Some Additional Practice Problems for Final Exam

Review Lecture Slides/Homework Assignments

Good luck for the final !

(1) Find gcd(7605, 5733), and express it as a linear combination of 7605 and 5733.

[1	0	7605	$\sim \rightarrow$	[1	-1	1872	$\sim \rightarrow$	1	-1	1872	. [49	-65	0]
0	1	5733		0	1	5733		$\left[-3\right]$	4	117	$\sim \rightarrow$	$\lfloor -3 \rfloor$	4	117

Thus gcd(7605, 5733) = 117, and $117 = (-3) \cdot 7605 + 4 \cdot 5733$.

(2) Solve the congruence $24x \equiv 168 \pmod{200}$.

 $d = \gcd(24, 200) = 8|168 \Rightarrow 3x \equiv 21 \pmod{25}$ and we have $3 \cdot 17 \equiv 1 \pmod{25}$. Thus, $x \equiv 21 \cdot 17 \equiv 7 \pmod{25}$, i.e., $x \equiv 7, 32, 57, 82, 107, 132, 157, 182 \pmod{200}$.

- (3) Let $\sigma = (13579)(126)(1253)$. Find its order and its inverse. Is σ even or odd? $\sigma = (163279)(4)(5)(8) = (163279)$. So $o(\sigma) = 6$ and $\sigma^{-1} = (972361) = (197236)$. And it is easy to see that σ is odd.
- (4) Let (G, \cdot) be a group and let $a \in G$. Define a new operation * on the set G by $x * y = x \cdot a \cdot y$, for all $x, y \in G$.

Show that G is a group under the operation *.

- (i) Closure (well-defined): Trivial.
- (ii) Associativity: For all $x, y, z \in G$, we have

 $(x*y)*z = (x \cdot a \cdot y)*z = (x \cdot a \cdot y) \cdot a \cdot z = x \cdot a \cdot (y \cdot a \cdot z) = x*(y*z).$

(iii) Identity: The identity element is a^{-1} . In particular, for any $x \in G$ we have $a^{-1} * x = a^{-1} \cdot a \cdot x = x$ and $x * a^{-1} = x \cdot a \cdot a^{-1} = x$.

(iv) Inverses: For any $x \in G$, its inverse is $(a \cdot x \cdot a)^{-1}$. In particular, we have

 $x * (a \cdot x \cdot a)^{-1} = x \cdot a \cdot a^{-1} \cdot x^{-1} \cdot a^{-1} = a^{-1} \\ (a \cdot x \cdot a)^{-1} * x = a^{-1} \cdot x^{-1} \cdot a^{-1} \cdot a \cdot x = a^{-1}$

- (5) For each binary operation * given below, determine whether or not * defines a group structure on the given set. If not, list the group axioms that fail to hold.
 - (a) Define * on \mathbf{Z} by $a * b = \min\{a, b\}$.

The operation is associative, but has no identity element.

(b) Define * on \mathbf{Z}^+ by $a * b = \max\{a, b\}$.

The operation is associative, and 1 is an identity element, but no other element has an inverse.

(c) Define * on **Z** by $x * y = x^2 y^3$.

The associative law fails, and there is no identity element.

(d) Define * on \mathbf{Z}^+ by $x * y = x^y$.

The associative law fails, and there is no identity element.

(e) Define * on **R** by x * y = x + y - 1.

Yes. $(\mathbf{R}, *)$ is a group.

(f) Define * on \mathbf{R}^{\times} by x * y = xy + 1.

The operation is not a binary operation (since closure fails).

(6) Let K be the following subset of $GL_2(\mathbf{R})$.

$$K = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{GL}_2(\mathbf{R}) \middle| a = d, c = -2b \right\}$$

Show that K is a subgroup of $GL_2(\mathbf{R})$.

(i) Nonempty:
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in K$$
.
(ii) For any $\begin{bmatrix} a_1 & b_1 \\ -2b_1 & a_1 \end{bmatrix}$, $\begin{bmatrix} a_2 & b_2 \\ -2b_2 & a_2 \end{bmatrix} \in K$, to show $\begin{bmatrix} a_1 & b_1 \\ -2b_1 & a_1 \end{bmatrix} \begin{bmatrix} a_2 & b_2 \\ -2b_2 & a_2 \end{bmatrix}^{-1} \in K$.
 $\begin{bmatrix} a_1 & b_1 \\ -2b_1 & a_1 \end{bmatrix} \begin{bmatrix} a_2 & b_2 \\ -2b_2 & a_2 \end{bmatrix}^{-1} = \frac{1}{a_2^2 + 2b_2^2} \begin{bmatrix} a_1 & b_1 \\ -2b_1 & a_1 \end{bmatrix} \begin{bmatrix} a_2 & -b_2 \\ 2b_2 & a_2 \end{bmatrix}$
 $= \frac{1}{a_2^2 + 2b_2^2} \begin{bmatrix} a_1a_2 + 2b_1b_2 & -a_1b_2 + a_2b_1 \\ -2a_2b_1 + 2a_1b_2 & a_1a_2 + 2b_1b_2 \end{bmatrix} \in K$

- (7) List all of the generators of the cyclic group $\mathbf{Z}_5 \times \mathbf{Z}_3$. ([a]₅, [b]₃), where $a \in \{1, 2, 3, 4\}$ and $b \in \{1, 2\}$.
- (8) Find the order of the element ([9]₁₂, [15]₁₈) in the group $\mathbf{Z}_{12} \times \mathbf{Z}_{18}$.

