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Review

φ : G1 → G2 is a group homomorphism if φ(a ∗ b) = φ(a) · φ(b).

φ(an) = (φ(a))n for all a ∈ G1, n ∈ Z. e.g., n = 0 & n = −1

If o(a) = n in G1, then o
(
φ(a)

)
in G2 is a divisor of n.

φ is onto: if G1 is abelian (cyclic), then G2 is also abelian (cyclic).

If G1 = 〈a〉 is cyclic, then φ is completely determined by φ(a).

Homorphisms between cyclic gps: Zn → Zk , Z→ Z, Z→ Zn, Zn → Z

ker(φ) = {x ∈ G1 | φ(x) = e2}⊆ G1 & im(φ) = {φ(x) | x ∈ G1}⊆ G2

φ is one-to-one ⇔ ker(φ) = {e1} & φ is onto ⇔ im(φ) = G2

Normal subgroup H of G : If ghg−1 ∈ H for all h ∈ H and g ∈ G .
i) If H1 is a subgroup of G1, then φ(H1) is a subgroup of G2.
ii) If φ is onto and H1 is normal in G1, then φ(H1) is normal in G2.

iii) If H2 is a subgroup of G2, then φ−1(H2) is a subgroup of G1.
iv) If H2 is normal in G2, then φ−1(H2) is normal in G1.

Fundamental Homomorphism Thm: G1/ ker(φ) = G1/φ ∼= im(φ)

 Reprove “Every cyclic group G is isomorphic to either Z or Zn”.
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Another Equivalence Relation

Let H be a subgroup of G . For a, b ∈ G define a ∼ b if ab−1 ∈ H. Then
∼ is an equivalence relation.  We write the congruence class [a] = Ha.

For a, b ∈ G define a ∼ b if a−1b ∈ H. Then ∼ is an equivalence relation.

Proof: Reflexive (a ∼ a): a−1a ∈ H since e ∈ H.

Symmetric (a ∼ b  b ∼ a): b−1a = (a−1b)−1 ∈ H since a−1b ∈ H.

Transitive (a ∼ b & b ∼ c  a ∼ c): a−1c = (a−1b)(b−1c) ∈ H

As a consequence, we write the congruence class [a] = aH in this case.

TFAE: 1) bH = aH; 2) bH ⊆ aH; 3) b ∈ aH; 4) a−1b ∈ H.

1)⇒ 2) 3 2)⇒ 3) b = be ∈ bH 3 3)⇒ 4) b = ah a−1b = h ∈ H 3

4)⇒ 1) Write a−1b = h ∈ H, then b = ah and a = bh−1 :
bH ⊆ aH 3
aH ⊆ bH 3

 Define a ∼ b if aH = bH. Then ∼ is an equivalence relation on G .

Similarly, TFAE: 1) Hb = Ha; 2) Hb ⊆ Ha; 3) b ∈ Ha; 4) ba−1 ∈ H.
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Cosets

Let H be a subgroup of the group G , and let a ∈ G .

The left coset of H in G determined by a is aH = {x | x = ah, h ∈ H}.
The right coset of H in G determined by a is Ha = {x | x = ha, h ∈ H}.

The number of left cosets of H in G is called the index of H in G , and is
denoted by [G : H]. This index also equals the number of right cosets since

There is a one-to-one correspondence between left cosets and right cosets.

Proof: Let R = {Ha},L = {aH}. Define φ : R → L by φ(Ha) = a−1H.

well-def. If Ha = Hb, then ba−1 ∈ H (a−1)−1b−1 ∈ H a−1H = b−1H

one-to-one: φ(Ha) = φ(Hb) a−1H = b−1H  ba−1 ∈ H  Ha = Hb

onto: For any aH ∈ L, we have φ(Ha−1) = (a−1)−1H = aH.

The left coset aH has the same number of elements as H.

Proof: Define f : H → aH by f (h) = ah for all h ∈ H.  f is 1-to-1 and onto. �

 If G is a finite group, then the index [G : H] = |G |/|H|.
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List the left cosets of a given subgroup H of a finite group

Algorithm (also works for listing the right cosets of H):

1) If a ∈ H, then aH = H. So we begin by choosing any element a /∈ H.

2) Any element in aH determines the same coset, so for the next coset we
choose any element not in H or aH (if possible).

3) Continuing in this process provides a method for listing all left cosets.

