$\S3.8$ Cosets, Normal Subgroups, and Factor Groups

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

Review

$\phi: G_1 \to G_2$ is a group homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$.

- $\phi(a^n) = (\phi(a))^n$ for all $a \in G_1, n \in \mathbb{Z}$. e.g., n = 0 & n = -1
- If o(a) = n in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n.
- ϕ is onto: if G_1 is abelian (cyclic), then G_2 is also abelian (cyclic).
- If $G_1 = \langle a \rangle$ is cyclic, then ϕ is completely determined by $\phi(a)$.
- Homorphisms between cyclic gps: $Z_n \rightarrow Z_k$, $Z \rightarrow Z$, $Z \rightarrow Z_n$, $Z_n \rightarrow Z$
- ker $(\phi) = \{x \in G_1 \mid \phi(x) = e_2\} \subseteq G_1 \& \operatorname{im}(\phi) = \{\phi(x) \mid x \in G_1\} \subseteq G_2$
- ϕ is one-to-one \Leftrightarrow ker $(\phi) = \{e_1\}$ & ϕ is onto \Leftrightarrow im $(\phi) = G_2$
- Normal subgroup H of G: If $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$.
 - i) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 .
 - ii) If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
 - iii) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of G_1 .
 - iv) If H_2 is normal in G_2 , then $\phi^{-1}(H_2)$ is normal in G_1 .
- Fundamental Homomorphism Thm: $G_1 / \ker(\phi) = G_1 / \phi \cong \operatorname{im}(\phi)$ \rightsquigarrow Reprove "Every cyclic group *G* is isomorphic to either **Z** or **Z**_n".

Another Equivalence Relation

Let *H* be a subgroup of *G*. For $a, b \in G$ define $a \sim b$ if $ab^{-1} \in H$. Then \sim is an equivalence relation. \rightsquigarrow We write the congruence class [a] = Ha.

For $a, b \in G$ define $a \sim b$ if $a^{-1}b \in H$. Then \sim is an equivalence relation.

Proof: Reflexive $(a \sim a)$: $a^{-1}a \in H$ since $e \in H$. Symmetric $(a \sim b \rightsquigarrow b \sim a)$: $b^{-1}a = (a^{-1}b)^{-1} \in H$ since $a^{-1}b \in H$. Transitive $(a \sim b \& b \sim c \rightsquigarrow a \sim c)$: $a^{-1}c = (a^{-1}b)(b^{-1}c) \in H$ As a consequence, we write the congruence class [a] = aH in this case. **TFAE:** 1) bH = aH; 2) $bH \subseteq aH$; 3) $b \in aH$; 4) $a^{-1}b \in H$. $(1) \Rightarrow 2) \checkmark (2) \Rightarrow 3) b = be \in bH \checkmark (3) \Rightarrow 4) b = ah \rightsquigarrow a^{-1}b = h \in H \checkmark$ 4) \Rightarrow 1) Write $a^{-1}b = h \in H$, then b = ah and $a = bh^{-1}$: $bH \subseteq aH \checkmark aH \subset bH \checkmark$ Define $a \sim b$ if aH = bH. Then \sim is an equivalence relation on G. \rightarrow Similarly, **TFAE:** 1) Hb = Ha; 2) $Hb \subseteq Ha$; 3) $b \in Ha$; 4) $ba^{-1} \in H$.

Shaoyun Yi

Cosets, Normal Subgroups, Factor Groups

Let *H* be a subgroup of the group *G*, and let $a \in G$.

The **left coset** of *H* in *G* determined by *a* is $aH = \{x \mid x = ah, h \in H\}$. The **right coset** of *H* in *G* determined by *a* is $Ha = \{x \mid x = ha, h \in H\}$.

The number of left cosets of H in G is called the index of H in G, and is denoted by [G : H]. This index also equals the number of right cosets since

There is a one-to-one correspondence between left cosets and right cosets.

