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Review

(a, b) & [a, b] 99K (a, b) · [a, b] = ab

(a, b)|any linear combination am + bn of a and b

Division algorithm 99K Euclidean algorithm (matrix form)

(a, b) = 1 ⇔ am + bn = 1 for some m, n ∈ Z

a ≡ b (mod n) ⇔ n|(a− b)

Divisor of zero and Unit in Zn

ax ≡ b (mod n) has a solution ⇔ (a, n)|b

Find [a]−1 for [a] ∈ Z×
n : (i) Euclidean algorithm (ii) successive powers

Euler’s totient function ϕ(n) = #{a : (a, n) = 1, 1 ≤ a ≤ n} = |Z×
n |
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Permutations

Let S be a set. A function σ : S → S is called a permutation of S if σ is
one-to-one and onto. Denote Sym(S) by the set of all permutations of S .

1) If σ, τ ∈ Sym(S), then τσ ∈ Sym(S).
2) 1S ∈ Sym(S).
3) If σ ∈ Sym(S), then σ−1 ∈ Sym(S).

The set of all permutations of the set {1, 2, . . . , n} will be denoted by Sn.

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
∈ Sn

If S = {1, 2, 3} and σ : S → S is given by σ(1) = 2, σ(2) = 3, σ(3) = 1, so

σ =

(
1 2 3
2 3 1

)
∈ S3.

Sn has n! elements.

Proof: n choices for σ(1) . . . . . . ⇒ |Sn| = n · (n − 1) · · · · 2 · 1 = n!
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Composition and Inverse in Sn

σ, τ ∈ Sn : The composition στ =

(
1 2 · · · n

σ(τ(1)) σ(τ(2)) · · · σ(τ(n))

)
Let σ =

(
1 2 3 4
4 3 1 2

)
and τ =

(
1 2 3 4
2 3 4 1

)
. Compute στ and τσ.

στ(1) : 1
τ→ 2

σ→ 3 ⇒ στ(1) = 3, etc. ⇒ στ =

(
1 2 3 4
3 1 2 4

)
τσ(1) : 1

σ→ 4
τ→ 1 ⇒ στ(1) = 1, etc. ⇒ τσ =

(
1 2 3 4
1 4 2 3

)

Given σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
in Sn, to compute σ−1 :

Idea: Turning the two rows of σ upside down and then rearranging terms

If σ =

(
1 2 3 4
4 3 1 2

)
, then σ−1 =

(
4 3 1 2
1 2 3 4

)
=

(
1 2 3 4
3 4 2 1

)
.
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Cycle

Another notation

For example, consider σ =

(
1 2 3 4 5
3 1 4 2 5

)
∈ S5. We write σ = (1342).

Observe that σ(1) = 3, σ(3) = 4, σ(4) = 2, and σ(2) = 1 & Omit (5).

Let S be a set, and let σ ∈ Sym(S). Then σ is called a cycle of length k
if there exist elements a1, a2, . . . , ak ∈ S such that

σ(a1) = a2, σ(a2) = a3, . . . , σ(ak−1) = ak , σ(ak) = a1, and

σ(x) = x for all other elements x ∈ S with x 6= ai for i = 1, 2, . . . , k .

 Write σ = (a1a2 · · · ak). We can also write σ = (a2a3 · · · aka1), etc.

 A cycle of length k ≥ 2 can be written in k different ways, depending
on the starting point.

Convention: We will use (1) to denote the identity permutation 1S .
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Example 1

σ =

(
1 2 3 4 5
3 2 4 1 5

)
∈ S5, then σ = (134) is a cycle of length 3.

τ =

(
1 2 3 4 5
3 5 4 1 2

)
∈ S5, then τ = (134)(25) is not a cycle.

Example 2

Let σ = (1425) and τ = (263) be cycles in S6. Compute the product στ .

