§1.3, 1.4: Congruences and Integers Modulo n

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

For $a, b \in \mathbb{Z}$, a is called a **multiple** of b if $a = bq$ for some integer q. In this case, we also say that b is a **divisor** of a, and we write $b|a$.

If $a, b \in \mathbb{Z}$, not both zero, and d is a positive integer, then d is called the **greatest common divisor** of a and b (write $d = \gcd(a, b)$ or (a, b)) if

- \bigcirc d|a and d|b, and
- **2** if c|a and c|b, then c|d.

For example, $(4, 6) = 2$, $(12, 30) = 6$.

A linear combination of a and b has the form $ma + nb$, where $m, n \in \mathbb{Z}$.

Theorem 1

The $d = \gcd(a, b)$ is the **smallest** positive linear combination of a and b. And an integer is a linear combination of a and b iff it is a multiple of d.

Euclidean Algorithm

Division Algorithm: For any $a, b \in \mathbb{Z}$ with $b > 0$, there exist unique integers q (quotient) and r (remainder) s.t. $a = bq + r$ with $0 \le r \le b$.

 $(a, b) = (b, r)$: To show (b, r) $((a, b)$ and (a, b) $((b, r)$. (Use Theorem 1)

Given integers $a > b > 0$, the **Euclidean algorithm** uses the division algorithm repeatedly to obtain

> $a = bq_1 + r_1$ with $0 \le r_1 \le b$ $b = r_1 q_2 + r_2$ with $0 \le r_2 < r_1$ etc.

In particular, if $r_1 = 0$, then $b|a$, and so $(a, b) = b$.

Since $r_1 > r_2 > ...$, after a finite number of steps we obtain a remainder $r_{n+1} = 0$, i.e., the algorithm ends with the equation $r_{n-1} = r_n q_{n+1} + 0$. This gives us the greatest common divisor

$$
(a, b) = (b, r1) = (r1, r2) = ... = (rn, rn+1) = (rn, 0) = rn.
$$

Example: Use the Euclidean algorithm to find (126, 35).

$$
126 = 35 \cdot 3 + 21
$$

$$
35 = 21 \cdot 1 + 14
$$

$$
21 = 14 \cdot 1 + 7
$$

$$
14 = 7 \cdot 2 + 0
$$

 $(126, 35) = (35, 21) = (21, 14) = (14, 7) = (7, 0) = 7$

Q: Find the linear combination of 126 and 35 that gives $(126, 35) = 7$.

Idea: Reverse the Euclidean algorithm:

$$
7 = 21 - 14 \cdot 1
$$

= 21 - (35 - 21 \cdot 1)
= - 35 + 2 \cdot 21
= - 35 + 2 \cdot (126 - 35 \cdot 3)
= 2 \cdot 126 + (-7) \cdot 35

 \rightarrow The desired linear combination is 2 · 126 + (−7) · 35 = 7.

To find (a, b) : Beginning with the matrix

. .

$$
\begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \end{bmatrix} \qquad (a = bq_1 + r_1)
$$

\n
$$
\rightsquigarrow \begin{bmatrix} 1 & -q_1 & r_1 \\ 0 & 1 & b \end{bmatrix} \qquad (b = r_1q_2 + r_2)
$$

\n
$$
\rightsquigarrow \begin{bmatrix} 1 & -q_1 & r_1 \\ -q_2 & 1 + q_1q_2 & r_2 \end{bmatrix}
$$

The procedure continues until one of entries in the right-hand column is 0.

Then the other entry in this column is the greatest common divisor, and its row contains the coefficients of the desired linear combination.

