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Greatest Common Divisor

For a, b ∈ Z, a is called a multiple of b if a = bq for some integer q.
In this case, we also say that b is a divisor of a, and we write b|a.

If a, b ∈ Z, not both zero, and d is a positive integer, then d is called the
greatest common divisor of a and b (write d = gcd(a, b) or (a, b)) if

1 d |a and d |b, and

2 if c |a and c|b, then c |d .

For example, (4, 6) = 2, (12, 30) = 6.

A linear combination of a and b has the form ma + nb, where m, n ∈ Z.

Theorem 1

The d = gcd(a, b) is the smallest positive linear combination of a and b.
And an integer is a linear combination of a and b iff it is a multiple of d.

Shaoyun Yi Congruences and Integers Modulo n Spring 2022 2 / 21



Euclidean Algorithm

Division Algorithm: For any a, b ∈ Z with b > 0, there exist unique
integers q (quotient) and r (remainder) s.t. a = bq + r with 0 ≤ r < b.

(a, b) = (b, r) : To show (b, r)|(a, b) and (a, b)|(b, r). (Use Theorem 1)

Given integers a > b > 0, the Euclidean algorithm uses the division
algorithm repeatedly to obtain

a =bq1 + r1 with 0 ≤ r1 < b

b =r1q2 + r2 with 0 ≤ r2 < r1

etc.

In particular, if r1 = 0, then b|a, and so (a, b) = b.

Since r1 > r2 > . . ., after a finite number of steps we obtain a remainder
rn+1 = 0, i.e., the algorithm ends with the equation rn−1 = rnqn+1 + 0.

This gives us the greatest common divisor

(a, b) = (b, r1) = (r1, r2) = . . . = (rn, rn+1) = (rn, 0) = rn.
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Example: Use the Euclidean algorithm to find (126, 35).

126 =35 · 3 + 21

35 =21 · 1 + 14

21 =14 · 1 + 7

14 =7 · 2 + 0

 (126, 35) = (35, 21) = (21, 14) = (14, 7) = (7, 0) = 7

Q: Find the linear combination of 126 and 35 that gives (126, 35) = 7.

Idea: Reverse the Euclidean algorithm:

7 =21− 14 · 1
=21− (35− 21 · 1)

=− 35 + 2 · 21

=− 35 + 2 · (126− 35 · 3)

=2 · 126 + (−7) · 35

 The desired linear combination is 2 · 126 + (−7) · 35 = 7.
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Matrix Form of the Euclidean Algorithm

To find (a, b): Beginning with the matrix[
1 0 a
0 1 b

]
(a = bq1 + r1)

 

[
1 −q1 r1
0 1 b

]
(b = r1q2 + r2)

 

[
1 −q1 r1
−q2 1 + q1q2 r2

]
...

The procedure continues until one of entries in the right-hand column is 0.

Then the other entry in this column is the greatest common divisor, and
its row contains the coefficients of the desired linear combination.
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Example Revisited: (126, 35) = 7

[
1 0 126
0 1 35

]
(126 = 35 · 3 + 21)

 

[
1 −3 21
0 1 35

]
(35 = 21 · 1 + 14)

 

[
1 −3 21
−1 4 14

]
(21 = 14 · 1 + 7)

 

[
2 −7 7
−1 4 14

]
(14 = 7 · 2 + 0)

 

[
2 −7 7
−5 18 0

]
 (126, 35) = 7 and the linear combination 2 · 126 + (−7) · 35 = 7. 3

Moreover, we can see that (−5) · 126 + 18 · 35 = 0 from the other row.

Shaoyun Yi Congruences and Integers Modulo n Spring 2022 6 / 21



Relatively Prime

The nonzero integers a and b are said to be relatively prime if (a, b) = 1.

(a, b) = 1 if and only if there exist integers m, n such that ma + nb = 1.

