§2.3 Permutations

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

- $(a,b) & [a,b] \longrightarrow (a,b) \cdot [a,b] = ab$
- (a, b) any linear combination am + bn of a and b
- Division algorithm -→ Euclidean algorithm (matrix form)
- $(a, b) = 1 \Leftrightarrow am + bn = 1$ for some $m, n \in \mathbf{Z}$
- $a \equiv b \pmod{n} \Leftrightarrow n | (a b)$
- Divisor of zero and Unit in \mathbf{Z}_n
- $ax \equiv b \pmod{n}$ has a solution $\Leftrightarrow (a, n)|b$
- Find $[a]^{-1}$ for $[a] \in \mathbf{Z}_n^{\times}$: (i) Euclidean algorithm (ii) successive powers
- Euler's totient function $\varphi(n)=\#\{a\colon (a,n)=1,\ 1\leq a\leq n\}=|\mathbf{Z}_n^{\times}|$

Permutations

Let S be a set. A function $\sigma: S \to S$ is called a **permutation** of S if σ is one-to-one and onto. Denote $\operatorname{Sym}(S)$ by the set of all permutations of S.

- 1) If $\sigma, \tau \in \text{Sym}(S)$, then $\tau \sigma \in \text{Sym}(S)$.
- 2) $1_S \in \text{Sym}(S)$.
- 3) If $\sigma \in \text{Sym}(S)$, then $\sigma^{-1} \in \text{Sym}(S)$.

The set of all permutations of the set $\{1,2,\ldots,n\}$ will be denoted by S_n .

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix} \in S_n$$

If
$$S = \{1, 2, 3\}$$
 and $\sigma : S \to S$ is given by $\sigma(1) = 2, \sigma(2) = 3, \sigma(3) = 1$, so

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in S_3.$$

 S_n has n! elements.

Proof: *n* choices for $\sigma(1) \dots \Rightarrow |S_n| = n \cdot (n-1) \cdots 2 \cdot 1 = n!$

Shaoyun Yi Permutations Spring 2022

Composition and Inverse in S_n

$$\sigma, \tau \in S_n$$
: The **composition** $\sigma \tau = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(\tau(1)) & \sigma(\tau(2)) & \cdots & \sigma(\tau(n)) \end{pmatrix}$

Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$$
 and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$. Compute $\sigma \tau$ and $\tau \sigma$.

$$\sigma\tau(1): 1 \xrightarrow{\tau} 2 \xrightarrow{\sigma} 3 \quad \Rightarrow \sigma\tau(1) = 3, \text{ etc.} \qquad \Rightarrow \sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$$

$$au\sigma(1): 1 \stackrel{\sigma}{\to} 4 \stackrel{\tau}{\to} 1 \quad \Rightarrow \sigma\tau(1) = 1, \text{ etc.} \qquad \Rightarrow \tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}$$

Given
$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$
 in S_n , to compute σ^{-1} :

Idea: Turning the two rows of σ upside down and then rearranging terms

If
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$$
, then $\sigma^{-1} = \begin{pmatrix} 4 & 3 & 1 & 2 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$.

Shaoyun Yi Permutations Spring 2022 4 / 14

Cycle

Another notation

For example, consider $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 2 & 5 \end{pmatrix} \in S_5$. We write $\sigma = (1342)$. Observe that $\sigma(1) = 3$, $\sigma(3) = 4$, $\sigma(4) = 2$, and $\sigma(2) = 1$ & Omit (5).

Let S be a set, and let $\sigma \in \operatorname{Sym}(S)$. Then σ is called a **cycle of length** k if there exist elements $a_1, a_2, \ldots, a_k \in S$ such that

- $\sigma(a_1) = a_2, \ \sigma(a_2) = a_3, \ \dots, \ \sigma(a_{k-1}) = a_k, \ \sigma(a_k) = a_1$, and
- $\sigma(x) = x$ for all other elements $x \in S$ with $x \neq a_i$ for i = 1, 2, ..., k.
- $ightharpoonup Write <math>\sigma = (a_1 a_2 \cdots a_k)$. We can also write $\sigma = (a_2 a_3 \cdots a_k a_1)$, etc.
- \rightsquigarrow A cycle of length $k \ge 2$ can be written in k different ways, depending on the starting point.

