§3.8 Cosets, Normal Subgroups, and Factor Groups

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

Review

$\phi: G_1 \to G_2$ is a group homomorphism if $\phi(a * b) = \phi(a) \cdot \phi(b)$.

- $\phi(\mathsf{a}^n) = (\phi(\mathsf{a}))^n$ for all $\mathsf{a} \in \mathsf{G}_1, \mathsf{n} \in \mathsf{Z}$. e.g., $\mathsf{n} = 0$ & $\mathsf{n} = -1$
- If $o(a) = n$ in G_1 , then $o(\phi(a))$ in G_2 is a divisor of n .
- \bullet ϕ is onto: if G_1 is abelian (cyclic), then G_2 is also abelian (cyclic).
- **If** $G_1 = \langle a \rangle$ is cyclic, then ϕ is completely determined by $\phi(a)$.
- Homorphisms between cyclic gps: $Z_n \to Z_k$, $Z \to Z$, $Z \to Z_n$, $Z_n \to Z$
- ker $(\phi) = \{x \in G_1 \mid \phi(x) = e_2\} \subseteq G_1$ & $\text{im}(\phi) = \{\phi(x) \mid x \in G_1\} \subseteq G_2$
- $\bullet \phi$ is one-to-one \Leftrightarrow ker $(\phi) = \{e_1\}$ & ϕ is onto \Leftrightarrow im $(\phi) = G_2$
- Normal subgroup H of G: If $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$.
	- i) If H_1 is a subgroup of G_1 , then $\phi(H_1)$ is a subgroup of G_2 .
	- ii) If ϕ is onto and H_1 is normal in G_1 , then $\phi(H_1)$ is normal in G_2 .
	- iii) If H_2 is a subgroup of G_2 , then $\phi^{-1}(H_2)$ is a subgroup of $\mathit{G}_1.$
	- iv) If H_2 is normal in \mathcal{G}_2 , then $\phi^{-1}(H_2)$ is normal in \mathcal{G}_1 .

• Fundamental Homomorphism Thm: $G_1/\text{ker}(\phi) = G_1/\phi \cong \text{im}(\phi)$

 \rightsquigarrow Reprove "Every cyclic group G is isomorphic to either **Z** or **Z**_n".

Another Equivalence Relation

Let H be a subgroup of G. For a, $b \in G$ define $a \sim b$ if $ab^{-1} \in H$. Then \sim is an equivalence relation. \rightsquigarrow We write the congruence class [a] = Ha.

For a, $b \in G$ define a $\sim b$ if a $^{-1}b \in H$. Then \sim is an equivalence relation.

Proof: Reflexive $(a \sim a)$: $a^{-1}a \in H$ since $e \in H$. Symmetric (*a* ∼ *b* ∼ *a*): b^{-1} *a* = (*a*⁻¹*b*)⁻¹ ∈ H since *a*⁻¹*b* ∈ H. Transitive $(a\sim b\ \&\ b\sim c\leadsto a\sim c)$: $a^{-1}c=(a^{-1}b)(b^{-1}c)\in H$ As a consequence, we write the congruence class $[a] = aH$ in this case. **TFAE:** 1) $bH = aH$; 2) $bH \subseteq aH$; 3) $b \in aH$; 4) $a^{-1}b \in H$. $(1) \Rightarrow 2) \checkmark$ $(2) \Rightarrow 3)$ $b = be \in bH \checkmark$ $(3) \Rightarrow 4)$ $b = ah \leadsto a^{-1}b = h \in H \checkmark$ 4) ⇒ 1) Write $a^{-1}b = h \in H$, then $b = ah$ and $a = bh^{-1}$: $\frac{bH}{c}$ and f $aH \subseteq bH$ Define $a \sim b$ if $aH = bH$. Then \sim is an equivalence relation on G. Similarly, TFAE: 1) $Hb = Ha$; 2) $Hb \subseteq Ha$; 3) $b \in Ha$; 4) $ba^{-1} \in H$.

Shaoyun Yi **[Cosets, Normal Subgroups, Factor Groups](#page-0-0)** Spring 2022 3/21

Let H be a subgroup of the group G, and let $a \in G$.