Let G = Z×11 = {[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]} & H = {[1], [10]}.
i) The first coset is H itself, i.e., [1]H = {[1], [10]} = [10]H.

ii) Choosing [2] /∈ H, we obtain [2]H = {[2], [9]}.
iii) Choosing [3] /∈ H ∪ [2]H, we obtain [3]H = {[3], [8]}.
iv) Choosing [4] /∈ H ∪ [2]H ∪ [3]H, we obtain [4]H = {[4], [7]}.
v) Choosing [5] /∈ H ∪ [2]H ∪ [3]H ∪ [4]H, we obtain [5]H = {[5], [6]}.

Thus the left cosets of H are H, [2]H, [3]H, [4]H, [5]H, and [G : H] = 5.

Q: what if N = 〈[3]〉 = {[1], [3], [9], [5], [4]}? A: N, [2]N  [G : N] = 2

Shaoyun Yi Cosets, Normal Subgroups, Factor Groups Spring 2022 5 / 21



Example: Non-abelian Group G = S3

Let G = S3 = {e, a, a2, b, ab, a2b}, where a3 = e, b2 = e, and ba = a2b.

Let H = {e, b}.
The left cosets of H: H = {e, b}, aH = {a, ab}, a2H = {a2, a2b}.
The right cosets of H: H = {e, b}, Ha = {a, a2b}, Ha2 = {a2, ab}.
In this case, the left and right cosets are not the same.

Let N = {e, a, a2}.
The left cosets of N: N = {e, a, a2}, bN = {b, a2b, ab}.
The right cosets of N: N = {e, a, a2}, Nb = {b, ab, a2b}.
In this case, the left and right cosets are the same.

Natural question: When are the left and right cosets of H in G the same?

Looking ahead: H is normal if and only if its left and right cosets coincide.
In particular, for abelian groups, left cosets and right cosets are the same.

Recall that a subgroup H is normal if ghg−1 ∈ H for all h ∈ H and g ∈ G .
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Let H be a subgroup of the group G . TFAE:

(1) H is a normal subgroup of G ;

(2) aH = Ha for all a ∈ G ;

(3) for all a, b ∈ G , abH is the set theoretic product (aH)(bH);

(4) for all a, b ∈ G , ab−1 ∈ H if and only if a−1b ∈ H.

Proof: (1)⇒ (2) Let a ∈ G , h ∈ H. Then aha−1 ∈ H. aH ⊆ Ha

Similarly, a−1ha = a−1h(a−1)−1 ∈ H.  Ha ⊆ aH. Thus aH = Ha.

(2)⇒ (3) abH ⊆ (aH)(bH) : Let h ∈ H, abh = (ae)(bh) ∈ (aH)(bH).

(aH)(bH) ⊆ abH : Let (ah1)(bh2) ∈ (aH)(bH), for h1, h2 ∈ H. Then

(ah1)(bh2) = a(h1b)h2
(2)
= a(bh3)h2 = ab(h3h2) ∈ abH for some h3 ∈ H.

(3)⇒ (1) For any a ∈ G , h ∈ H, to show aha−1 ∈ H. Take b = a−1 in (3),

then (aH)(a−1H) = aa−1H = H. Thus aha−1 = (ah)(a−1e) ∈ H.

(2)⇔ (4) Left cosets are the equivalence classes [a]L = {b | a−1b ∈ H}.
(2)⇔ (4) Right cosets are the equivalence classes [a]R = {b | ab−1 ∈ H}.
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Example: Normal Subgroups of S3 = D3

Let G = S3 = {e, a, a2, b, ab, a2b}, where a3 = e, b2 = e, and ba = a2b.

• The trivial subgroup {e} and the improper subgroup G are normal.

• 4 proper nontrivial subgroups of S3:

H = {e, b}, K = {e, ab}, L = {e, a2b}, N = {e, a, a2}.

aH = {a, ab} 6= {a, ba} = Ha since ba = a2b.  H is not normal.

aK = {a, a2b} 6= {a, aba} = Ka since aba = b.  K is not normal.

aL = {a, b} 6= {a, a2ba} = La since a2ba = ab.  L is not normal.

bN = {b, ba, ba2} !
= {b, ab, a2b} = Nb.  N is normal.

Let H be a subgroup of G with [G : H] = 2. Then H is normal.

Proof: H has only two left cosets. These must be H and G − H. [Why?]

And these must also be the right cosets. [Why?] Thus H is normal.

e.g., In S3, the subgroup N = {e, a, a2} has index 2, and so N is normal.
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Example: Normal Subgroups of D4

G = D4 = {e, a, a2, a3, b, ab, a2b, a3b}, where a4 = e, b2 = e, ba = a−1b.