Since $o([9]_{12}) = \frac{12}{\gcd(9, 12)} = 4$ and $o([15]_{18}) = \frac{18}{\gcd(15, 18)} = 6$, $o(([9]_{12}, [15]_{18})) = 1cm[4, 6] = 12$.

- (9) Prove that
 - (a) $\mathbf{Z}_{17}^{\times} \cong \mathbf{Z}_{16}$.

Proof. Define $\phi : \mathbf{Z}_{16} \to \mathbf{Z}_{17}^{\times}$ by $\phi([n]_{16}) = [3]_{17}^n$. And it is easy to show that ϕ is an isomorphism. The motivation for defining such ϕ is that $\mathbf{Z}_{16} = \langle [1]_{16} \rangle$ and $\mathbf{Z}_{17}^{\times} = \langle [3]_{17} \rangle$. In particular, there is an easier way to show this isomorphism. We can see that $o([3]_{17}) = 16$ in \mathbf{Z}_{17}^{\times} , and so it is cyclic since $|\mathbf{Z}_{17}^{\times}| = 16$. So we have $\mathbf{Z}_{17}^{\times} \cong \mathbf{Z}_{16}$. To show $o([3]_{17}) = 16$ in \mathbf{Z}_{17}^{\times} :

 $[3]_{17}^2 = 9, \quad [3]_{17}^4 = [-4]_{17}, \quad [3]_{17}^8 = [16]_{17} = [-1]_{17}.$

This is because the order of an element in \mathbf{Z}_{17}^{\times} must be a divisor of 16. (b) $\mathbf{Z}_{30} \times \mathbf{Z}_2 \cong \mathbf{Z}_{10} \times \mathbf{Z}_6$. *Proof.* $\mathbf{Z}_{30} \times \mathbf{Z}_2 \cong \mathbf{Z}_2 \times \mathbf{Z}_3 \times \mathbf{Z}_5 \times \mathbf{Z}_2$ and $\mathbf{Z}_{10} \times \mathbf{Z}_6 \cong \mathbf{Z}_2 \times \mathbf{Z}_5 \times \mathbf{Z}_2 \times \mathbf{Z}_3$. There is a natural isomorphism between them.

(10) Is \mathbf{Z}_{20}^{\times} cyclic? Is \mathbf{Z}_{50}^{\times} cyclic?

 $\mathbf{Z}_{20}^{\times} = \{\pm 1, \pm 3, \pm 7, \pm 9\}$ is not cyclic since -1 and ± 9 have order 2, while ± 3 and ± 7 have order 4. That is, there is no element of order 8.

 \mathbf{Z}_{50}^{\times} is cyclic since $o([3]_{50}) = 20 = \varphi(50) = |\mathbf{Z}_{50}^{\times}|$. In particular,

 $[3]_{50}^2 = [9]_{50}, \quad [3]_{50}^4 = [31]_{50}, \quad [3]_{50}^5 = [93] = [-7]_{50}, \quad [3]_{50}^{10} = [49] = [-1]_{50}.$ Again it is because that $o([3]_{50})$ must be a divisor of 20: 1, 2, 4, 5, 10, 20.

Again it is because that $O([5]_{50})$ must be a divisor of 20: 1, 2, 4, 5, 10, 20.

(11) (a) In \mathbf{Z}_{30} , find the order of the subgroup $\langle [18]_{30} \rangle$; find the order of $\langle [24]_{30} \rangle$.

 $\langle [18]_{30} \rangle = \langle [6]_{30} \rangle \Rightarrow$ its order is 5. $\langle [24]_{30} \rangle = \langle [6]_{30} \rangle \Rightarrow$ its order is 5.

(b) In \mathbf{Z}_{45} , find all elements of order 15.

$$15 = o([k]_{45}) = \frac{45}{\gcd(k, 45)} \Rightarrow \gcd(k, 45) = 3 \Rightarrow \gcd(\frac{k}{3}, 15) = 1. \text{ Thus, } [k]_{45} = [3]_{45}, [6]_{45}, [12]_{45}, [21]_{45}, [24]_{45}, [33]_{45}, [39]_{45}, [42]_{45}.$$

(12) Prove that if G_1 and G_2 are groups of order 7 and 11, respectively, then the direct product $G_1 \times G_2$ is a cyclic group.

Proof. G_1 and G_2 are cyclic since 7 and 11 are primes. Let o(a) = 7 in G_1 and o(b) = 11 in G_2 . Then o((a, b)) = lcm[7, 11] = 77 in $G_1 \times G_2$. Hence proved. \Box

(13) For any elements $\sigma, \tau \in S_n$, show that $\sigma \tau \sigma^{-1} \tau^{-1} \in A_n$.