Theorem 1: (a, b) is the smallest positive linear combination of a and b

Let a, b, c be integers, where a 6= 0 or b 6= 0.

i) If b|ac and (a, b) = 1, then b|c .

ii) If b|a, c |a and (b, c) = 1, then bc|a.

iii) (a, bc) = 1 if and only if (a, b) = 1 and (a, c) = 1.

i) Write 1 = (a, b) = ma + nb ⇒ c = 1 · c = mac + ncb ⇒ b|c
ii) Write a = bq ⇒ c |bq ⇒ c |q [Why?] Thus, bc|a since a = bq.

iii) “⇒:” Write ma + nbc = 1 ⇒ ma + (nb)c = ma + (nc)b = 1

iii) “⇐:” m1a+ n1b = 1,m2a+ n2c = 1 ⇒ (m1a+ n1b)(m2a+ n2c) = 1

iii) “⇐:” ⇒ (· · · )a + (n1n2)bc = 1 ⇒ (a, bc) = 1
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Least Common Multiple

If a and b are nonzero integers, and m is a positive integer, then m is called
the least common multiple of a and b (write m = lcm[a, b] or [a, b]) if

1 a|m and b|m, and

2 if a|c and b|c, then m|c .

For example, [4, 6] = 12, [12, 30] = 60. Recall (4, 6) = 2, (12, 30) = 6.

Let a and b be positive integers. Then (a, b) · [a, b] = ab.

Proof: By prime factorizations, we let a = pα1
1 · · · pαn

n and b = pβ11 · · · p
βn
n .

For each i ∈ {1, . . . , n}, we let

δi = min{αi , βi} and µi = max{αi , βi}.

Then

(a, b) = pδ11 · · · pδnn and [a, b] = pµ11 · · · p
µn
n .

Observing that δi +µi = αi +βi for each i , we have (a, b) · [a, b] = ab.
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Congruences

Let n be a positive integer. Integers a and b are said to be congruent
modulo n if they have the same remainder when divided by n. We write

a ≡ b (mod n).

The integer n is called the modulus.

Write a = nq + r , where 0 ≤ r < n. Observing r = n · 0 + r , it follows that

a ≡ r (mod n).

Any integer is congruent modulo n to one of the integers 0, 1, 2, . . . , n− 1.

Let a, b, n ∈ Z and n > 0. Then a ≡ b (mod n) if and only if n|(a− b).

(⇒) : Write a = nq1 + r and b = nq2 + r , thus a− b = n(q1 − q2).

(⇐) : n|(a− b) ⇒ a− b = nk for some k ∈ Z. Write a = nq + r , then

b = a− nk = nq + r − nk = n(q − k) + r .

(⇐) : Thus, a and b have the same remainder r when divided by n.
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Properties of Congruences

a ≡ b (mod n) ⇔ n|(a− b)

Let a, b, c be integers. Then

i) a ≡ a (mod n);

ii) if a ≡ b (mod n), then b ≡ a (mod n);

iii) if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

Moreover, the following properties hold for all integers a, b, c , d .

1) If a ≡ c (mod n) and b ≡ d (mod n), then a± b ≡ c ± d (mod n),
and ab ≡ cd (mod n).

2) If a + c ≡ a + d (mod n), then c ≡ d (mod n).

3) If ac ≡ ad (mod n) and (a, n) = 1, then c ≡ d (mod n).

1) & 2) 3. 3) ac ≡ ad (mod n) ⇒ n|a(c − d) ⇒ n|(c − d) [Why?]
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Example 2

101 ≡ 5 (mod 8), 142 ≡ 6 (mod 8) :


101 + 142 ≡ 5 + 6 ≡ 3 (mod 8)

101− 142 ≡ 5− 6 ≡ 7 (mod 8)

101 · 142 ≡ 5 · 6 ≡ 6 (mod 8)

In 3), the condition (a, n) = 1 is necessary!