Example Revisited: $(126, 35) = 7$

$$
\begin{bmatrix} 1 & 0 & 126 \ 0 & 1 & 35 \end{bmatrix}
$$
 (126 = 35 · 3 + 21)
\n
$$
\rightsquigarrow \begin{bmatrix} 1 & -3 & 21 \ 0 & 1 & 35 \end{bmatrix}
$$
 (35 = 21 · 1 + 14)
\n
$$
\rightsquigarrow \begin{bmatrix} 1 & -3 & 21 \ -1 & 4 & 14 \end{bmatrix}
$$
 (21 = 14 · 1 + 7)
\n
$$
\rightsquigarrow \begin{bmatrix} 2 & -7 & 7 \ -1 & 4 & 14 \end{bmatrix}
$$
 (14 = 7 · 2 + 0)
\n
$$
\rightsquigarrow \begin{bmatrix} 2 & -7 & 7 \ -5 & 18 & 0 \end{bmatrix}
$$

 \rightarrow (126, 35) = 7 and the linear combination 2 · 126 + (-7) · 35 = 7. \checkmark

Moreover, we can see that $(-5) \cdot 126 + 18 \cdot 35 = 0$ from the other row.

Relatively Prime

The nonzero integers a and b are said to be **relatively prime** if $(a, b) = 1$.

 $(a, b) = 1$ if and only if there exist integers m, n such that $ma + nb = 1$.

Theorem 1: (a, b) is the smallest positive linear combination of a and b

Let *a*, *b*, *c* be integers, where
$$
a \neq 0
$$
 or $b \neq 0$.
\ni) If $b | ac$ and $(a, b) = 1$, then $b | c$.
\nii) If $b | a$, $c | a$ and $(b, c) = 1$, then $bc | a$.
\niii) $(a, bc) = 1$ if and only if $(a, b) = 1$ and $(a, c) = 1$.
\niv) Write $1 = (a, b) = ma + nb \Rightarrow c = 1 \cdot c = mac + ncb \Rightarrow b | c$
\nvi) Write $a = bq \Rightarrow c | bq \Rightarrow c | q$ [Why?] Thus, $bc | a$ since $a = bq$.
\niii) " \Rightarrow ." Write $ma + nbc = 1 \Rightarrow ma + (nb)c = ma + (nc)b = 1$
\n" \Leftarrow ." $m_1a + n_1b = 1$, $m_2a + n_2c = 1 \Rightarrow (m_1a + n_1b)(m_2a + n_2c) = 1$
\n $\Rightarrow (\cdots)a + (n_1n_2)bc = 1 \Rightarrow (a, bc) = 1$

Least Common Multiple

If a and b are nonzero integers, and m is a positive integer, then m is called the least common multiple of a and b (write $m = \text{lcm}[a, b]$ or $[a, b]$) if

- \bullet a|m and b|m, and
- **2** if a|c and b|c, then $m|c$.

For example, $[4, 6] = 12$, $[12, 30] = 60$. Recall $(4, 6) = 2$, $(12, 30) = 6$.

Let a and b be positive integers. Then $(a, b) \cdot [a, b] = ab$.

Proof: By prime factorizations, we let $a = p_1^{\alpha_1} \cdots p_n^{\alpha_n}$ and $b = p_1^{\beta_1} \cdots p_n^{\beta_n}$. For each $i \in \{1, \ldots, n\}$, we let

$$
\delta_i = \min\{\alpha_i, \beta_i\} \quad \text{and} \quad \mu_i = \max\{\alpha_i, \beta_i\}.
$$

Then

$$
(a, b) = p_1^{\delta_1} \cdots p_n^{\delta_n}
$$
 and $[a, b] = p_1^{\mu_1} \cdots p_n^{\mu_n}$.

Observing that $\delta_i + \mu_i = \alpha_i + \beta_i$ for each i , we have $(\textit{a}, \textit{b}) \cdot [\textit{a}, \textit{b}] = \textit{ab}.$ \mathbf{I}

Congruences

Let n be a positive integer. Integers a and b are said to be **congruent modulo** n if they have the same remainder when divided by n . We write

 $a \equiv b \pmod{n}$.

The integer n is called the **modulus**.

Write $a = nq + r$, where $0 \le r < n$. Observing $r = n \cdot 0 + r$, it follows that

$$
a \equiv r \pmod{n}.
$$

Any integer is congruent modulo *n* to one of the integers $0, 1, 2, \ldots, n-1$.