Refer to the subgroup diagram of D4 in §3.6, slide #10.

• The trivial subgroup {e} and the improper subgroup G = D4 are normal.

• The subgroups {e, a2, b, a2b}, {e, a, a2, a3}, {e, a2, ab, a3b} are normal.

• N = {e, a2}, H = {e, b}, K = {e, ab}, L = {e, a2b}, M = {e, a3b}.

Among the subgroups N,H,K , L,M, only the subgroup N is normal.

None of the subgroups H,K , L,M is normal: e.g., by direct computations,

aH 6= Ha, aK 6= Ka, aL 6= La, aM 6= Ma.

N is normal: Even better, N = {e, a2} commutes with every element of G :

a2 commutes with b: ba2 = · · · = a2b

a2 commutes with powers of a.

This implies that the left and right cosets of N coincide.  N is normal.
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Factor Group

If N is a normal subgroup of G , then the set of left cosets of N forms a
group under the coset multiplication given by aNbN = abN for a, b ∈ G .

This group is called the factor group of G determined by N. Write G/N.

Proof: well-defined: For aN = cN and bN = dN, to show abN = cdN.

It suffices to show (ab)−1cd ∈ N. Since a−1c ∈ N and b−1d ∈ N,

(ab)−1cd = b−1(a−1c)d = b−1d︸ ︷︷ ︸
∈N

(d−1(a−1c)d)︸ ︷︷ ︸
∈N [Why?]

∈ N.

associativity: Let a, b, c ∈ G . Then (aNbN)cN = · · · = aN(bNcN).

identity: eN = N is identity element. For a ∈ G , eNaN = aN, aNeN = aN.

inverses: The inverse of aN is a−1N. aNa−1N = N, a−1NaN = N.

Let N be a normal subgroup of the finite group G . If a ∈ G , then the
order of aN is the smallest positive integer n such that (aN)n = anN = N.

That is, the order of aN is the smallest positive integer n such that an ∈ N.
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Example

Abelian group (G ,+): Any subgroup is normal & “aN” a + N.

Let G = Z12, and let N = {[0], [3], [6], [9]} = 〈[3]〉. N is normal.

 There are three elements of G/N, i.e., three left cosets of N in G :

i) The first element is N = [0] + N = {[0], [3], [6], [9]};
ii) Choose [1] /∈ N, we obtain [1] + N = {[1], [4], [7], [10]};
iii) Choose [2] /∈ N ∪ [1] + N, we obtain [2] + N = {[2], [5], [8], [11]}.
Since the factor group G/N has order 3, we have G/N ∼= Z3. [Why?]

Alternatively, this can also be seen by considering the order of [1] + N.

2([1] + N) = 2[1] + N = [2] + N, 3([1] + N) = [3] + N = N.

I.e., the order of [1] + N is the smallest positive integer n s.t. n[1] ∈ N.

Thus n = 3 implies that [1] + N has order 3.  G/N = 〈[1] + N〉 ∼= Z3
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Example: D4/Z (D4) ∼= Z2 × Z2

G = D4 = {e, a, a2, a3, b, ab, a2b, a3b}, where a4 = e, b2 = e, ba = a−1b.

Let N = {e, a2} be the center Z (D4) of D4. (See slide #9)

The factor group G/N consists of the four cosets. More precisely,

N = {e, a2}, aN = {a, a3}, bN = {b, a2b}, abN = {ab, a3b}.
Recall that the group of order 4 is isomorphic to either Z4 or Z2 × Z2.

Since we have

(aN)2 = a2N = N

(bN)2 = b2N = N

(abN)2 = (ab)2N = N

This shows that every non-identity element of G/N has order 2. That is,

D4/Z (D4) ∼= Z2 × Z2.

Another way to show that each of {aN , bN , abN} has order 2 in G/N .

o(xN) = min{n > 0 | xn ∈ N} for any xN ∈ G/N.

Shaoyun Yi Cosets, Normal Subgroups, Factor Groups Spring 2022 12 / 21



Three Examples from G = Z4 × Z4

• H = {([0], [0]), ([2], [0]), ([0], [2]), ([2], [2])} : There are four cosets of H

H, ([1], [0]) + H, ([0], [1]) + H, ([1], [1]) + H.

G/H ∼= Z2 × Z2

Proof: Each nontrivial element of the factor group has order 2.

• K = {([0], [0]), ([1], [0]), ([2], [0]), ([3], [0])} : There are four cosets of K

K , ([0], [1]) + K , ([0], [2]) + K , ([0], [3]) + K .