Example 3

30 ≡ 6 (mod 8), dividing both sides by 6 gives 5 ≡ 1 (mod 8) : False!

Since (3, 8) = 1, dividing both sides by 3 gives 10 ≡ 2 (mod 8) : True.
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Linear Congruences

Let a and n > 1 be integers.

There exists b ∈ Z such that ab ≡ 1 (mod n) if and only if (a, n) = 1.

(⇒) : Write ab = 1 + qn, then b · a + (−q) · n = 1 ⇒ (a, n) = 1.

(⇐) : sa + tn = 1 for some s, t ∈ Z. Then s is the desired integer.

That is to say, ax ≡ 1 (mod n) has a solution if and only if (a, n) = 1.

Use the Euclidean algorithm to get the solution by writing 1 = ab + nq.

Q: What about a linear congruence of the form ax ≡ b (mod n)?

(1) Let d = (a, n). Then ax ≡ b (mod n) has a solution if and only if d |b.

(2) If d |b, then there are d distinct solutions modulo n. These solutions
(2) are congruent modulo n/d .
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An Algorithm for Solving ax ≡ b (mod n)

i) Find d = (a, n). If d |b, then ax ≡ b (mod n) has a solution.

ii) Divide both sides by d :

a1x ≡ b1 (mod n1) with (a1, n1) = 1,

where a1 = a/d , b1 = b/d , and n1 = n/d .

iii) Find c ∈ Z such that a1c ≡ 1 (mod n1).

Euclidean algorithm;
trial and error (quicker for a small modulus).

iv) Multiplying both sides of a1x ≡ b1 (mod n1) by c gives the solution

x ≡ b1c ≡ s0 (mod n1) with 0 ≤ s0 < n1.

v) The solution modulo n1 determines d distinct solutions modulo n:

x ≡ s0 + kn1 (mod n), where k = 0, 1, . . . , d − 1.
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Example: Solve 60x ≡ 90 (mod 105)

i) d = (60, 105) = (60, 45) = (45, 15) = (15, 0) = 15|90 3

ii) Dividing both sides by 15:

4x ≡ 6 (mod 7).

iii) Find an integer c such that 4c ≡ 1 (mod 7).

Euclidean algorithm;
trial and error: c = 2.

iv) Multiply both sides of 4x ≡ 6 (mod 7) by 2 to get

x ≡ 12 ≡ 5 (mod 7).

v) There are 15 distinct solutions modulo 105.

x ≡ 5 + 7k (mod 105), where k = 0, 1, . . . , 14.

Or

x ≡ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103 (mod 105).
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Congruence Classes Modulo n

Let a and n > 0 be integers. The congruence class of a modulo n

[a]n := {x ∈ Z : x ≡ a (mod n)}.

An element of [a]n is called a representative of the congruence class.

Each congruence class [a]n has a unique non-negative representative that
is smaller than n, i.e., the remainder when a is divided by n.

Thus, there are exactly n distinct congruence classes modulo n. We write

Zn := {[0]n, [1]n, . . . , [n − 1]n}, which is the set of integers modulo n.

For example, the congruence classes modulo 3 are

[0]3 ={. . . ,−9,−6,−3, 0, 3, 6, 9, . . .},
[1]3 ={. . . ,−8,−5,−2, 1, 4, 7, 10, . . .},
[2]3 ={. . . ,−7,−4,−1, 2, 5, 8, 11, . . .}.

That is, Z3 = {[0]3, [1]3, [2]3}.
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Addition and Multiplication of Congruence Classes

Example 4

Z2 = {[0]2, [1]2} : [0]2 (resp. [1]2) is the set of even (resp. odd) numbers.

The below are the addition and multiplication tables in Z2.