Proof: Let $\mathcal{R} = \{Ha\}, \mathcal{L} = \{aH\}$. Define $\phi : \mathcal{R} \to \mathcal{L}$ by $\phi(Ha) = a^{-1}H$. well-def. If Ha = Hb, then $ba^{-1} \in H \rightsquigarrow (a^{-1})^{-1}b^{-1} \in H \rightsquigarrow a^{-1}H = b^{-1}H$ one-to-one: $\phi(Ha) = \phi(Hb) \rightsquigarrow a^{-1}H = b^{-1}H \rightsquigarrow ba^{-1} \in H \rightsquigarrow Ha = Hb$ onto: For any $aH \in \mathcal{L}$, we have $\phi(Ha^{-1}) = (a^{-1})^{-1}H = aH$.

The left coset aH has the same number of elements as H.

Proof: Define $f : H \to aH$ by f(h) = ah for all $h \in H$. $\rightsquigarrow f$ is 1-to-1 and onto. \Box

 \rightsquigarrow If G is a finite group, then the index [G : H] = |G|/|H|.

List the left cosets of a given subgroup H of a finite group

Algorithm (also works for listing the right cosets of H):

- 1) If $a \in H$, then aH = H. So we begin by choosing any element $a \notin H$.
- 2) Any element in aH determines the same coset, so for the next coset we choose any element not in H or aH (if possible).
- 3) Continuing in this process provides a method for listing all left cosets.
- Let $G = \mathbf{Z}_{11}^{\times} = \{[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]\} \& H = \{[1], [10]\}.$ i) The first coset is *H* itself, i.e., $[1]H = \{[1], [10]\} = [10]H.$
 - ii) Choosing [2] $\notin H$, we obtain [2] $H = \{[2], [9]\}$.
- iii) Choosing $[3] \notin H \cup [2]H$, we obtain $[3]H = \{[3], [8]\}$.
- iv) Choosing $[4] \notin H \cup [2]H \cup [3]H$, we obtain $[4]H = \{[4], [7]\}$.
- v) Choosing $[5] \notin H \cup [2]H \cup [3]H \cup [4]H$, we obtain $[5]H = \{[5], [6]\}$.

Thus the left cosets of H are H, [2]H, [3]H, [4]H, [5]H, and [G:H] = 5.

Q: what if $N = \langle [3] \rangle = \{ [1], [3], [9], [5], [4] \}$? **A:** N, $[2]N \rightsquigarrow [G:N] = 2$

Example: Non-abelian Group $G = S_3$

Let
$$G = S_3 = \{e, a, a^2, b, ab, a^2b\}$$
, where $a^3 = e, b^2 = e$, and $ba = a^2b$.

Let $H = \{e, b\}$.

The left cosets of *H*: $H = \{e, b\}$, $aH = \{a, ab\}$, $a^2H = \{a^2, a^2b\}$. The right cosets of *H*: $H = \{e, b\}$, $Ha = \{a, a^2b\}$, $Ha^2 = \{a^2, ab\}$. In this case, the left and right cosets are **not** the same.

Let $N = \{e, a, a^2\}$.

The left cosets of *N*: $N = \{e, a, a^2\}$, $bN = \{b, a^2b, ab\}$. The right cosets of *N*: $N = \{e, a, a^2\}$, $Nb = \{b, ab, a^2b\}$. In this case, the left and right cosets are the same.

Natural question: When are the left and right cosets of H in G the same? Looking ahead: H is normal if and only if its left and right cosets coincide. In particular, for abelian groups, left cosets and right cosets are the same.

Recall that a subgroup H is normal if $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$.Shaoyun YiCosets, Normal Subgroups, Factor GroupsSpring 20226 / 21

Let H be a subgroup of the group G. **TFAE**:

- (1) H is a normal subgroup of G;
- (2) aH = Ha for all $a \in G$;
- (3) for all $a, b \in G$, abH is the set theoretic product (aH)(bH);

(4) for all $a, b \in G$, $ab^{-1} \in H$ if and only if $a^{-1}b \in H$.