G/K ∼= Z4

Proof: o
(
([0], [1]) + K

)
= 4 = |G/K |.

• N = {([0], [0]), ([1], [1]), ([2], [2]), ([3], [3])} : There are four cosets of N

N, ([1], [0]) + N, ([2], [0]) + N, ([3], [0]) + N.

G/N ∼= Z4

Proof: o
(
([1], [0]) + N

)
= 4 = |G/N|.
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Natural Projection

Let N be a normal subgroup of G . The mapping π : G → G/N defined by

π(a) = aN, for all a ∈ G , (?)

is called the natural projection of G onto G/N.

Recall that the kernel of any group homomorphism is a normal subgroup.

Converse : Any normal subgroup is the kernel of some homomorphism.

Let N be a normal subgroup of G . Let π : G → G/N be defined as in (?).

i) Then π is a group homomorphism with ker(π) = N. Direct check 3

ii) There is a one-to-one correspondence between

{subgroups H of G with H ⊇ N} ←→ {subgroups K of G/N}
H 7−→ π(H)

π−1(K ) ←− [ K

Under this correspondence, normal subgroups ! normal subgroups.

“!” follows from the fact that π is onto & Slide #12 in § 3.7 3.
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Proof: {subgroups H of G with H ⊇ N} ←→ {subgroups K of G/N}

H 7−→ π(H)

π−1(K ) ←− [ K

Let N be a normal subgroup of G . The natural projection π : G → G/N
defined by π(a) = aN is an onto group homomorphism with ker(π) = N.

K 7−→ π−1(K ) is a one-to-one mapping since π is onto. To show that
this mapping is onto.

Let H be a subgroup of G with H ⊇ N. To show H = π−1(π(H)) :

π−1(π(H)) = {x ∈ G | π(x) ∈ π(H)}  H ⊆ π−1(π(H))

To see π−1(π(H)) ⊆ H : Let a ∈ π−1(π(H)). Then π(a) ∈ π(H), and

aN = hN for some h ∈ H.

 h−1a ∈ N ⊆ H. Thus a = h(h−1a) ∈ H.
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Fundamental Homomorphism Theorem

If φ : G1 → G2 is a homomorphism with K = ker(φ), then G1/K ∼= φ(G1).

Proof: Recall that the kernel K = ker(φ) is a normal subgroup of G1.

Define φ : G1/K → φ(G1) by φ(aK ) = φ(a) for all aK ∈ G1/K . To show

φ is a group isomorphism.

well-defined: If aK = bK , then a = bk for some k ∈ ker(φ). Therefore,

φ(aK ) = φ(a) = φ(bk) = φ(b)φ(k) = φ(b) = φ(bK ).

φ is a homomorphism: For all a, b ∈ G1, we have

φ(aKbK ) = φ(abK ) = φ(ab) = φ(a)φ(b) = φ(aK )φ(bK ).

one-to-one: If φ(aK ) = φ(bK ), then φ(a) = φ(b). Thus φ(b−1a) = e2.

one-to-one: This implies that b−1a ∈ K , and so aK = bK .

onto: It is clear by definition of φ.
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Cayley’s theorem: Every group G is isomorphic to a permutation group.

Proof: Define φ : G → Sym(G ) by φ(a) = λa, for any a ∈ G , where λa is
the function defined by λa(x) = ax for all x ∈ G . φ is a homomorphism:

For all x ∈ G , λab(x) = abx = λa(bx) = λaλb(x).

For all a, b ∈ G , φ(ab) = λab
!

= λaλb = φ(a)φ(b).

one-to-one: λa is the identity permutation only if a = e. So ker(φ) = {e}.
It follows Fundamental Homomorphism Theorem (FHT) that

G/ ker(φ) = G ∼= φ(G ),

where φ(G ) is a permutation group since it is a subgroup of Sym(G ).

GLn(R)/SLn(R) ∼= R×

Proof: Define φ : GLn(R)→ R× by φ(A) = det(A) for any A ∈ GLn(R).

φ is well-defined. 3 φ is a homomorphism. 3 φ is onto: 3 [Why?]

ker(φ) = {A | φ(A) = det(A) = 1} = SLn(R). Then use FHT.
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Simple Group

Let φ : G1 → G2 be a group homomorphism. Two special cases:

φ is one-to-one ⇔ ker(φ) = {e1}. Thus G1
∼= φ(G1) in this case.

If ker(φ) = G1, then φ is the trivial mapping, i.e., φ(G1) = {e2}.