Let a, b, $n \in \mathbb{Z}$ and $n > 0$. Then $a \equiv b \pmod{n}$ if and only if $n|(a - b)$.

$$
(\Rightarrow)
$$
: Write $a = nq_1 + r$ and $b = nq_2 + r$, thus $a - b = n(q_1 - q_2)$.

 (\Leftarrow) : $n|(a - b) \Rightarrow a - b = nk$ for some $k \in \mathbb{Z}$. Write $a = nq + r$, then

$$
b=a-nk=nq+r-nk=n(q-k)+r.
$$

Thus, a and b have the same remainder r when divided by n.

Properties of Congruences

$$
a \equiv b \pmod{n} \quad \Leftrightarrow \quad n|(a-b)
$$

Let a, b, c be integers. Then

- i) $a \equiv a \pmod{n}$;
- ii) if $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$;
- iii) if $a \equiv b$ (mod n) and $b \equiv c$ (mod n), then $a \equiv c$ (mod n).

Moreover, the following properties hold for all integers a, b, c, d .

- 1) If $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, then $a \pm b \equiv c \pm d \pmod{n}$, and $ab \equiv cd \pmod{n}$.
- 2) If $a + c \equiv a + d \pmod{n}$, then $c \equiv d \pmod{n}$.
- 3) If $ac \equiv ad \pmod{n}$ and $(a, n) = 1$, then $c \equiv d \pmod{n}$.

1) & 2) \checkmark 3) ac \equiv ad (mod n) \Rightarrow n|a(c – d) \Rightarrow n|(c – d) [Why?]

Example 2

$$
101 \equiv 5 \pmod{8}, 142 \equiv 6 \pmod{8}: \begin{cases} 101 + 142 \equiv 5 + 6 \equiv 3 \pmod{8} \\ 101 - 142 \equiv 5 - 6 \equiv 7 \pmod{8} \\ 101 \cdot 142 \equiv 5 \cdot 6 \equiv 6 \pmod{8} \end{cases}
$$

In 3), the condition $(a, n) = 1$ is necessary!

Example 3 $30 \equiv 6 \pmod{8}$, dividing both sides by 6 gives $5 \equiv 1 \pmod{8}$: False! Since $(3, 8) = 1$, dividing both sides by 3 gives $10 \equiv 2 \pmod{8}$: True.

Linear Congruences

Let a and $n > 1$ be integers.

There exists $b \in \mathbb{Z}$ such that $ab \equiv 1 \pmod{n}$ if and only if $(a, n) = 1$.

 (\Rightarrow) : Write $ab = 1 + qn$, then $b \cdot a + (-q) \cdot n = 1 \Rightarrow (a, n) = 1$.

 (\Leftarrow) : sa + tn = 1 for some s, t ∈ Z. Then s is the desired integer.

That is to say, $ax \equiv 1 \pmod{n}$ has a solution if and only if $(a, n) = 1$.

Use the **Euclidean algorithm** to get the solution by writing $1 = ab + nq$.

Q: What about a linear congruence of the form $ax \equiv b$ (mod n)?

(1) Let $d = (a, n)$. Then $ax \equiv b \pmod{n}$ has a solution if and only if $d|b$.

(2) If $d|b$, then there are d distinct solutions modulo n. These solutions are congruent modulo n/d .

An Algorithm for Solving $ax \equiv b$ (mod *n*)

- i) Find $d = (a, n)$. If $d|b$, then $ax \equiv b$ (mod n) has a solution.
- $ii)$ Divide both sides by d :

 $a_1x \equiv b_1 \pmod{n_1}$ with $(a_1, n_1) = 1$,

where $a_1 = a/d$, $b_1 = b/d$, and $n_1 = n/d$.