The **left coset** of H in G determined by a is $aH = \{x \mid x = ah, h \in H\}.$ The right coset of H in G determined by a is $Ha = \{x \mid x = ha, h \in H\}.$

The number of left cosets of H in G is called the index of H in G , and is denoted by $[G : H]$. This index also equals the number of right cosets since

There is a one-to-one correspondence between left cosets and right cosets.

Proof: Let $\mathcal{R} = \{Ha\}, \mathcal{L} = \{aH\}.$ Define $\phi : \mathcal{R} \to \mathcal{L}$ by $\phi(Ha) = a^{-1}H$. well-def. If H a $=$ H b, then ba^{-1} \in H \leadsto $(a^{-1})^{-1}b^{-1}$ \in H \leadsto $a^{-1}H$ $=$ $b^{-1}H$ one-to-one: $\phi(Ha) = \phi(Hb) \leadsto a^{-1}H = b^{-1}H \leadsto ba^{-1} \in H \leadsto Ha = Hb$ onto: For any $aH\in\mathcal{L}$, we have $\phi(Ha^{-1})=(a^{-1})^{-1}H=aH.$

The left coset aH has the same number of elements as H.

Proof: Define $f : H \to aH$ by $f(h) = ah$ for all $h \in H$. $\rightsquigarrow f$ is 1-to-1 and onto. \Box

 \rightsquigarrow If G is a finite group, then the index $[G : H] = |G|/|H|$.

List the left cosets of a given subgroup H of a finite group

Algorithm (also works for listing the right cosets of H):

- 1) If $a \in H$, then $aH = H$. So we begin by choosing any element $a \notin H$.
- 2) Any element in aH determines the same coset, so for the next coset we choose any element not in H or aH (if possible).
- 3) Continuing in this process provides a method for listing all left cosets.
- Let $G = \mathbf{Z}_{11}^{\times} = \{[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]\}$ & $H = \{[1], [10]\}$. i) The first coset is *H* itself, i.e., $[1]H = \{[1], [10]\} = [10]H$.
- ii) Choosing $[2] \notin H$, we obtain $[2]H = \{ [2], [9] \}.$
- iii) Choosing $[3] \notin H \cup [2]H$, we obtain $[3]H = \{[3], [8]\}.$
- iv) Choosing $[4] \notin H \cup [2]H \cup [3]H$, we obtain $[4]H = \{ [4], [7] \}.$
- v) Choosing $[5] \notin H \cup [2]H \cup [3]H \cup [4]H$, we obtain $[5]H = \{[5], [6]\}.$

Thus the left cosets of H are H, $[2]H$, $[3]H$, $[4]H$, $[5]H$, and $[G : H] = 5$.

Q: what if $N = \langle 3] \rangle = \{[1], [3], [9], [5], [4]\}$? **A:** N, $[2]N \longrightarrow [G : N] = 2$

Example: Non-abelian Group $G = S_3$

Let
$$
G = S_3 = \{e, a, a^2, b, ab, a^2b\}
$$
, where $a^3 = e, b^2 = e$, and $ba = a^2b$.

Let $H = \{e, b\}$.

The left cosets of H: $H = \{e, b\}$, $aH = \{a, ab\}$, $a^2H = \{a^2, a^2b\}$. The right cosets of H: $H = \{e, b\}$, $Ha = \{a, a^2b\}$, $Ha^2 = \{a^2, ab\}$. In this case, the left and right cosets are not the same.

Let $N = \{e, a, a^2\}.$

The left cosets of N: $N = \{e, a, a^2\}, \quad bN = \{b, a^2b, ab\}.$ The right cosets of N: $N = \{e, a, a^2\}, \quad Nb = \{b, ab, a^2b\}.$ In this case, the left and right cosets are the same.

Natural question: When are the left and right cosets of H in G the same? Looking ahead: H is normal if and only if its left and right cosets coincide. In particular, for abelian groups, left cosets and right cosets are the same.