1
τ→ 1

σ→ 4 ⇒ στ(1) = 4, etc. ⇒ στ = (1425)(263) = (142635)

It is not true in general that the product of two cycles is again a cycle.

Example 3

Consider (1425) ∈ S6, we have (1425)(1425) = (12)(45).
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Disjoint Cycles

Let σ = (a1a2 · · · ak) and τ = (b1b2 · · · bm) be cycles in Sym(S) for a set
S . Then σ and τ are said to be disjoint if ai 6= bj for all i , j .

(12) and (45) are disjoint in S6; but (1425) and (263) are not disjoint in S6

If στ = τσ, then we say that σ and τ commute.

In general, στ 6= τσ. eg., In S3, (12)(13) = (132), but (13)(12) = (123).

Let S be any set. If σ and τ are disjoint cycles in Sym(S), then στ = τσ.

Proof: Let σ = (a1 · · · ak) and τ = (b1 · · · bm) be disjoint.

If i < k, then στ(ai ) = σ(ai ) = ai+1 = τ(ai+1) = τ(σ(ai )) = τσ(ai ).

If i = k, then στ(ak) = σ(ak) = a1 = τ(a1) = τ(σ(ak)) = τσ(ak).

If j < m, then στ(bj) = σ(bj+1) = bj+1 = τ(bj) = τ(σ(bj)) = τσ(bj).

If j = m, then στ(bm) = σ(b1) = b1 = τ(bm) = τ(σ(bm)) = τσ(bm).

For any c not appearing in either cycle, we have στ(c) = c = τσ(c).
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Product

Taking the composition of σ ∈ Sym(S) with itself i times: σi = σσ · · ·σ
Define σ0 := (1) = 1S and σ−n := (σn)−1. For all integers m, n, we have

σmσn = σm+n and (σm)n = σmn.

Every permutation σ ∈ Sn can be written as a product of disjoint cycles.
And the cycles of length ≥ 2 that appear in the product are unique.

Proof: Consider σ0(1) = 1, σ(1), σ2(1), . . . : Since S has only n elements,
we can find the least positive exponent r such that

σr (1) = 1.

Then 1, σ(1), . . . , σr−1(1) are all distinct, giving us a cycle of length r :

(1 σ(1) σ2(1) · · · σr−1(1)). (?)

If r < n, let a be the least integer not in (?) and form the cycle

(a σ(a) σ2(a) · · · σs−1(a)),

where s is the least positive integer such that σs(a) = a.
If r + s < n, we continue in this way until we have exhausted S .
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Example 4

σ =

(
1 2 3 4 5 6 7 8
5 2 7 6 3 8 1 4

)
= (1537)(468)

Example 5

Let σ = (25143) and τ = (462) be in S6. Then we have στ = (1465)(23).
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Order of a Permutation

If σ = (a1 · · · am) is a cycle of length m, then σm(ai ) = ai for i = 1, . . . ,m.

Thus σm = (1). And m is the smallest positive power of σ that equals (1).

The least positive integer m such that σm = (1) is called the order of σ.

In particular, a cycle of length m has order m.

Let σ ∈ Sn have order m. Then σi = σj if and only if i ≡ j (mod m).

Proof: (⇒) σi−j = (1), write i − j = mq + r with 0 ≤ r < m. So

(1) = σmq+r =
(
σm

)q
σr = σr ⇒ r = 0. [Why?]

Proof: (⇐) Write i = j + mk with k ∈ Z. Hence σi = σj+mk = σj .

Let σ ∈ Sn be written as a product of disjoint cycles. Then the order of σ
is the least common multiple of the lengths (orders) of its disjoint cycles.

e.g., (1537)(284) has order 12 in S8. (153)(284697) has order 6 in S9.
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Inverse (revisited)

We merely reverse the order of the cycle to compute the inverse of a cycle:

(a1a2 · · · ar )(arar−1 · · · a1) = (1)

e.g., Let σ = (1537) ∈ S8. Then σ−1 = (7351) = (1735).

