ii) Let e ′ be an identity element for H. To show e ′ = e.

e ′e ′ = e ′ and e ′e = e ′ ⇒ e ′e ′ = e ′e ⇒ e ′ = e

iii) If a ∈ H, then a must have an inverse b ∈ H. To show b = a−1.

In G , we have ab = e = aa−1. ⇒ b = a−1

(⇐): associativity: For a, b, c ∈ H, (ab)c = a(bc) in G , so also in H.

W2: H is a subgroup of G iff H is nonempty and ab−1 ∈ H for all a, b ∈ H

Proof: (⇒): Nonempty: By ii); ab−1 ∈ H: By i) and iii).

(⇐): Let a ∈ H. ii) e = aa−1 ∈ H; iii) a−1 = ea−1 ∈ H; i) ab ∈ H [Why?]
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Example

Let H be the set of all diagonal matrices in the group G = GLn(R).

Way 1: H is a subgroup of G if and only if the following conditions hold:

i) ab ∈ H for all a, b ∈ H; ii) In ∈ H; iii) a−1 ∈ H for all a ∈ H.

The diagonal entries of any element in H must all be nonzero. [Why?]

i) The product of two diagonal matrices is still a diagonal matrix.

ii) The identity matrix In is obviously a diagonal matrix.

iii) The inverse of a ∈ H exists, and it is again a diagonal matrix.

Way 2: H is a subgroup of G ⇔ H 6= ∅ and ab−1 ∈ H for all a, b ∈ H.

Nonempty: In ∈ H; The second condition: Easy to check.
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Finite Subgroup

Let G be a group, and let H be a finite, nonempty subset of G . Then H
is a subgroup of G if and only if ab ∈ H for all a, b ∈ H.

Proof: (⇒) 3 (⇐) By Way 2 to show b−1 ∈ H for all b ∈ H. Consider

{b, b2, b3, . . .}
!
⊂ H.

Since |H| is finite, they cannot all be distinct. There exists some repetition:

bn = bm for some n > m > 0. ⇒ bn−m = e

Hence b−1 = bn−m−1 ∈ H.

Example 1 (Subgroups of S3)

Two Special Subgroups: S3; {(1)};
Order Two: {(1), (12)}; {(1), (13)}; {(1), (23)};
Order Three: {(1), (123), (132)}
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Cyclic Subgroup

Let G be a group, and let a be any element of G . The set

〈a〉 := {x ∈ G : x = an for some n ∈ Z}

is called the cyclic subgroup generated by a.

G is called a cyclic group if there exists an element a ∈ G s.t. G = 〈a〉.
In this case, a is called a generator of G .

Let G be a group, and let a ∈ G .

1) The set 〈a〉 is a subgroup of G .

2) If K is any subgroup of G such that a ∈ K , then 〈a〉 ⊆ K .

That is, 〈a〉 is the smallest subgroup that contains a.

1) i) aman = am+n ∈ 〈a〉; ii) e = a0 ∈ 〈a〉; iii) (an)−1 = a−n ∈ 〈a〉.
2) a ∈ K ⇒ an ∈ K for all n ∈ Z>0; e = a0 ∈ K ; a−n = (an)−1 ∈ K .

If the operation is denoted additively rather than multiplicatively: an  na
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(Z,+) is cyclic. In fact, Z = 〈1〉 = 〈−1〉.

Z = 〈a〉 = {na : n ∈ Z} ⇒ a = ±1

(Zn,+[ ]) = 〈[1]〉 is cyclic. And all possible generators are {a : (a, n) = 1}.

Zn = 〈[a]〉⇔ [1] is a multiple of [a]⇔ [a] is a unit⇔ [a] ∈ Z×n ⇔ (a, n) = 1

(Z×n , ·[ ]) is not always cyclic.

• Z×5 = {[1], [2], [3], [4]} = 〈[2]〉 = 〈[3]〉 is cyclic. But [4] is not a generator

• Z×8 = {[1], [3], [5], [7]} is not cyclic because [a]2 = [1] for all [a] ∈ Z×8 .

Every proper subgroup of S3 is cyclic, but S3 is not cyclic.

Trivial Subgroup: {(1)} = 〈(1)〉;
Order Two: {(1), (12)} = 〈(12)〉; {(1), (13)} = 〈(13)〉; {(1), (23)} = 〈(23)〉;
Order Three: {(1), (123), (132)} = 〈(123)〉 = 〈(132)〉;
S3 is not cyclic since no cyclic subgroup is equal to all of S3.
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Order of an Element a ∈ G

We say a has finite order if there exists a positive integer n s.t. an = e.