Proof: (1) \Rightarrow (2) Let $a \in G, h \in H$. Then $aha^{-1} \in H \rightsquigarrow aH \subseteq Ha$ Similarly, $a^{-1}ha = a^{-1}h(a^{-1})^{-1} \in H$. $\rightsquigarrow Ha \subseteq aH$. Thus aH = Ha. (2) \Rightarrow (3) $abH \subseteq (aH)(bH)$: Let $h \in H$, $abh = (ae)(bh) \in (aH)(bH)$. $(aH)(bH) \subseteq abH$: Let $(ah_1)(bh_2) \in (aH)(bH)$, for $h_1, h_2 \in H$. Then $(ah_1)(bh_2) = a(h_1b)h_2 \stackrel{(2)}{=} a(bh_3)h_2 = ab(h_3h_2) \in abH$ for some $h_3 \in H$. (3) \Rightarrow (1) For any $a \in G$, $h \in H$, to show $aha^{-1} \in H$. Take $b = a^{-1}$ in (3), then $(aH)(a^{-1}H) = aa^{-1}H = H$. Thus $aha^{-1} = (ah)(a^{-1}e) \in H$. (2) \Leftrightarrow (4) Left cosets are the equivalence classes $[a]_{\mathcal{L}} = \{b \mid a^{-1}b \in H\}$. Right cosets are the equivalence classes $[a]_{\mathcal{R}} = \{b \mid ab^{-1} \in H\}$.

Example: Normal Subgroups of $S_3 = D_3$

Let $G = S_3 = \{e, a, a^2, b, ab, a^2b\}$, where $a^3 = e, b^2 = e$, and $ba = a^2b$.

- The trivial subgroup $\{e\}$ and the improper subgroup G are normal.
- 4 proper nontrivial subgroups of S_3 :

 $H = \{e, b\}, \qquad K = \{e, ab\}, \qquad L = \{e, a^2b\}, \qquad N = \{e, a, a^2\}.$ $aH = \{a, ab\} \neq \{a, ba\} = Ha \text{ since } ba = a^2b. \rightsquigarrow H \text{ is not normal.}$ $aK = \{a, a^2b\} \neq \{a, aba\} = Ka \text{ since } aba = b. \rightsquigarrow K \text{ is not normal.}$ $aL = \{a, b\} \neq \{a, a^2ba\} = La \text{ since } a^2ba = ab. \rightsquigarrow L \text{ is not normal.}$ $bN = \{b, ba, ba^2\} \stackrel{!}{=} \{b, ab, a^2b\} = Nb. \rightsquigarrow N \text{ is normal.}$

Let H be a subgroup of G with [G : H] = 2. Then H is normal.

Proof: *H* has only two left cosets. These must be *H* and *G* – *H*. [Why?] And these must also be the right cosets. [Why?] Thus *H* is normal. e.g., In S_3 , the subgroup $N = \{e, a, a^2\}$ has index 2, and so *N* is normal.

Shaoyun Yi

Example: Normal Subgroups of D₄

$$G = D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$$
, where $a^4 = e, b^2 = e, ba = a^{-1}b$.

Refer to the subgroup diagram of D_4 in §3.6, slide #10.

- The trivial subgroup $\{e\}$ and the improper subgroup $G = D_4$ are normal.
- The subgroups $\{e, a^2, b, a^2b\}, \{e, a, a^2, a^3\}, \{e, a^2, ab, a^3b\}$ are normal.
- $N = \{e, a^2\}, H = \{e, b\}, K = \{e, ab\}, L = \{e, a^2b\}, M = \{e, a^3b\}.$

Among the subgroups N, H, K, L, M, only the subgroup N is normal.

None of the subgroups H, K, L, M is normal: e.g., by direct computations,

 $aH \neq Ha$, $aK \neq Ka$, $aL \neq La$, $aM \neq Ma$.

N is normal: Even better, $N = \{e, a^2\}$ commutes with every element of *G*: a^2 commutes with *b*: $ba^2 = \cdots = a^2b$

 a^2 commutes with powers of *a*.

This implies that the left and right cosets of N coincide. $\rightsquigarrow N$ is normal.

Shaoyun Yi

Factor Group

If N is a normal subgroup of G, then the set of left cosets of N forms a group under the coset multiplication given by aNbN = abN for $a, b \in G$. This group is called the **factor group** of G determined by N. Write G/N.