Recall that a subgroup H is normal if ghg⁻¹ \in H for all $h \in H$ and $g \in G$. Shaoyun Yi [Cosets, Normal Subgroups, Factor Groups](#page-0-0) Spring 2022 6/21 Let H be a subgroup of the group G . **TFAE:**

- (1) H is a normal subgroup of G;
- (2) $aH = Ha$ for all $a \in G$;
- (3) for all $a, b \in G$, abH is the set theoretic product $(aH)(bH)$;

(4) for all $a, b \in G$, ab^{-1} ∈ H if and only if $a^{-1}b$ ∈ H.

Proof: (1) \Rightarrow (2) Let $a \in G$, $h \in H$. Then $aha^{-1} \in H$. \rightsquigarrow aH \subseteq Ha Similarly, $a^{-1}h$ a $= a^{-1}h(a^{-1})^{-1} \in H$. $\leadsto H$ a \subseteq a H . Thus a $H = H$ a. $(2) \Rightarrow (3)$ abH $\subseteq (aH)(bH)$: Let $h \in H$, abh $=(ae)(bh) \in (aH)(bH)$. $(aH)(bH) \subseteq abH$: Let $(ah_1)(bh_2) \in (aH)(bH)$, for $h_1, h_2 \in H$. Then $(ah_1)(bh_2) = a(h_1b)h_2 \stackrel{(2)}{=} a(bh_3)h_2 = ab(h_3h_2) \in abH \quad \text{for some } h_3 \in H.$ (3) \Rightarrow (1) For any $a \in G, h \in H$, to show $aha^{-1} \in H$. Take $b = a^{-1}$ in (3) , then $(aH)(a^{-1}H) = aa^{-1}H = H$. Thus $aha^{-1} = (ah)(a^{-1}e) \in H$. $(2) \Leftrightarrow (4)$ Left cosets are the equivalence classes $[a]_{\mathcal{L}} = \{b \mid a^{-1}b \in H\}.$ Right cosets are the equivalence classes $[a]_R = \{b \mid ab^{-1} \in H\}.$

Example: Normal Subgroups of $S_3 = D_3$

Let $G = S_3 = \{e, a, a^2, b, ab, a^2b\}$, where $a^3 = e, b^2 = e$, and $ba = a^2b$.

- The trivial subgroup ${e}$ and the improper subgroup G are normal.
- 4 proper nontrivial subgroups of S_3 :

 $H = \{e, b\}, \qquad K = \{e, ab\}, \qquad L = \{e, a^2b\}, \qquad N = \{e, a, a^2\}.$ $aH = \{a, ab\} \neq \{a, ba\} = Ha$ since $ba = a^2b$. $\leadsto H$ is not normal. $aK = \{a, a^2b\} \neq \{a, aba\} = Ka$ since $aba = b$. $\rightsquigarrow K$ is not normal. $aL = \{a, b\} \neq \{a, a^2ba\} = La$ since $a^2ba = ab$. $\leadsto L$ is not normal. $bN = \{b, ba, ba^2\} \stackrel{!}{=} \{b, ab, a^2b\} = Nb. \rightsquigarrow N$ is normal.

Let H be a subgroup of G with $[G : H] = 2$. Then H is normal.

Proof: H has only two left cosets. These must be H and $G - H$. [Why?] And these must also be the right cosets. [Why?] Thus H is normal. \Box e.g., In S_3 , the subgroup $N = \{e, a, a^2\}$ has index 2, and so N is normal. Shaoyun Yi **Shaoyun Yi** [Cosets, Normal Subgroups, Factor Groups](#page-0-0) Spring 2022 8 / 21

Example: Normal Subgroups of D_4

$$
G=D_4=\{e,a,a^2,a^3,b,ab,a^2b,a^3b\}, \text{ where } a^4=e,b^2=e,ba=a^{-1}b.
$$

Refer to the subgroup diagram of D_4 in §3.6, slide $\#10$.

- The trivial subgroup $\{e\}$ and the improper subgroup $G = D_4$ are normal.
- The subgroups $\{e, a^2, b, a^2b\}, \{e, a, a^2, a^3\}, \{e, a^2, ab, a^3b\}$ are normal.
- $N = \{e, a^2\}, H = \{e, b\}, K = \{e, ab\}, L = \{e, a^2b\}, M = \{e, a^3b\}.$

Among the subgroups N, H, K, L, M , only the subgroup N is normal.