Convention: We will use (1) to denote the identity permutation 1_S .

Shaoyun Yi Permutations Spring 2022 5 / 14

Example 1

$$\sigma=\begin{pmatrix}1&2&3&4&5\\3&2&4&1&5\end{pmatrix}\in S_5$$
, then $\sigma=$ (134) is a cycle of length 3.

$$au = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix} \in S_5$$
, then $au = (134)(25)$ is not a cycle.

Example 2

Let $\sigma = (1425)$ and $\tau = (263)$ be cycles in S_6 . Compute the product $\sigma \tau$.

$$1 \xrightarrow{\tau} 1 \xrightarrow{\sigma} 4 \quad \Rightarrow \sigma \tau(1) = 4$$
, etc. $\Rightarrow \sigma \tau = (1425)(263) = (142635)$

It is not true in general that the product of two cycles is again a cycle.

Example 3

Consider $(1425) \in S_6$, we have (1425)(1425) = (12)(45).

Disjoint Cycles

Let $\sigma = (a_1 a_2 \cdots a_k)$ and $\tau = (b_1 b_2 \cdots b_m)$ be cycles in $\operatorname{Sym}(S)$ for a set S. Then σ and τ are said to be **disjoint** if $a_i \neq b_j$ for all i, j.

(12) and (45) are disjoint in S_6 ; but (1425) and (263) are not disjoint in S_6

If $\sigma \tau = \tau \sigma$, then we say that σ and τ commute.

In general, $\sigma \tau \neq \tau \sigma$. eg., In S_3 , (12)(13) = (132), but (13)(12) = (123).

Let S be any set. If σ and τ are disjoint cycles in Sym(S), then $\sigma\tau = \tau\sigma$.

Proof: Let $\sigma = (a_1 \cdots a_k)$ and $\tau = (b_1 \cdots b_m)$ be disjoint.

If
$$i < k$$
, then $\sigma \tau(a_i) = \sigma(a_i) = a_{i+1} = \tau(a_{i+1}) = \tau(\sigma(a_i)) = \tau \sigma(a_i)$.

If
$$i = k$$
, then $\sigma \tau(a_k) = \sigma(a_k) = a_1 = \tau(a_1) = \tau(\sigma(a_k)) = \tau \sigma(a_k)$.

If
$$j < m$$
, then $\sigma \tau(b_j) = \sigma(b_{j+1}) = b_{j+1} = \tau(b_j) = \tau(\sigma(b_j)) = \tau \sigma(b_j)$.

If
$$j=m$$
, then $\sigma\tau(b_m)=\sigma(b_1)=b_1=\tau(b_m)=\tau(\sigma(b_m))=\tau\sigma(b_m)$.

For any c not appearing in either cycle, we have $\sigma \tau(c) = c = \tau \sigma(c)$.

Shaoyun Yi Permutations Spring 2022

Product

Taking the composition of $\sigma \in \operatorname{Sym}(S)$ with itself i times: $\sigma^i = \sigma \sigma \cdots \sigma$

Define $\sigma^0 := (1) = 1_S$ and $\sigma^{-n} := (\sigma^n)^{-1}$. For all integers m, n, we have $\sigma^m \sigma^n = \sigma^{m+n}$ and $(\sigma^m)^n = \sigma^{mn}$.

Every permutation $\sigma \in S_n$ can be written as a product of disjoint cycles. And the cycles of length ≥ 2 that appear in the product are unique.

