§3.1 Definition of a Group

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

Review

- Permutation $\sigma \in \text{Sym}(S)$ (or S_n)
- $\#|S_n| = n!$
- Composition (Product) $\sigma \tau$ & Inverse σ^{-1}
- Cycle of length k: $\sigma = (a_1 a_2 \cdots a_k)$ has order k.
- Disjoint cycles are commutative
- $\sigma \in S_n$ can be written as a **unique** product of disjoint cycles.
- The order of σ is the **lcm** of the lengths (orders) of its disjoint cycles.
- A transposition is a cycle (a_1a_2) of length two.
- $\sigma \in S_n$ can be written as a product of transpositions. (NOT unique)
- Even Permutation & Odd Permutation
- A cycle of odd length is even. & A cycle of even length is odd.

Symmetry occurs frequently and in many forms in nature.

Example 1

Each coefficient of a poly. is a symmetric function of the poly.'s roots.

$$f(x) = (x - r_1)(x - r_2)(x - r_3) = x^3 + bx^2 + cx + d$$

$$r_1 + r_2 + r_3 = -b$$
, $r_1r_2 + r_2r_3 + r_3r_1 = c$, and $r_1r_2r_3 = -d$.

* The coefficients remain unchanged under any permutation of the roots.

 \rightsquigarrow With respect to symmetry, the **operation** of shifting the roots among themselves is the most important and not the roots themselves.

A binary operation * on a set S is a function

 $*: S \times S \rightarrow S$

from the set $S \times S$ of all ordered pairs of elements in S into S.

• The operation * is said to be associative if

$$a*(b*c)=(a*b)*c$$
 for all $a,b,c\in S$.

• An element $e \in S$ is called an **identity** element for * if

$$a * e = a$$
 and $e * a = a$ for all $a \in S$.

• If * has an identity element e and $a \in S$, then $b \in S$ is an **inverse** for a if

$$a * b = e$$
 and $b * a = e$.

Examples

- 1) Multiplication defines an associative binary operation on **R**.
 - 1 serves as an identity element.
 - only nonzero element a has the **inverse** 1/a.
- 2) Multiplication defines an associative binary operation on $S = \{x \in \mathbf{R} | x \ge 1\}$
 - 1 serves as an identity element.
 - only 1 has the **inverse** 1.
- 3) Multiplication does not define a binary operation on $S = \{x \in \mathbf{R} | x < 0\}$.
- 4) Matrix multiplication defines an associative binary operation on $M_n(\mathbf{R})$.
 - the identity matrix serves as an identity element.
 - a matrix has a *multiplicative* inverse iff its determinant is nonzero.
- 5) Matrix addition defines an associative binary operation on $M_n(\mathbf{R})$.
 - the zero matrix serves as an **identity** element.
 - each matrix has an *additive* inverse, i.e., its negative.
- 6) Matrix multiplication does not define a binary operation on the set of nonzero matrices in M_n(R). e.g., [¹₀ ⁰₀][⁰₀ ⁰₁] = [⁰₀ ⁰₀]

Example: Well-definedness of a Binary Operation

If
$$a, b \in \mathbf{Q}$$
 with $a = \frac{m}{n}$ and $b = \frac{s}{t}$, then we define multiplication $ab = \frac{ms}{nt}$

Check the well-definedness of multiplication:

To show that the multiplication does not depend on how we represent a, b.

Suppose that we also have $a = \frac{p}{q}$ and $b = \frac{u}{v}$, then we need to check

$$\frac{ms}{nt} = \frac{pu}{qv}$$
, that is, $(qv)(ms) = (pu)(nt)$.

$$a = \frac{m}{n} = \frac{p}{q} \quad \Rightarrow mq = np$$
$$\implies mqsv = nptu \quad \Rightarrow (qv)(ms) = (pu)(nt)$$
$$b = \frac{s}{t} = \frac{u}{v} \quad \Rightarrow sv = tu$$

Associative Binary Operation * on a set S

Let * be an **associative** binary operation on a set S.

i) The operation * has at most one identity element.

ii) If * has an identity element, then any element has at most one inverse.

Proof: i) Suppose *e* and *e'* are identity elements for *. To show e = e'.

 $\left. \begin{array}{l} e \text{ is an identity element } \Rightarrow e * e' = e' \\ e' \text{ is an identity element } \Rightarrow e * e' = e \end{array} \right\} \quad \Rightarrow e = e'$

ii) e: the identity element. Let b and b' be inverses for a. To show b = b'. b' = e * b' = (b * a) * b' = b * (a * b') = b * e = b

Let *e* be the identity element, and *a*, *b* have inverses a^{-1} and b^{-1} . Then iii) the inverse of a^{-1} exists and is equal to *a*, and iv) the inverse of a * b exists and is equal to $b^{-1} * a^{-1}$.

Proof: iii)
$$\checkmark$$
 iv) $(a * b) * (b^{-1} * a^{-1}) = \ldots = e \& (b^{-1} * a^{-1}) * (a * b) = e$

Group (G, *)

Let (G, *) be a nonempty set G together with a binary operation * on G. Then (G, *), or just G, is called a **group** if the following properties hold.