None of the subgroups H, K, L, M is normal: e.g., by direct computations,

 $aH \neq Ha$, $aK \neq Ka$, $aL \neq La$, $aM \neq Ma$.

N is normal: Even better, $N = \{e, a^2\}$ commutes with every element of G: a^2 commutes with *b*: $ba^2 = \cdots = a^2b$

 $a²$ commutes with powers of a.

This implies that the left and right cosets of N coincide. $\rightsquigarrow N$ is normal.

Factor Group

If N is a normal subgroup of G, then the set of left cosets of N forms a group under the coset multiplication given by $aNbN = abN$ for $a, b \in G$. This group is called the **factor group** of G determined by N. Write G/N .

Proof: well-defined: For $aN = cN$ and $bN = dN$, to show $abN = cdN$. It suffices to show $(ab)^{-1}cd \in N$. Since $a^{-1}c \in N$ and $b^{-1}d \in N$,

$$
(ab)^{-1}cd = b^{-1}(a^{-1}c)d = \underbrace{b^{-1}d}_{\in N} \underbrace{(d^{-1}(a^{-1}c)d)}_{\in N \text{ [Why?]}} \in N.
$$

associativity: Let a, b, $c \in G$. Then $(aNbN)cN = \cdots = aN(bNcN)$. identity: $eN = N$ is identity element. For $a \in G$, $eNaN = aN$, $aNeN = aN$. inverses: The inverse of *aN* is $a^{-1}N$. $aNa^{-1}N = N$, $a^{-1}NaN = N$.

Let N be a normal subgroup of the finite group G. If $a \in G$, then the order of aN is the smallest positive integer n such that $(aN)^n = a^nN = N$. That is, the order of aN is the smallest positive integer n such that $a^n \in N$.

Example

Abelian group $(G, +)$: Any subgroup is normal & "aN" \rightsquigarrow a + N.

Let $G = \mathbf{Z}_{12}$, and let $N = \{ [0], [3], [6], [9] \} = \langle [3] \rangle$. N is normal.

 \rightsquigarrow There are three elements of G/N , i.e., three left cosets of N in G:

- i) The first element is $N = [0] + N = \{[0], [3], [6], [9]\};$
- ii) Choose $[1] \notin N$, we obtain $[1] + N = \{[1], [4], [7], [10]\};$

iii) Choose $[2] \notin N \cup [1] + N$, we obtain $[2] + N = \{[2], [5], [8], [11]\}.$ Since the factor group G/N has order 3, we have $G/N \cong Z_3$. [Why?]

Alternatively, this can also be seen by considering the order of $[1] + N$.

 $2([1] + N) = 2[1] + N = [2] + N$, $3([1] + N) = [3] + N = N$.

I.e., the order of $[1] + N$ is the smallest positive integer *n* s.t. $n[1] \in N$. Thus $n = 3$ implies that $[1] + N$ has order 3. \rightarrow $G/N = \langle [1] + N \rangle \cong Z_3$

Example: $D_4/Z(D_4) \cong Z_2 \times Z_2$

 $G = D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$, where $a^4 = e, b^2 = e, ba = a^{-1}b$. Let $N=\{e,a^2\}$ be the center $Z(D_4)$ of $D_4.$ (See slide $\#9)$

The factor group G/N consists of the four cosets. More precisely,

$$
N=\{e,a^2\},\quad aN=\{a,a^3\},\quad bN=\{b,a^2b\},\quad abN=\{ab,a^3b\}.
$$

Recall that the group of order 4 is isomorphic to either \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$. Since we have

 $(aN)^2 = a^2N = N$

$$
\bullet (bN)^2 = b^2N = N
$$

$$
\bullet (abN)^2 = (ab)^2N = N
$$

This shows that every non-identity element of G/N has order 2. That is,

$$
D_4/Z(D_4)\cong \mathbf{Z}_2\times \mathbf{Z}_2.
$$

Another way to show that each of $\{aN, bN, abN\}$ has order 2 in G/N .

 $o(xN) = min\{n > 0 \mid x^n \in N\}$ for any $xN \in G/N$.