If G1 has no proper nontrivial normal subgroups, then φ is either 1-to-1 or trivial.

A nontrivial group G is called simple if it has no proper nontrivial normal subgps.

e.g., For any prime p, the cyclic group Zp is simple, since it has no proper
nontrivial subgroups of any kind (every nonzero element is a generator).
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The subgroups of Zn correspond to divisors of n, and so to describe all
factor groups of Zn we only need to describe Zn/mZn for all m|n,m > 0.

Zn/mZn
∼= Zm if m|n,m > 0.

Proof: Since any homomorphic image of a cyclic group is again cyclic,

we can define φ : Zn → Zm by φ([x ]n) = [x ]m for some m|n,m > 0.

well-defined: If [x ]n = [y ]n, then [x ]m = [y ]m since m|n.

φ is a homomorphism: For any [x ]n, [y ]n ∈ Zn, we have

φ([x ]n + [y ]n) = · · · = φ([x ]n) + φ([yn]).

onto: It is clear by definition of φ.

ker(φ) = {[x ]n | [x ]m = [0]m} = {[x ]n | x is a multiple of m} = mZn.

It follows from the fundamental homomorphism theorem that

Zn/mZn
∼= Zm.

Shaoyun Yi Cosets, Normal Subgroups, Factor Groups Spring 2022 19 / 21



Factor Groups of Direct Products

Let N1 ⊆ G1 and N2 ⊆ G2 be normal subgroups.

N1 × N2 = {(x1, x2) | x1 ∈ N1, x2 ∈ N2} ⊆ G1 × G2.

Then N1 ×N2 is a normal subgroup of the direct product G1 ×G2. [Why?]

(G1 × G2)/(N1 × N2) ∼= (G1/N1)× (G2/N2). (?)

Proof: Define φ : G1 × G2 → (G1/N1)× (G2/N2) by φ
(
(x1, x2)

)
= (x1N1, x2N2).

φ is well-defined. 3 φ is a homomorphism: For (x1, x2), (y1, y2) ∈ G1 ×G2,

φ
(
(x1, x2)(y1, y2)

)
= · · · = φ

(
(x1, x2)

)
φ
(
(y1, y2)

)
φ is onto. 3 ker(φ) = {(x1, x2) | φ

(
(x1, x2)

)
= (N1,N2)} = N1 × N2.

The desired (?) follow from the fundamental homomorphism theorem.

e.g., the subgroups H = 2Z4 × 2Z4 and K = Z4 × {[0]} in G = Z4 × Z4.

G/H = (Z4 × Z4)/(2Z4 × 2Z4) ∼= (Z4/2Z4)× (Z4/2Z4) ∼= Z2 × Z2

G/K = (Z4×Z4)/(Z4×4Z4) ∼= (Z4/Z4)×(Z4/4Z4) ∼= Z1×Z4
∼= Z4

Shaoyun Yi Cosets, Normal Subgroups, Factor Groups Spring 2022 20 / 21



A group G with subgroups H and K is called the internal direct product
of H and K if (i) H,K are normal in G (ii) H ∩ K = {e} (iii) HK = G .

Prove that G ∼= H × K .

Proof: Define φ : H × K → G by φ
(
(h, k)

)
= hk for all (h, k) ∈ H × K .

φ well-defined. 3 φ is a homomorphism: For all (h1, k1), (h2, k2) ∈ H ×K ,

φ
(
(h1, k1)(h2, k2)

)
=φ
(
(h1h2, k1k2)

)
=h1h2k1k2

!
= h1k1h2k2 = φ

(
(h1, k1)

)
φ
(
(h2, k2)

)
.

!
= holds ⇔ h2k1 = k1h2 ⇔ k−11 h2k1h

−1
2 = e. To show k−11 h2k1h

−1
2 = e.

k−1
1 h2k1h

−1
2 ∈ H since k−1

1 h2k1 ∈ H [Why?] and h−1
2 ∈ H.

k−1
1 h2k1h

−1
2 ∈ K since h2k1h

−1
2 ∈ K , k−1

1 ∈ K .  k−1
1 h2k1h

−1
2 ∈ H ∩ K = {e}

φ is onto: For any g ∈ G , we have g
(iii)
= hk with h ∈ H, k ∈ K .

ker(φ) = {(h, k) | φ((h, k)) = e} !
= {(h, k) | h, k ∈ H ∩ K} = {(e, e)}

!
= holds since hk = e  h = k−1 ∈ K ∩H & k = h−1 ∈ H ∩ K
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