The inverse of the product στ of two permutations is τ−1σ−1.

Proof: (στ)(τ−1σ−1) = σ(ττ−1)σ−1 = σσ−1 = (1).

Thus for two cycles (a1 · · · ar ) and (b1 · · · bm) we have

[(a1 · · · ar )(b1 · · · bm)]−1 = (bm · · · b1)(ar · · · a1).

Moreover, if these two cycles are disjoint, then they commute. And so

[(a1 · · · ar )(b1 · · · bm)]−1 = (bm · · · b1)(ar · · · a1) = (ar · · · a1)(bm · · · b1).

Example 6

σ = (123), τ = (456) : (στ)−1 = (654)(321) = (321)(654) = (132)(465)
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Transposition

A cycle (a1a2) of length two is called a transposition.

Any σ ∈ Sn (n ≥ 2) can be written as a product of transpositions.

Proof: Since any σ ∈ Sn can be expressed as a product of disjoint cycles.

 To show that any cycle can be expressed as a product of transpositions.

The identity (1) = (12)(21). For any other σ 6= (1), we have

(a1a2 · · · ar−1ar ) =(ar−1ar )(ar−2ar ) · · · (a3ar )(a2ar )(a1ar ) (?)

=(a1a2)(a2a3) · · · (ar−2ar−1)(ar−1ar ). (??)

Particularly, the way to write a product of transpositions is not unique.

Example 7

(25378)
(?)
= (78)(38)(58)(28)

(??)
= (25)(53)(37)(78)

(1) = (123) · (132)
(?)
= (23)(13) · (32)(12)

(??)
= (12)(23) · (13)(32)
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Even/Odd Permutations

(123)
(?)
= (23)(13)

(??)
= (12)(23), we also have (123) = (12)(13)(12)(13).

If a permutation is written as a product of transpositions in two ways, then
the number of transpositions is either even or odd in both cases.

Proof: See next slide.

A permutation σ is called
even if it can be written as a product of an even number of transpositions.
odd if it can be written as a product of an odd number of transpositions.

For example, (12) and (1234)
(?)
= (34)(24)(14)

(??)
= (12)(23)(34) are odd;

(123) and (25378)
(?)
= (78)(38)(58)(28)

(??)
= (25)(53)(37)(78) are even;

The identity (1) is even since (1) = (12)(21).

A cycle of odd length is even. & A cycle of even length is odd.

If σ is an even (resp. odd) permutation, then σ−1 is also even (resp. odd).
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σ ∈ Sn is either even or odd

Proof by contradiction: Suppose that σ can be both even and odd, i.e.,

σ = τ1 · · · τ2m = δ1 · · · δ2n+1, τi , δj are transpositions.

Observe that δj = δ−1
j , we have σ−1 = δ−1

2n+1 · · · δ
−1
1 = δ2n+1 · · · δ1, and so

(1) = σσ−1 = τ1 · · · τ2m δ2n+1 · · · δ1. ⇒ (1) is odd.

Assume (1) = ρ1 · · · ρk (k ≥ 3) has the shortest product of transpositions.

Assume ρ1 = (ab). Then a must appear in at least one other transposition,
say ρi , with i > 1. Otherwise, ρ1 · · · ρk(a) = a = b, which is impossible.

Among all products of length k that are equal to (1), and ρ1 = (ab), we
assume that ρ1 · · · ρk has the fewest number of a’s.

Let a, u, v ,w be distinct: (uv)(aw) = (aw)(uv) and (uv)(av) = (au)(uv).

Thus we can move a transposition with entry a to the 2nd position without
changing the number of a’s that appear. Say ρ2 = (ac) with c 6= a.

If c = b, then ρ1ρ2 = (1), and so (1) = ρ3 · · · ρk . (contradiction)

If c 6= b, (ab)(ac) = (ac)(bc) ⇒ (1) = (ac)(bc)ρ3 · · · ρk (contradiction)
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