Three Examples from $G = \mathbb{Z}_4 \times \mathbb{Z}_4$

• $H = \{([0], [0]), ([2], [0]), ([0], [2]), ([2], [2])\}$: There are four cosets of H H, $([1],[0]) + H$, $([0],[1]) + H$, $([1],[1]) + H$.

$G/H \cong Z_2 \times Z_2$

Proof: Each nontrivial element of the factor group has order 2.

• $K = \{([0], [0]), ([1], [0]), ([2], [0]), ([3], [0])\}$: There are four cosets of K K, $([0],[1]) + K$, $([0],[2]) + K$, $([0],[3]) + K$.

$$
G/K\cong\bm{Z}_4
$$

Proof: $o(([0],[1]) + K) = 4 = |G/K|.$

• $N = \{([0], [0]), ([1], [1]), ([2], [2]), ([3], [3])\}$: There are four cosets of N

 $N, \quad ([1], [0]) + N, \quad ([2], [0]) + N, \quad ([3], [0]) + N.$

$$
G/N\cong {\bf Z}_4
$$

Proof: $o(([1],[0])+N) = 4 = |G/N|$.

Natural Projection

Let N be a normal subgroup of G. The mapping $\pi : G \to G/N$ defined by

$$
\pi(a) = aN, \quad \text{for all } a \in G,
$$
 (*)

is called the **natural projection** of G onto G/N .

Recall that the kernel of any group homomorphism is a normal subgroup. Converse \mathbf{C} : Any normal subgroup is the kernel of some homomorphism. Let N be a normal subgroup of G. Let $\pi: G \to G/N$ be defined as in (\star) . Then π is a group homomorphism with ker(π) = N. Direct check \checkmark ii) There is a one-to-one correspondence between {subgroups H of G with $H \supseteq N$ } \longleftrightarrow {subgroups K of G/N } $H \rightarrow \pi(H)$ $\pi^{-1}(K)$ ← K Under this correspondence, normal subgroups \leftrightarrow normal subgroups. " \leftrightarrow " follows from the fact that π is onto & Slide #12 in § 3.7 \checkmark .

Proof: {subgroups H of G with $H \supseteq N$ } \longleftrightarrow {subgroups K of G/N }

$$
H \mapsto \pi(H)
$$

$$
\pi^{-1}(K) \leftarrow K
$$

Let N be a normal subgroup of G. The **natural projection** $\pi : G \to G/N$ defined by $\pi(a) = aN$ is an onto group homomorphism with ker $(\pi) = N$.

 $K\, \longmapsto\, \pi^{-1}({\mathsf K})$ is a one-to-one mapping since π is onto. To show that this mapping is onto.

Let H be a subgroup of G with $H\supseteq \mathsf{N}.$ To show $H=\pi^{-1}(\pi(H))$:

$$
\bullet \ \pi^{-1}(\pi(H)) = \{x \in G \mid \pi(x) \in \pi(H)\} \qquad \rightsquigarrow H \subseteq \pi^{-1}(\pi(H))
$$

To see $\pi^{-1}(\pi(H))\subseteq H$: Let $a\in \pi^{-1}(\pi(H)).$ Then $\pi(a)\in \pi(H),$ and

 $aN = hN$ for some $h \in H$.

 $\rightsquigarrow h^{-1}a \in N \subseteq H$. Thus $a = h(h^{-1}a) \in H$.

Fundamental Homomorphism Theorem

If ϕ : $G_1 \rightarrow G_2$ is a homomorphism with $K = \text{ker}(\phi)$, then $G_1/K \cong \phi(G_1)$.

Proof: Recall that the kernel $K = \text{ker}(\phi)$ is a normal subgroup of G_1 . Define $\overline{\phi}$: $G_1/K \to \phi(G_1)$ by $\overline{\phi}(aK) = \phi(a)$ for all $aK \in G_1/K$. To show

 ϕ is a group isomorphism.

well-defined: If $aK = bK$, then $a = bk$ for some $k \in \text{ker}(\phi)$. Therefore,

$$
\overline{\phi}(aK) = \phi(a) = \phi(bK) = \phi(b)\phi(k) = \phi(b) = \overline{\phi}(bK).
$$

 $\overline{\phi}$ is a homomorphism: For all $a, b \in G_1$, we have

$$
\overline{\phi}(aKbK)=\overline{\phi}(abK)=\phi(ab)=\phi(a)\phi(b)=\overline{\phi}(aK)\overline{\phi}(bK).
$$

one-to-one: If $\overline{\phi}(aK)=\overline{\phi}(bK)$, then $\phi(a)=\phi(b).$ Thus $\phi(b^{-1}a)=e_2.$ This implies that $b^{-1}a\in K$, and so $aK=bK$. onto: It is clear by definition of $\overline{\phi}$.