+ [0] [1]

[0] [0] [1]

[1] [1] [0]

· [0] [1]

[0] [0] [0]

[1] [0] [1]

Let n be a positive integer, and let a, b be any integers. Then the addition
and multiplication of congruence classes given below are well-defined:

[a]n + [b]n = [a + b]n and [a]n · [b]n = [ab]n.
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Properties of Addition and Multiplication for Zn

Associativity: ([a]n + [b]n) + [c]n = [a]n + ([b]n + [c]n)

Associativity: ([a]n · [b]n) · [c]n = [a]n · ([b]n · [c]n)

Commutativity: [a]n + [b]n = [b]n + [a]n

Commutativity: [a]n · [b]n = [b]n · [a]n

Distributivity: [a]n · ([b]n + [c]n) = [a]n · [b]n + [a]n · [c]n

Identities: [a]n + [0]n = [a]n

Identities: [a]n · [1]n = [a]n

Additive inverses: [a]n + [−a]n = [0]n

Q: What about Multiplicative inverses? A: Not always

No cancellation law for · : e.g., [6]8 · [5]8 = [6]8 · [1]8, but [5]8 6= [1]8.
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Divisor of Zero and Unit in Zn

If [a]n ∈ Zn and [a]n[b]n = [0]n for some non-zero congruence class [b]n,
then [a]n is called a divisor of zero.

If [a]n is not a divisor of zero, then [a]n[b]n = [a]n[c]n implies [b]n = [c]n.

Proof: [a]n([b]n − [c]n) = [a]n[b − c]n = [0]n ⇒ [b]n − [c]n = [0]n.

If [a]n ∈ Zn and [a]n[b]n = [1]n for some [b]n, then [b]n = [a]−1
n is called a

multiplicative inverse of [a]n. In this case, [a]n is called a unit of Zn.

We will omit the subscript on congruence classes if the meaning is clear.

If [a] is a unit of Zn, then it cannot be a divisor of zero.

Proof: If [a][b] = [0] ⇒ [a]−1 · [a][b] = [a]−1 · [0] ⇒ [b]
!

= [0]

i) [a] is a unit of Zn if and only if (a, n) = 1.

ii) A non-zero element [a] of Zn is either a unit or a divisor of zero.
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Example: Find [11]−1 in Z16

i) Use the Matrix form of the Euclidean algorithm:[
1 0 16
0 1 11

]
 

[
1 −1 5
0 1 11

]
 

[
1 −1 5
−2 3 1

]
 

[
11 −16 0
−2 3 1

]
Thus (−2) · 16 + 3 · 11 = 1, which implies [11]−1 = [3].

ii) Take successive powers of [11]:

[11]2 =[−5]2 = [25] = [9],

[11]3 =[11]2[11] = [9][11] = [99] = [3],

[11]4 =[11]3[11] = [3][11] = [33] = [1].

Thus [11]−1 = [11]3 = [3].
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Euler’s Totient Function

Let n be a positive integer. Euler’s ϕ-function, or the totient function

ϕ(n) = #{a ∈ Z : (a, n) = 1 and 1 ≤ a ≤ n}.

Note that ϕ(1) = 1.

If the prime factorization of n is n = pα1
1 · · · p

αk
k with αi > 0, then

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pk

)
.

In particular, ϕ(p) = p − 1 for any prime number p.

Example 5

ϕ(10) = 10

(
1

2

)(
4

5

)
= 4 and ϕ(36) = 36

(
1

2

)(
2

3

)
= 12.
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The set of Units: Z×n

The set of units of Zn is Z×
n = {[a] : (a, n) = 1}.  |Z×

n | = ϕ(n)

Z×
n is closed under multiplication.

[a], [b] ∈ Z×
n ⇒ (a, n) = (b, n) = 1 ⇒ (ab, n) = 1 ⇒ [a][b] = [ab] ∈ Z×

n

In fact, Z×
n is a group under multiplication of congruence class.

Euler’s Theorem

If (a, n) = 1, then aϕ(n) ≡ 1 (mod n). Consequently, [a]−1 = [a]ϕ(n)−1.

We will give a single-sentence proof later by using group theory!
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