- i) **Closure**: For all $a, b \in G$, a * b is a well-defined element of G.
- ii) Associativity: For all $a, b, c \in G$, we have a * (b * c) = (a * b) * c.
- iii) Identity: There exists an identity element (unique) $e \in G$:

a * e = a and e * a = a for all $a \in G$.

iv) Inverses: For each $a \in G$ there exists an inverse element $a^{-1} \in G$: $a * a^{-1} = e$ and $a^{-1} * a = e$.

- **R** is a group under the standard addition.
- **R** is not a group under the standard multiplication.

A group is a nonempty set G with an **associative** binary operation *, s.t. G contains an **identity** element e, and each element has an **inverse** in G.

Symmetric Group

Recall: The set of all permutations of a set S is denoted by Sym(S). The set of all permutations of $\{1, 2, ..., n\}$ is denoted by S_n .

Sym(S) is a group under the operation of composition of functions.

Proof: Let $f, g \in Sym(S)$ be any two one-to-one and onto functions.

- i) Closure: $f \circ g \in \text{Sym}(S)$
- ii) Associativity: is associative.
- iii) **Identity:** the identity function 1_S

iv) **Inverses:** f is 1-1 and onto \Leftrightarrow the inverse function f^{-1} is 1-1 and onto

- Sym(S) is called the symmetric group on S.
- S_n is called the symmetric group of degree n.

Example: Multiplication Table for S_3

0	(1)	(123)	(132)	(12)	(13)	(23)
(1)	(1)	(123)	(132)	(12)	(13)	(23)
(123)	(123)	(132)	(1)	(13)	(23)	(12)
(132)	(132)	(1)	(123)	(23)	(12)	(13)
(12)	(12)	(23)	(13)	(1)	(132)	(123)
(13)	(13)	(12)	(23)	(123)	(1)	(132)
(23)	(23)	(13)	(12)	(132)	(123)	(1)

- In each row, each element in S_3 occurs exactly once.
- In each column, each element in S_3 occurs exactly once.
- ★ This phenomenon occurs in any such group table! (cancellation law) Shaoyun Yi

 Shaoyun Yi
 Definition of a Group
 Spring 2022
 10 / 17

Cancellation law for Groups

From now on, we drop the notation a * b, and simply write ab instead.

Let *G* be a group, and let *a*, *b*, *c*
$$\in$$
 G.
i) If *ab* = *ac*, then *b* = *c*.
ii) If *ac* = *bc*, then *a* = *b*.
Proof: i) *ab* = *ac* $\Rightarrow a^{-1}(ab) = a^{-1}(ac) \dots \Rightarrow b = c$; ii) \checkmark \Box
Let *G* be a group and *a*, *b* \in *G*. Then $(ab)^2 = a^2b^2$ if and only if *ba* = *ab*.
Proof: (\Rightarrow) By $(ab)(ab) = (ab)^2 \stackrel{!}{=} a^2b^2 = (aa)(bb)$, we have
 $a(b(ab)) = a(a(bb)) \rightsquigarrow b(ab) = a(bb) \rightsquigarrow (ba)b = (ab)b \rightsquigarrow ba = ab$
 $(\Leftarrow) (ab)^2 = (ab)(ab) = a(b(ab)) = a((ba)b) \stackrel{!}{=} a((ab)b) = a(a(bb)) = (aa)(bb)$
There is no worry about "()" by the associative law for the operation.
Proof: $(\Rightarrow) abab = aabb \implies ba = ab$ $(\Leftarrow) ba = ab \implies abab = aabb$ \Box
Shavyn Yi Definition of a Group

Abelian Group (G, +)

A group G is said to be **abelian** if ab = ba for all $a, b \in G$.

In an abelian group G, the operation is very often denoted additively.

Associativity: a + (b + c) = (a + b) + c for all $a, b, c \in G$.

Identity: The identity element is 0 (zero element): 0 + a = a + 0 = a

Inverses: The additive inverse of a is -a: a + (-a) = (-a) + a = 0

Example 2

 $\boldsymbol{\mathsf{Z}}, \boldsymbol{\mathsf{Q}}, \boldsymbol{\mathsf{R}}, \boldsymbol{\mathsf{C}}$ are abelian groups under the ordinary addition.

(Cancellation law) Let G be an abelian group, and let $a, b, c \in G$.

$$a + b = a + c$$
 (Equivalently, $b + a = c + a$) $\Rightarrow b = c$

For an abelian group G, let $a \in G$ and $n \in \mathbb{Z}_{>0}$, define $na := a + \cdots + a$.

Caution: "*na*" is not a multiplication in *G*, since *n* is not an element of *G*.

Shaoyun Yi

Finite Group v.s. Infinite Group

A group G is called a **finite group** if G has a finite number of elements. In this case, the number of elements is called the **order** of G, denoted by |G|. If G is not finite, it is said to be an **infinite group**.

 Z_n is an abelian group under addition of congruence classes for $n \in Z_{>0}$. Moreover, the group Z_n is finite and $|Z_n| = n$.