Cayley's theorem: Every group G is isomorphic to a permutation group.

Proof: Define ϕ : $G \to \text{Sym}(G)$ by $\phi(a) = \lambda_a$, for any $a \in G$, where λ_a is the function defined by $\lambda_a(x) = ax$ for all $x \in G$. ϕ is a homomorphism:

For all
$$
x \in G
$$
, $\lambda_{ab}(x) = abx = \lambda_a(bx) = \lambda_a\lambda_b(x)$.
For all $a, b \in G$, $\phi(ab) = \lambda_{ab} \stackrel{!}{=} \lambda_a\lambda_b = \phi(a)\phi(b)$.

one-to-one: λ_a is the identity permutation only if $a = e$. So ker $(\phi) = \{e\}$. It follows Fundamental Homomorphism Theorem (FHT) that

$$
G/\ker(\phi) = G \cong \phi(G),
$$

where $\phi(G)$ is a permutation group since it is a subgroup of Sym(G). \Box

$$
\operatorname{GL}_n(R)/\operatorname{SL}_n(R)\cong R^\times
$$

Proof: Define ϕ : $\mathrm{GL}_n(\mathbf{R}) \to \mathbf{R}^\times$ by $\phi(A) = \det(A)$ for any $A \in \mathrm{GL}_n(\mathbf{R})$. ϕ is well-defined. \checkmark ϕ is a homomorphism. \checkmark ϕ is onto: \checkmark [Why?] $\ker(\phi) = \{A \mid \phi(A) = \det(A) = 1\} = \operatorname{SL}_n(\mathbf{R})$. Then use **FHT**. Shaoyun Yi [Cosets, Normal Subgroups, Factor Groups](#page-0-0) Spring 2022 17 / 21

Simple Group

Let $\phi: G_1 \to G_2$ be a group homomorphism. Two special cases:

- ϕ is one-to-one \Leftrightarrow ker $(\phi)=\{e_1\}.$ Thus $\overline{G_1}\cong \phi(\overline{G_1})$ in this case.
- **If ker**(ϕ) = G₁, then ϕ is the trivial mapping, i.e., ϕ (G₁) = {e₂}.

If G_1 has no proper nontrivial normal subgroups, then ϕ is either 1-to-1 or trivial.

A nontrivial group G is called simple if it has no proper nontrivial normal subgps.

e.g., For any prime p, the cyclic group Z_p is simple, since it has no proper nontrivial subgroups of any kind (every nonzero element is a generator).

The subgroups of Z_n correspond to divisors of n, and so to describe all factor groups of \mathbb{Z}_n we only need to describe $\mathbb{Z}_n/m\mathbb{Z}_n$ for all $m|n, m > 0$.

 $\mathbf{Z}_n/m\mathbf{Z}_n \cong \mathbf{Z}_m$ if $m|n, m > 0$.

Proof: Since any homomorphic image of a cyclic group is again cyclic, we can define $\phi : \mathbf{Z}_n \to \mathbf{Z}_m$ by $\phi([x]_n) = [x]_m$ for some $m|n, m > 0$. well-defined: If $[x]_n = [y]_n$, then $[x]_m = [y]_m$ since $m|n$. ϕ is a homomorphism: For any $[x]_n, [y]_n \in \mathbb{Z}_n$, we have

$$
\phi([x]_n+[y]_n)=\cdots=\phi([x]_n)+\phi([y_n]).
$$

onto: It is clear by definition of ϕ .