- iii) Find $c \in \mathbb{Z}$ such that $a_1 c \equiv 1 \pmod{n_1}$.
	- Euclidean algorithm;
	- trial and error (quicker for a small modulus).
- iv) Multiplying both sides of $a_1x \equiv b_1$ (mod n_1) by c gives the solution $x \equiv b_1 c \equiv s_0 \pmod{n_1}$ with $0 \le s_0 < n_1$.

v) The solution modulo n_1 determines d **distinct solutions modulo** n: $x \equiv s_0 + k n_1 \pmod{n}$, where $k = 0, 1, \ldots, d - 1$.

Example: Solve $60x \equiv 90$ (mod 105)

i)
$$
d = (60, 105) = (60, 45) = (45, 15) = (15, 0) = 15|90 \checkmark
$$

ii) Dividing both sides by 15:

 $4x \equiv 6 \pmod{7}$.

iii) Find an integer c such that $4c \equiv 1 \pmod{7}$.

- Euclidean algorithm;
- trial and error: $c = 2$.

iv) Multiply both sides of $4x \equiv 6 \pmod{7}$ by 2 to get $x \equiv 12 \equiv 5 \pmod{7}$.

 \mathbf{v}) There are 15 distinct solutions modulo 105.

 $x \equiv 5 + 7k$ (mod 105), where $k = 0, 1, ..., 14$.

Or

 $x \equiv 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103 \pmod{105}$.

Congruence Classes Modulo n

Let a and $n > 0$ be integers. The **congruence class of** a **modulo** n

$$
[a]_n := \{x \in \mathbf{Z} : x \equiv a \pmod{n}\}.
$$

An element of $[a]_n$ is called a representative of the congruence class.

Each congruence class $[a]_n$ has a unique non-negative representative that is smaller than n , i.e., the remainder when a is divided by n .

Thus, there are exactly n distinct congruence classes modulo n . We write

$$
\mathbf{Z}_n := \{ [0]_n, [1]_n, \ldots, [n-1]_n \},
$$
 which is the **set of integers modulo** n.

For example, the congruence classes modulo 3 are

$$
[0]_3 = {\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots},
$$

\n
$$
[1]_3 = {\ldots, -8, -5, -2, 1, 4, 7, 10, \ldots},
$$

\n
$$
[2]_3 = {\ldots, -7, -4, -1, 2, 5, 8, 11, \ldots}.
$$

That is, $\mathbf{Z}_3 = \{ [0]_3, [1]_3, [2]$

Example 4

 $Z_2 = \{ [0]_2, [1]_2 \}$: $[0]_2$ (resp. $[1]_2$) is the set of even (resp. odd) numbers. The below are the addition and multiplication tables in \mathbb{Z}_2 .

Let n be a positive integer, and let a, b be any integers. Then the addition and multiplication of congruence classes given below are **well-defined**:

$$
[a]_n + [b]_n = [a+b]_n \quad \text{and} \quad [a]_n \cdot [b]_n = [ab]_n.
$$

Properties of Addition and Multiplication for \mathbf{Z}_n

Associativity: $(|a|_n + |b|_n) + |c|_n = |a|_n + (|b|_n + |c|_n)$ $\left(\left[a\right]_n \cdot \left[b\right]_n\right) \cdot \left[c\right]_n = \left[a\right]_n \cdot \left(\left[b\right]_n \cdot \left[c\right]_n\right)$

Commutativity: $[a]_n + [b]_n = [b]_n + [a]_n$ $[a]_n \cdot [b]_n = [b]_n \cdot [a]_n$

Distributivity: $[a]_n \cdot (b]_n + [c]_n = [a]_n \cdot [b]_n + [a]_n \cdot [c]_n$

Identities: $[a]_n + [0]_n = [a]_n$

 $[a]_n \cdot [1]_n = [a]_n$

Additive inverses: $[a]_n + [-a]_n = [0]_n$

No cancellation law for \cdot : e.g., $[6]_8 \cdot [5]_8 = [6]_8 \cdot [1]_8$, but $[5]_8 \neq [1]_8$.