Proof: Consider $\sigma^0(1) = 1, \sigma(1), \sigma^2(1), \ldots$: Since S has only n elements, we can find the least positive exponent r such that

$$\sigma^r(1)=1.$$

Then $1, \sigma(1), \ldots, \sigma^{r-1}(1)$ are all distinct, giving us a cycle of length r: $(1 \sigma(1) \sigma^{2}(1) \cdots \sigma^{r-1}(1)). \qquad (\star)$

If r < n, let a be the least integer not in (\star) and form the cycle $(a \ \sigma(a) \ \sigma^2(a) \ \cdots \ \sigma^{s-1}(a))$,

where s is the least positive integer such that $\sigma^s(a) = a$. If r + s < n, we continue in this way until we have exhausted S.

Shaoyun Yi Permutations Spring 2022

Example 4

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 7 & 6 & 3 & 8 & 1 & 4 \end{pmatrix} = (1537)(468)$$

Example 5

Let $\sigma=$ (25143) and $\tau=$ (462) be in S_6 . Then we have $\sigma\tau=$ (1465)(23).

Order of a Permutation

If $\sigma = (a_1 \cdots a_m)$ is a cycle of length m, then $\sigma^m(a_i) = a_i$ for $i = 1, \dots, m$. Thus $\sigma^m = (1)$. And m is the smallest positive power of σ that equals (1).

The least positive integer m such that $\sigma^m = (1)$ is called the **order** of σ .

In particular, a cycle of length m has order m.

Let $\sigma \in S_n$ have order m. Then $\sigma^i = \sigma^j$ if and only if $i \equiv j \pmod{m}$.

Proof: (
$$\Rightarrow$$
) $\sigma^{i-j}=(1)$, write $i-j=mq+r$ with $0 \le r < m$. So
$$(1) = \sigma^{mq+r} = (\sigma^m)^q \sigma^r = \sigma^r \quad \Rightarrow r=0.$$
 [Why?] (\Leftarrow) Write $i=j+mk$ with $k \in \mathbf{Z}$. Hence $\sigma^i = \sigma^{j+mk} = \sigma^j$.

Let $\sigma \in S_n$ be written as a product of disjoint cycles. Then the order of σ is the least common multiple of the lengths (orders) of its disjoint cycles.

e.g., (1537)(284) has order 12 in S_8 . (153)(284697) has order 6 in S_9 .

Inverse (revisited)

We merely reverse the order of the cycle to compute the inverse of a cycle:

$$(a_1a_2\cdots a_r)(a_ra_{r-1}\cdots a_1)=(1)$$

e.g., Let
$$\sigma = (1537) \in S_8$$
. Then $\sigma^{-1} = (7351) = (1735)$.

The inverse of the product $\sigma\tau$ of two permutations is $\tau^{-1}\sigma^{-1}$.

Proof:
$$(\sigma \tau)(\tau^{-1}\sigma^{-1}) = \sigma(\tau \tau^{-1})\sigma^{-1} = \sigma \sigma^{-1} = (1).$$

Thus for two cycles $(a_1 \cdots a_r)$ and $(b_1 \cdots b_m)$ we have

$$[(a_1 \cdots a_r)(b_1 \cdots b_m)]^{-1} = (b_m \cdots b_1)(a_r \cdots a_1).$$

Moreover, if these two cycles are disjoint, then they commute. And so

$$[(a_1 \cdots a_r)(b_1 \cdots b_m)]^{-1} = (b_m \cdots b_1)(a_r \cdots a_1) = (a_r \cdots a_1)(b_m \cdots b_1).$$

Example 6

$$\sigma = (123), \tau = (456)$$
: $(\sigma\tau)^{-1} = (654)(321) = (321)(654) = (132)(465)$

Shaoyun Yi Permutations Spring 2022 11 / 14

Transposition

A cycle (a_1a_2) of length two is called a **transposition**.

Any $\sigma \in S_n$ $(n \ge 2)$ can be written as a product of transpositions.

Proof: Since any $\sigma \in S_n$ can be expressed as a product of disjoint cycles.

ightharpoonup To show that any cycle can be expressed as a product of transpositions.