The smallest such positive integer is called the order of a, denoted by o(a)

If an 6= e for any positive integer n, then a is said to have infinite order.

Every element of a finite group must have finite order. [Why?]

i) If a has infinite order, then ak 6= am for all integers k 6= m.

ii) If a has finite order o(a) and k ∈ Z, then ak = e ⇔ o(a)|k .

iii) If o(a) = n, then ak = am ⇔ k ≡ m (mod n). We have |〈a〉| !
= o(a).

i) Assume ak = am for k ≥ m. ⇒ ak−m = e ⇒ k −m = 0

ii) (⇐) : 3 (⇒) : Let o(a) = n. Write k = nq + r , where 0 ≤ r < n. Thus,

ar = · · · = e
!⇒ r = 0 ⇒ n|k

iii) ak = am⇔ ak−m = e
ii)⇔ n|(k −m). Claim: 〈a〉 !

= {e, a, . . . an−1} := S

S ⊂ 〈a〉 by definition of 〈a〉; S is a subgroup of G & a ∈ S , so 〈a〉
!
⊂ S .
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Examples

In the multiplicative group C×, consider the powers of i :

〈i〉 = {1, i , −1, −i},

which is a cyclic subgroup of C× of order 4.

Furthermore, let z = e2πi/n. We can see that

〈z〉 = {zk | k ∈ Z} is the set of complex nth roots of unity,

which is a cyclic subgroup of C× of order n. Note that i = e2πi/4.

The situation is quite different if we consider 〈2i〉, which is infinite:

〈2i〉 =

{
. . . ,

1

8
i , −1

4
, −1

2
i , 1, 2i , −4, −8i , . . .

}
.
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Lagrange’s Theorem

If H is a subgroup of the finite group G , then |H| is a divisor of |G |.

Proof: Let |G | = n and |H| = m. To show m | n. For a, b ∈ G , we define

a ∼ b if ab−1 ∈ H.

Then ∼ is an equivalence relation. (reflexive 3 symmetric 3 transitive 3)

Let [a] := {b ∈ G : a ∼ b} denote the equivalence class of a. Consider

ρa : H → [a], ρa(h) = ha for all h ∈ H.

Claim: The function ρa a one-to-one correspondence between H and [a].

i) Well-defined: ρa(h) = ha ∈ [a] since a(ha)−1 = h−1 ∈ H.

ii) one-to-one: If ρa(h1) = ρa(h2), then h1a = h2a. ⇒ h1 = h2

iii) onto: If b ∈ [a], then ab−1 = h ∈ H. ⇒ b = h−1a = ρa(h−1)

It follows that each equivalence class [a] has m = |H| elements.

Since the equivalence classes partition G , each element of G belongs to
precisely one of the equivalence classes. Thus

|G | = n = mt,

where t is the number of distinct equivalence classes. Hence m | n.
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The converse of Lagrange’s theorem is false. (See an example in §3.6.)

[a] := {b ∈ G : ab−1 ∈ H} = {b ∈ G : b = ha for some h ∈ H} = Ha

Note: Ha = [a]
!

= [b] = Hb for any b ∈ [a].

Example 2 (Consider G = S3 = {(1), (12), (13), (23), (123), (132)})
1) H = 〈(123)〉 = 〈(132)〉 = {(1), (123), (132)} : Two equivalent classes

i) H forms the first equivalence class : H = H(1) = H(123) = H(132)

ii) Any other equivalence class must be disjoint from the first one and
have the same number of elements, so the only possibility is

H(12) = {(12), (13), (23)} = H(13) = H(23).

2) K = 〈(12)〉 = {(1), (12)} : Three equivalent classes

i) K forms the first equivalence class : K = K (1) = K (12)

ii) K (13) = {(13), (132)} = K (132)

iii) K (23) = {(23), (123)} = K (123)
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Two Corollaries

Corollary 3

Let G be a finite group of order n. For any a ∈ G , o(a)|n. In particular, an = e.

Proof: 〈a〉 is a subgroup and |〈a〉| = o(a). Thus o(a)|n by Lagrange’s thm

Euler’s Theorem: aϕ(n) ≡ 1 (mod n) if (a, n) = 1.

Proof: G = Z×n with |G | = ϕ(n) : For any [a] ∈ G , we have [a]ϕ(n) = [1].

Corollary 4

Any group G of prime order is cyclic.

Proof: Let |G | = p, where p is a prime number. Let a ∈ G , a 6= e. Then

o(a) = |〈a〉| 6= 1, and so |〈a〉| must be p. [Why?]

This implies that 〈a〉 = G , and hence G is cyclic.
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