Proof: well-defined: For aN = cN and bN = dN, to show abN = cdN. It suffices to show $(ab)^{-1}cd \in N$. Since $a^{-1}c \in N$ and $b^{-1}d \in N$,

$$(ab)^{-1}cd = b^{-1}(a^{-1}c)d = \underbrace{b^{-1}d}_{\in \mathbb{N}} \underbrace{(d^{-1}(a^{-1}c)d)}_{\in \mathbb{N} \text{ [Why?]}} \in \mathbb{N}.$$

associativity: Let $a, b, c \in G$. Then $(aNbN)cN = \cdots = aN(bNcN)$. identity: eN = N is identity element. For $a \in G$, eNaN = aN, aNeN = aN. inverses: The inverse of aN is $a^{-1}N$. $aNa^{-1}N = N$, $a^{-1}NaN = N$.

Let N be a normal subgroup of the finite group G. If $a \in G$, then the order of aN is the smallest positive integer n such that $(aN)^n = a^n N = N$. That is, the order of aN is the smallest positive integer n such that $a^n \in N$.

Example

Abelian group (G, +): Any subgroup is normal & "aN" $\rightarrow a + N$.

Let $G = \mathbf{Z}_{12}$, and let $N = \{[0], [3], [6], [9]\} = \langle [3] \rangle$. N is normal.

 \rightsquigarrow There are three elements of G/N, i.e., three left cosets of N in G:

- i) The first element is $N = [0] + N = \{[0], [3], [6], [9]\};$
- ii) Choose $[1] \notin N$, we obtain $[1] + N = \{[1], [4], [7], [10]\};$

iii) Choose $[2] \notin N \cup [1] + N$, we obtain $[2] + N = \{[2], [5], [8], [11]\}$. Since the factor group G/N has order 3, we have $G/N \cong \mathbb{Z}_3$. [Why?]

Alternatively, this can also be seen by considering the order of [1] + N.

$$2([1] + N) = 2[1] + N = [2] + N, \quad 3([1] + N) = [3] + N = N.$$

I.e., the order of [1] + N is the smallest positive integer n s.t. $n[1] \in N$. Thus n = 3 implies that [1] + N has order 3. $\rightsquigarrow G/N = \langle [1] + N \rangle \cong \mathbb{Z}_3$

Example: $D_4/Z(D_4) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$

 $G = D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^{-1}b$. Let $N = \{e, a^2\}$ be the center $Z(D_4)$ of D_4 . (See slide #9)

The factor group G/N consists of the four cosets. More precisely,

$$N = \{e, a^2\}, \quad aN = \{a, a^3\}, \quad bN = \{b, a^2b\}, \quad abN = \{ab, a^3b\}.$$

Recall that the group of order 4 is isomorphic to either \textbf{Z}_4 or $\textbf{Z}_2\times \textbf{Z}_2.$ Since we have

• $(aN)^2 = a^2N = N$

•
$$(bN)^2 = b^2N = N$$

•
$$(abN)^2 = (ab)^2N = N$$

This shows that every non-identity element of G/N has order 2. That is,

$$D_4/Z(D_4)\cong \mathbf{Z}_2\times \mathbf{Z}_2.$$

Another way to show that each of $\{aN, bN, abN\}$ has order 2 in G/N.

$$o(xN) = \min\{n > 0 \mid x^n \in N\}$$
 for any $xN \in G/N$.

Three Examples from $G = \mathbf{Z}_4 \times \mathbf{Z}_4$

• $H = \{([0], [0]), ([2], [0]), ([0], [2]), ([2], [2])\} :$ There are four cosets of HH, ([1], [0]) + H, ([0], [1]) + H, ([1], [1]) + H.

${\it G}/{\it H}\cong {\bf Z}_2\times {\bf Z}_2$

Proof: Each nontrivial element of the factor group has order 2.

• $K = \{([0], [0]), ([1], [0]), ([2], [0]), ([3], [0])\} \}$: There are four cosets of KK, ([0], [1]) + K, ([0], [2]) + K, ([0], [3]) + K.

$$G/K \cong \mathbf{Z}_4$$

Proof: o(([0], [1]) + K) = 4 = |G/K|.