Closure: [a] + [b] = [a + b] is well-defined & $[a + b] \in Z_n$ for $[a], [b] \in Z_n$. Associative: ([a] + [b]) + [c] = [(a + b) + c] = [a + (b + c)] = [a] + ([b] + [c])Commutative: [a] + [b] = [a + b] = [b + a] = [b] + [a]Identity: [0] + [a] = [a] + [0] = [a + 0] = [a]Inverses: [-a] + [a] = [a] + [-a] = [a - a] = [0]For each $a \in Z$, [a] = [r] for a unique $r \in Z$ with $0 \le r < n$. $\Rightarrow |Z_n| = n$

Q: Is Z_n an abelian group under multiplication of congruence classes?

A: No! ([a] has a multiplicative inverse in Z_n if and only if (a, n) = 1.) Shaoyun Yi Definition of a Group Spring 2022 13 / 17

\mathbf{Z}_n^{\times} : Group of Units Modulo *n*

 Z_n^{\times} is an abelian group under multiplication of congruence classes for $n \ge 1$ Moreover, Z_n^{\times} is finite and $|Z_n^{\times}| = \varphi(n)$, where $\varphi(n)$ is Euler's φ -function.

Closure: $[a] \cdot [b] = [ab]$ is well-defined & $[ab] \in Z_n^{\times}$ for $[a], [b] \in Z_n^{\times}$. Associative: $([a] \cdot [b]) \cdot [c] = [(ab)c] = [a(bc)] = [a] \cdot ([b] \cdot [c])$ Commutative: $[a] \cdot [b] = [ab] = [ba] = [b] \cdot [a]$ Identity: $[1] \cdot [a] = [a] \cdot [1] = [a]$ Inverses: [a] has a multiplicative inverse $[a]^{-1} \Leftrightarrow (a, n) = 1$, i.e., $[a] \in Z_n^{\times}$. We have already seen $|Z_n^{\times}| = \varphi(n)$.

Revisit Solving Linear Congruence:

 $ax \equiv b \pmod{n} \quad \rightsquigarrow a_1x \equiv b_1 \pmod{n_1} [\text{Divide both sides by } d = (a, n)]$ $\rightsquigarrow [a_1]_{n_1}[x]_{n_1} = [b_1]_{n_1} \quad \rightsquigarrow [x]_{n_1} = [a_1]_{n_1}^{-1}[b_1]_{n_1} \qquad [\text{Find } [a_1]_{n_1}^{-1} \text{ in } \mathbf{Z}_{n_1}^{\times}]$ $\rightsquigarrow d \text{ distinct solutions modulo } n: x + kn_1 \pmod{n}, \ k = 0, 1, \dots, d - 1.$

Example: Multiplication Table of \mathbf{Z}_8^{\times}

.[]	[1]	[3]	[5]	[7]
[1]	[1]	[3]	[5]	[7]
[3]	[3]	[1]	[7]	[5]
[5]	[5]	[7]	[1]	[3]
[7]	[7]	[5]	[3]	[1]

- In each row, each element of the group occurs exactly once.
- In each column, each element of the group occurs exactly once.
- The table is symmetric w.r.t. the diagonal since $(\mathbf{Z}_8^{\times}, \cdot [\])$ is abelian.

 $M_n(\mathbf{R})$ forms a group under matrix addition.

closure: \checkmark ; associativity: \checkmark ; identity: zero matrix; inverses: its negative Moreover, $(M_n(\mathbf{R}), +)$ is abelian.

 $GL_n(\mathbf{R}) := \{A \in M_n(\mathbf{R}) : A \text{ is invertible, i.e., } det(A) \neq 0\}$ is a group under matrix multiplication, called the **general linear group** of degree *n* over **R**.

Closure: well-defined (by definition) & det(AB) = det(A) det(B)

Associativity: you should already see the proof in linear algebra course.

Identity: the identity matrix I_n

Inverses: A has a multiplicative inverse $A^{-1} \Leftrightarrow \det(A) \neq 0$ i.e. $A \in \operatorname{GL}_n(\mathbb{R})$ However, $(\operatorname{GL}_n(\mathbb{R}), \cdot)$ is not abelian.

Conjugacy

R is an **equivalence relation** if and only if for all $a, b, c \in S$ we have **Reflexive law:** $a \sim a$;

Symmetric law: if $a \sim b$, then $b \sim a$;

Transitive law: if $a \sim b$ and $b \sim c$, then $a \sim c$.

Let G be a group and let $x, y \in G$. Write $x \sim y$ if there exists an element $a \in G$ such that $y = axa^{-1}$. In this case we say that y is a **conjugate** of x. In particular, the relation \sim defines an equivalence relation on G.

Reflexive law: $x = exe^{-1}$ for all $x \in G \implies x \sim x$. **Symmetric law:** $y = axa^{-1} \implies x = a^{-1}ya$, i.e., $x \sim y$ implies $y \sim x$. **Transitive law:** $y = axa^{-1}, z = byb^{-1} \implies z = baxa^{-1}b^{-1} = (ba)x(ba)^{-1}$ i.e., $x \sim y$ and $y \sim z$ implies $x \sim z$.