 $\ker(\phi) = \{ [x]_n | [x]_m = [0]_m \} = \{ [x]_n | x \text{ is a multiple of } m \} = mZ_n.$

It follows from the fundamental homomorphism theorem that

$$
\mathbf{Z}_n/m\mathbf{Z}_n\cong\mathbf{Z}_m.
$$

Factor Groups of Direct Products

Let $N_1 \subset G_1$ and $N_2 \subset G_2$ be normal subgroups.

 $N_1 \times N_2 = \{(x_1, x_2) \mid x_1 \in N_1, x_2 \in N_2\} \subset G_1 \times G_2.$

Then $N_1 \times N_2$ is a normal subgroup of the direct product $G_1 \times G_2$. [Why?]

$$
(G_1 \times G_2)/(N_1 \times N_2) \cong (G_1/N_1) \times (G_2/N_2).
$$
 (*)

Proof: Define ϕ : $G_1 \times G_2 \rightarrow (G_1/N_1) \times (G_2/N_2)$ by $\phi((x_1, x_2)) = (x_1N_1, x_2N_2)$. ϕ is well-defined. \checkmark ϕ is a homomorphism: For $(x_1, x_2), (y_1, y_2) \in G_1 \times G_2$, $\phi((x_1,x_2)(y_1,y_2)) = \cdots = \phi((x_1,x_2))\phi((y_1,y_2))$ ϕ is onto. ✔ ker(ϕ) = {(x₁, x₂) | $\phi((x_1, x_2)) = (N_1, N_2)$ } = $N_1 \times N_2$.

The desired (\star) follow from the fundamental homomorphism theorem.

e.g., the subgroups $H = 2Z_4 \times 2Z_4$ and $K = Z_4 \times \{0\}$ in $G = Z_4 \times Z_4$.

- $G/H = (Z_4 \times Z_4)/(2Z_4 \times 2Z_4) \cong (Z_4/2Z_4) \times (Z_4/2Z_4) \cong Z_2 \times Z_2$
- $G/K = (\mathbf{Z}_4 \times \mathbf{Z}_4)/(\mathbf{Z}_4 \times 4\mathbf{Z}_4) \cong (\mathbf{Z}_4/\mathbf{Z}_4) \times (\mathbf{Z}_4/4\mathbf{Z}_4) \cong \mathbf{Z}_1 \times \mathbf{Z}_4 \cong \mathbf{Z}_4$

П

A group G with subgroups H and K is called the **internal direct product** of H and K if (i) H, K are normal in G (ii) $H \cap K = \{e\}$ (iii) $HK = G$. Prove that $G \cong H \times K$.

Proof: Define $\phi: H \times K \to G$ by $\phi((h,k)) = hk$ for all $(h,k) \in H \times K.$ ϕ well-defined. \checkmark ϕ is a homomorphism: For all $(h_1, k_1), (h_2, k_2) \in H \times K$, $\phi((h_1,k_1)(h_2,k_2)) = \phi((h_1h_2,k_1k_2))$ $=h_1h_2k_1k_2 \stackrel{!}{=} h_1k_1h_2k_2 = \phi((h_1,k_1))\phi((h_2,k_2)).$ $\frac{1}{2}$ holds ⇔ $h_2 k_1 = k_1 h_2$ ⇔ $k_1^{-1} h_2 k_1 h_2^{-1} = e$. To show $k_1^{-1} h_2 k_1 h_2^{-1} = e$. $k_1^{-1}h_2k_1h_2^{-1} \in H$ since $k_1^{-1}h_2k_1 \in H$ [Why?] and $h_2^{-1} \in H$. $k_1^{-1}h_2k_1h_2^{-1} \in K$ since $h_2k_1h_2^{-1} \in K$, $k_1^{-1} \in K$. $\leadsto k_1^{-1}h_2k_1h_2^{-1} \in H \cap K = \{e\}$ ϕ is onto: For any $g\in G$, we have $g\stackrel{\rm (iii)}{=} h k$ with $h\in H, k\in K.$ $\ker(\phi)=\{(h,k)\mid \phi((h,k))=e\} \overset{!}{=} \{(h,k)\mid h,k\in H\cap K\}=\{(e,e)\}$ $\frac{1}{n}$ holds since $hk = e \leadsto h = k^{-1} \in K \cap H$ & $k = h^{-1} \in H \cap K$ \Box