Shaoyun Yi [Congruences and Integers Modulo](#page-0-0) n Spring 2022 17 / 21

Q: What about **Multiplicative inverses**? A: Not always

Divisor of Zero and Unit in Z_n

If $[a]_n \in \mathbb{Z}_n$ and $[a]_n[b]_n = [0]_n$ for some *non-zero* congruence class $[b]_n$, then $[a]_n$ is called a **divisor of zero**.

If $[a]_n$ is not a divisor of zero, then $[a]_n[b]_n = [a]_n[c]_n$ implies $[b]_n = [c]_n$.

Proof: $[a]_n([b]_n - [c]_n) = [a]_n[b - c]_n = [0]_n \Rightarrow [b]_n - [c]_n = [0]_n$. \Box

If $[a]_n \in \mathsf{Z}_n$ and $[a]_n [b]_n = [1]_n$ for some $[b]_n$, then $[b]_n = [a]_n^{-1}$ is called a **multiplicative inverse** of $[a]_n$. In this case, $[a]_n$ is called a **unit** of \mathbb{Z}_n .

We will omit the subscript on congruence classes if the meaning is clear.

If [a] is a unit of \mathbb{Z}_n , then it cannot be a divisor of zero.

Proof: If $[a][b] = [0]$ \Rightarrow $[a]^{-1} \cdot [a][b] = [a]^{-1} \cdot [0]$ \Rightarrow $[b] = [0]$

i) [a] is a unit of \mathbb{Z}_n if and only if $(a, n) = 1$.

ii) A non-zero element [a] of Z_n is either a unit or a divisor of zero.

i) Use the Matrix form of the Euclidean algorithm:

$$
\begin{bmatrix} 1 & 0 & 16 \\ 0 & 1 & 11 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -1 & 5 \\ 0 & 1 & 11 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -1 & 5 \\ -2 & 3 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 11 & -16 & 0 \\ -2 & 3 & 1 \end{bmatrix}
$$

Thus $(-2) \cdot 16 + 3 \cdot 11 = 1$, which implies $[11]^{-1} = [3]$.

ii) Take successive powers of [11]:

$$
[11]^2 = [-5]^2 = [25] = [9],
$$

\n
$$
[11]^3 = [11]^2[11] = [9][11] = [99] = [3],
$$

\n
$$
[11]^4 = [11]^3[11] = [3][11] = [33] = [1].
$$

Thus $[11]^{-1} = [11]^{3} = [3]$.

Let n be a positive integer. Euler's φ -function, or the totient function

$$
\varphi(n)=\#\{a\in\mathbf{Z}\colon (a,n)=1 \text{ and } 1\leq a\leq n\}.
$$

Note that $\varphi(1) = 1$.

If the prime factorization of *n* is $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ with $\alpha_i > 0$, then

$$
\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right).
$$

In particular, $\varphi(p) = p - 1$ for any prime number p.

Example 5
\n
$$
\varphi(10) = 10 \left(\frac{1}{2}\right) \left(\frac{4}{5}\right) = 4
$$
 and $\varphi(36) = 36 \left(\frac{1}{2}\right) \left(\frac{2}{3}\right) = 12.$

The set of units of Z_n is $\mathsf{Z}_n^{\times} = \{ [a] : (a, n) = 1 \}$. $\leadsto |\mathsf{Z}_n^{\times}| = \varphi(n)$

 Z_n^{\times} is closed under multiplication.

$$
[a], [b] \in \mathbb{Z}_n^{\times} \Rightarrow (a, n) = (b, n) = 1 \Rightarrow (ab, n) = 1 \Rightarrow [a][b] = [ab] \in \mathbb{Z}_n^{\times}
$$

In fact, Z_n^\times is a $\operatorname{\mathsf{group}}$ under multiplication of congruence class.

Euler's Theorem

If
$$
(a, n) = 1
$$
, then $a^{\varphi(n)} \equiv 1 \pmod{n}$. Consequently, $[a]^{-1} = [a]^{\varphi(n)-1}$

We will give a single-sentence proof later by using group theory!

.