• $N = \{([0], [0]), ([1], [1]), ([2], [2]), ([3], [3])\} \}$: There are four cosets of NN, ([1], [0]) + N, ([2], [0]) + N, ([3], [0]) + N.

$$G/N \cong \mathbf{Z}_4$$

Proof: o(([1], [0]) + N) = 4 = |G/N|.

Natural Projection

Let N be a normal subgroup of G. The mapping $\pi: G \to G/N$ defined by

$$\pi(a)=aN$$
, for all $a\in G$,

is called the **natural projection** of G onto G/N.

Recall that the kernel of any group homomorphism is a normal subgroup. Converse \bigcirc : Any normal subgroup is the kernel of some homomorphism. Let N be a normal subgroup of G. Let $\pi: G \to G/N$ be defined as in (\star) . i) Then π is a group homomorphism with ker $(\pi) = N$. Direct check \checkmark ii) There is a one-to-one correspondence between {subgroups H of G with $H \supseteq N$ } \longleftrightarrow {subgroups K of G/N} $\begin{array}{ccc} H & \longmapsto & \pi(H) \\ \pi^{-1}(K) & \longleftrightarrow & K \end{array}$ Under this correspondence, normal subgroups *wo* normal subgroups. "...." follows from the fact that π is onto & Slide #12 in § 3.7 \checkmark .

 (\star)

Proof: {subgroups H of G with $H \supseteq N$ } \longleftrightarrow {subgroups K of G/N}

$$H \longmapsto \pi(H)$$

 $\pi^{-1}(K) \longleftarrow K$

Let *N* be a normal subgroup of *G*. The **natural projection** $\pi : G \to G/N$ defined by $\pi(a) = aN$ is an onto group homomorphism with ker $(\pi) = N$.

 $K \mapsto \pi^{-1}(K)$ is a one-to-one mapping since π is onto. To show that this mapping is onto.

Let H be a subgroup of G with $H \supseteq N$. To show $H = \pi^{-1}(\pi(H))$:

•
$$\pi^{-1}(\pi(H)) = \{x \in G \mid \pi(x) \in \pi(H)\} \longrightarrow H \subseteq \pi^{-1}(\pi(H))$$

• To see $\pi^{-1}(\pi(H)) \subseteq H$: Let $a \in \pi^{-1}(\pi(H))$. Then $\pi(a) \in \pi(H)$, and

aN = hN for some $h \in H$.

 $\rightsquigarrow h^{-1}a \in N \subseteq H$. Thus $a = h(h^{-1}a) \in H$.

Fundamental Homomorphism Theorem

If $\phi : G_1 \to G_2$ is a homomorphism with $K = \ker(\phi)$, then $G_1/K \cong \phi(G_1)$.

Proof: Recall that the kernel $K = \text{ker}(\phi)$ is a normal subgroup of G_1 . Define $\overline{\phi} : G_1/K \to \phi(G_1)$ by $\overline{\phi}(aK) = \phi(a)$ for all $aK \in G_1/K$. To show

 $\overline{\phi}$ is a group isomorphism.

well-defined: If aK = bK, then a = bk for some $k \in ker(\phi)$. Therefore,

$$\overline{\phi}(\mathsf{a}\mathsf{K})=\phi(\mathsf{a})=\phi(\mathsf{b}\mathsf{k})=\phi(\mathsf{b})\phi(\mathsf{k})=\phi(\mathsf{b})=\overline{\phi}(\mathsf{b}\mathsf{K}).$$

 $\overline{\phi}$ is a homomorphism: For all $a, b \in G_1$, we have

$$\overline{\phi}(\mathsf{a}\mathsf{K}\mathsf{b}\mathsf{K})=\overline{\phi}(\mathsf{a}\mathsf{b}\mathsf{K})=\phi(\mathsf{a}\mathsf{b})=\phi(\mathsf{a})\phi(\mathsf{b})=\overline{\phi}(\mathsf{a}\mathsf{K})\overline{\phi}(\mathsf{b}\mathsf{K}).$$

one-to-one: If $\overline{\phi}(aK) = \overline{\phi}(bK)$, then $\phi(a) = \phi(b)$. Thus $\phi(b^{-1}a) = e_2$. This implies that $b^{-1}a \in K$, and so aK = bK.

onto: It is clear by definition of $\overline{\phi}$.