The identity (1) = (12)(21). For any other $\sigma \neq (1)$, we have

$$(a_1 a_2 \cdots a_{r-1} a_r) = (a_{r-1} a_r) (a_{r-2} a_r) \cdots (a_3 a_r) (a_2 a_r) (a_1 a_r) \quad (\star)$$

= $(a_1 a_2) (a_2 a_3) \cdots (a_{r-2} a_{r-1}) (a_{r-1} a_r). \quad (\star\star)$

Particularly, the way to write a product of transpositions is **not** unique.

Example 7

$$(25378) \stackrel{(\star)}{=} (78)(38)(58)(28) \stackrel{(\star\star)}{=} (25)(53)(37)(78)$$

$$(1) = (123) \cdot (132) \stackrel{(\star)}{=} (23)(13) \cdot (32)(12) \stackrel{(\star\star)}{=} (12)(23) \cdot (13)(32)$$

Even/Odd Permutations

$$(123) \stackrel{(\star)}{=} (23)(13) \stackrel{(\star\star)}{=} (12)(23)$$
, we also have $(123) = (12)(13)(12)(13)$.

If a permutation is written as a product of transpositions in two ways, then the number of transpositions is either even or odd in both cases.

Proof: See next slide.

A permutation σ is called even if it can be written as a product of an even number of transpositions. odd if it can be written as a product of an odd number of transpositions.

For example, (12) and (1234) $\stackrel{(*)}{=}$ (34)(24)(14) $\stackrel{(**)}{=}$ (12)(23)(34) are odd; (123) and (25378) $\stackrel{(*)}{=}$ (78)(38)(58)(28) $\stackrel{(**)}{=}$ (25)(53)(37)(78) are even; The identity (1) is even since (1) = (12)(21).

A cycle of odd length is even. & A cycle of even length is odd.

If σ is an even (resp. odd) permutation, then σ^{-1} is also even (resp. odd).

Shaoyun Yi Permutations Spring 2022 13 / 14

$\sigma \in S_n$ is either even or odd

Proof by contradiction: Suppose that σ can be both even and odd, i.e.,

$$\sigma = \tau_1 \cdots \tau_{2m} = \delta_1 \cdots \delta_{2n+1}, \quad \tau_i, \delta_j$$
 are transpositions.

Observe that $\delta_j = \delta_j^{-1}$, we have $\sigma^{-1} = \delta_{2n+1}^{-1} \cdots \delta_1^{-1} = \delta_{2n+1} \cdots \delta_1$, and so

(1) =
$$\sigma \sigma^{-1} = \tau_1 \cdots \tau_{2m} \, \delta_{2n+1} \cdots \delta_1$$
. \Rightarrow (1) is odd.

Assume (1) = $\rho_1 \cdots \rho_k$ ($k \ge 3$) has the **shortest** product of transpositions.

Assume $\rho_1=(ab)$. Then a must appear in at least one other transposition, say ρ_i , with i>1. Otherwise, $\rho_1\cdots\rho_k(a)=a=b$, which is impossible.

Among all products of length k that are equal to (1), and $\rho_1 = (ab)$, we assume that $\rho_1 \cdots \rho_k$ has the fewest number of a's.

Let
$$a, u, v, w$$
 be distinct: $(uv)(aw) = (aw)(uv)$ and $(uv)(av) = (au)(uv)$.

Thus we can move a transposition with entry a to the 2nd position without changing the number of a's that appear. Say $\rho_2=(ac)$ with $c\neq a$.

If
$$c = b$$
, then $\rho_1 \rho_2 = (1)$, and so $(1) = \rho_3 \cdots \rho_k$. (contradiction)
If $c \neq b$, $(ab)(ac) = (ac)(bc) \Rightarrow (1) = (ac)(bc)\rho_3 \cdots \rho_k$ (contradiction)

Shaoyun Yi Permutations Spring 2022 14 /