Cayley's theorem: Every group *G* is isomorphic to a permutation group.

Proof: Define $\phi : G \to \text{Sym}(G)$ by $\phi(a) = \lambda_a$, for any $a \in G$, where λ_a is the function defined by $\lambda_a(x) = ax$ for all $x \in G$. ϕ is a homomorphism:

For all
$$x \in G$$
, $\lambda_{ab}(x) = abx = \lambda_a(bx) = \lambda_a\lambda_b(x)$.
For all $a, b \in G$, $\phi(ab) = \lambda_{ab} \stackrel{!}{=} \lambda_a\lambda_b = \phi(a)\phi(b)$.

one-to-one: λ_a is the identity permutation only if a = e. So ker $(\phi) = \{e\}$. It follows **Fundamental Homomorphism Theorem (FHT)** that

$${\sf G}/\ker(\phi)={\sf G}\cong \phi({\sf G})$$
,

where $\phi(G)$ is a permutation group since it is a subgroup of Sym(G).

 $\operatorname{GL}_n(\mathbf{R})/\operatorname{SL}_n(\mathbf{R})\cong \mathbf{R}^{\times}$

Proof: Define $\phi : \operatorname{GL}_n(\mathbb{R}) \to \mathbb{R}^{\times}$ by $\phi(A) = \det(A)$ for any $A \in \operatorname{GL}_n(\mathbb{R})$. ϕ is well-defined. $\checkmark \quad \phi$ is a homomorphism. $\checkmark \quad \phi$ is onto: $\checkmark \quad [Why?]$ $\ker(\phi) = \{A \mid \phi(A) = \det(A) = 1\} = \operatorname{SL}_n(\mathbb{R})$. Then use **FHT**.

Simple Group

Let $\phi: G_1 \rightarrow G_2$ be a group homomorphism. Two special cases:

- ϕ is one-to-one $\Leftrightarrow \ker(\phi) = \{e_1\}$. Thus $G_1 \cong \phi(G_1)$ in this case.
- If ker $(\phi) = G_1$, then ϕ is the trivial mapping, i.e., $\phi(G_1) = \{e_2\}$.

If G_1 has no proper nontrivial normal subgroups, then ϕ is either 1-to-1 or trivial.

A nontrivial group G is called **simple** if it has no proper nontrivial normal subgps.

e.g., For any prime p, the cyclic group Z_p is simple, since it has no proper nontrivial subgroups of any kind (every nonzero element is a generator).

The subgroups of Z_n correspond to divisors of n, and so to describe all factor groups of Z_n we only need to describe Z_n/mZ_n for all m|n, m > 0.

 $\mathbf{Z}_n/m\mathbf{Z}_n\cong\mathbf{Z}_m$ if m|n,m>0.

Proof: Since any homomorphic image of a cyclic group is again cyclic, we can define $\phi : \mathbb{Z}_n \to \mathbb{Z}_m$ by $\phi([x]_n) = [x]_m$ for some m|n, m > 0. well-defined: If $[x]_n = [y]_n$, then $[x]_m = [y]_m$ since m|n. ϕ is a homomorphism: For any $[x]_n, [y]_n \in \mathbb{Z}_n$, we have

$$\phi([x]_n+[y]_n)=\cdots=\phi([x]_n)+\phi([y_n]).$$

onto: It is clear by definition of ϕ .

 $\ker(\phi) = \{[x]_n \mid [x]_m = [0]_m\} = \{[x]_n \mid x \text{ is a multiple of } m\} = m\mathbb{Z}_n.$ It follows from the fundamental homomorphism theorem that

$$\mathbf{Z}_n/m\mathbf{Z}_n\cong\mathbf{Z}_m.$$

Factor Groups of Direct Products

Let $N_1 \subseteq G_1$ and $N_2 \subseteq G_2$ be normal subgroups.

$$N_1 \times N_2 = \{(x_1, x_2) \mid x_1 \in N_1, x_2 \in N_2\} \subseteq G_1 \times G_2.$$

Then $N_1 \times N_2$ is a normal subgroup of the direct product $G_1 \times G_2$. [Why?]

$$(G_1 \times G_2)/(N_1 \times N_2) \cong (G_1/N_1) \times (G_2/N_2). \tag{(\star)}$$

Proof: Define ϕ : $G_1 \times G_2 \to (G_1/N_1) \times (G_2/N_2)$ by $\phi((x_1, x_2)) = (x_1N_1, x_2N_2)$. ϕ is well-defined. ✓ ϕ is a homomorphism: For $(x_1, x_2), (y_1, y_2) \in G_1 \times G_2$, $\phi((x_1, x_2)(y_1, y_2)) = \cdots = \phi((x_1, x_2))\phi((y_1, y_2))$ ϕ is onto. ✓ ker $(\phi) = \{(x_1, x_2) \mid \phi((x_1, x_2)) = (N_1, N_2)\} = N_1 \times N_2$.

The desired (\star) follow from the fundamental homomorphism theorem.

e.g., the subgroups $H = 2\mathbf{Z}_4 \times 2\mathbf{Z}_4$ and $K = \mathbf{Z}_4 \times \{[0]\}$ in $G = \mathbf{Z}_4 \times \mathbf{Z}_4$.

• $G/H = (\mathbf{Z}_4 \times \mathbf{Z}_4)/(2\mathbf{Z}_4 \times 2\mathbf{Z}_4) \cong (\mathbf{Z}_4/2\mathbf{Z}_4) \times (\mathbf{Z}_4/2\mathbf{Z}_4) \cong \mathbf{Z}_2 \times \mathbf{Z}_2$

•
$$G/K = (\mathbf{Z}_4 \times \mathbf{Z}_4)/(\mathbf{Z}_4 \times 4\mathbf{Z}_4) \cong (\mathbf{Z}_4/\mathbf{Z}_4) \times (\mathbf{Z}_4/4\mathbf{Z}_4) \cong \mathbf{Z}_1 \times \mathbf{Z}_4 \cong \mathbf{Z}_4$$

A group G with subgroups H and K is called the **internal direct product** of H and K if (i) H, K are normal in G (ii) $H \cap K = \{e\}$ (iii) HK = G. Prove that $G \cong H \times K$.

Proof: Define $\phi : H \times K \to G$ by $\phi((h, k)) = hk$ for all $(h, k) \in H \times K$. ϕ well-defined. $\checkmark \phi$ is a homomorphism: For all $(h_1, k_1), (h_2, k_2) \in H \times K$, $\phi((h_1, k_1)(h_2, k_2)) = \phi((h_1h_2, k_1k_2))$ $=h_1h_2k_1k_2 \stackrel{!}{=} h_1k_1h_2k_2 = \phi((h_1, k_1))\phi((h_2, k_2)).$ $\stackrel{!}{=} \text{ holds } \Leftrightarrow h_2k_1 = k_1h_2 \Leftrightarrow k_1^{-1}h_2k_1h_2^{-1} = e. \text{ To show } k_1^{-1}h_2k_1h_2^{-1} = e.$ $k_1^{-1}h_2k_1h_2^{-1} \in H$ since $k_1^{-1}h_2k_1 \in H$ [Why?] and $h_2^{-1} \in H$. $k_1^{-1}h_2k_1h_2^{-1} \in K$ since $h_2k_1h_2^{-1} \in K$, $k_1^{-1} \in K$. $\rightsquigarrow k_1^{-1}h_2k_1h_2^{-1} \in H \cap K = \{e\}$ ϕ is onto: For any $g \in G$, we have $g \stackrel{\text{(iii)}}{=} hk$ with $h \in H, k \in K$. $\ker(\phi) = \{(h,k) \mid \phi((h,k)) = e\} \stackrel{!}{=} \{(h,k) \mid h,k \in H \cap K\} = \{(e,e)\}$ $\stackrel{!}{=}$ holds since $hk = e \rightsquigarrow h = k^{-1} \in K \cap H \& k = h^{-1} \in H \cap K$