Proof. σ and σ^{-1} have the same number of transpositions in the product. In particular, we write $\sigma = \rho_1 \rho_2 \cdots \rho_k$ for $\rho_1, \rho_2, \ldots, \rho_k$ are transpositions. Then $\sigma^{-1} = \rho_k \cdots \rho_2 \rho_1$. This also holds for τ . It follows that $\sigma \tau \sigma^{-1} \tau^{-1}$ must have even number of transpositions in the product since the parity of a permutation won't change, i.e., $\sigma \tau \sigma^{-1} \tau^{-1} \in A_n$.

(14) Find the formulas for all group homomorphisms from \mathbf{Z}_{18} to \mathbf{Z}_{30} .

All group homomorphisms from \mathbf{Z}_{18} to \mathbf{Z}_{30} must have the form

 $\phi: \mathbf{Z}_{18} \to \mathbf{Z}_{30}$ defined by $\phi([x]_{18}) = [mx]_{30}$ for some $[m]_{30} \in \mathbf{Z}_{30}$.

This ϕ is well-defined if and only if 30|18*m*. This means that 5|3*m*, and so 5|*m* since gcd(5,3) = 1. Then, all the possible $[m]_{30}$'s are $[0]_{30}$, $[5]_{30}$, $[10]_{30}$, $[15]_{30}$, $[20]_{30}$, $[25]_{30}$. Thus, the formulas for all homomorphisms from \mathbf{Z}_{18} into \mathbf{Z}_{30} are:

 $\phi_{0}([x]_{18}) = [0]_{30}$ $\phi_{5}([x]_{18}) = [5x]_{30}$ $\phi_{10}([x]_{18}) = [10x]_{30}$ $\phi_{15}([x]_{18}) = [15x]_{30}$ $\phi_{20}([x]_{18}) = [20x]_{30}$ $\phi_{25}([x]_{18}) = [25x]_{30}$

defined for all $[x]_{18} \in \mathbf{Z}_{18}$.

(15) (a) List the cosets of $\langle [9]_{16} \rangle$ in \mathbf{Z}_{16}^{\times} , and find the order of each coset in $\mathbf{Z}_{16}^{\times}/\langle [9]_{16} \rangle$.

$\mathbf{Z}_{16}^{ imes} = \{$	$[[1]_{16}, [3]$	$_{16}, [5]_{16},$	$[7]_{16},$	$[9]_{16},$	$[11]_{16},$	$[13]_{16},$	$[15]_{16}\}.$	Then	we	have
--------------------------------	------------------	--------------------	-------------	-------------	--------------	--------------	----------------	------	----	------

coset of $\langle [9]_{16} \rangle$	order	reason
$\langle [9]_{16} \rangle = \{ [1]_{16}, [9]_{16} \}$	1	trivial
$[3]_{16} \cdot \langle [9]_{16} \rangle = \{ [3]_{16}, [11]_{16} \}$	2	$[3]_{16}^2 = [9]_{16}$
$[5]_{16} \cdot \langle [9]_{16} \rangle = \{ [5]_{16}, [13]_{16} \} $	2	$[5]_{16}^2 = [25]_{16} = [9]_{16}$
$[7]_{16} \cdot \langle [9]_{16} \rangle = \{ [7]_{16}, [15]_{16} \} \Big $	2	$[7]_{16}^2 = [49]_{16} = [1]_{16}$

(b) List the cosets of $\langle [7]_{16} \rangle$ in \mathbf{Z}_{16}^{\times} . Is the factor group $\mathbf{Z}_{16}^{\times}/\langle [7]_{16} \rangle$ cyclic?

$$\begin{array}{c|c} \operatorname{coset} \operatorname{of} \langle [7]_{16} \rangle & \operatorname{order} & \operatorname{reason} \\ \hline \langle [7]_{16} \rangle = \{ [1]_{16}, [7]_{16} \} & 1 & \operatorname{trivial} \\ [3]_{16} \cdot \langle [7]_{16} \rangle = \{ [3]_{16}, [5]_{16} \} & 4 & [3]_{16}^2 = [9]_{16}, [3]_{16}^4 = [1]_{16} \\ [9]_{16} \cdot \langle [7]_{16} \rangle = \{ [9]_{16}, [15]_{16} \} & 2 & [9]_{16}^2 = [1]_{16} \\ [11]_{16} \cdot \langle [7]_{16} \rangle = \{ [11]_{16}, [13]_{16} \} & 4 & [11]_{16}^2 = [9]_{16}, [11]_{16}^4 = [1]_{16} \end{array}$$

The factor group is cyclic. In fact, it easily follows from $[3]^2 \notin \langle [7]_{16} \rangle$.

- (16) Let G be the dihedral group D_6 and let H be the subset $\{e, a^3, b, a^3b\}$ of G.
 - (a) Show that H is subgroup of G.

Proof. It is easy to see that H is closed under the multiplication. In particular, $ba^3 = a^{-3}b = a^3b$. [See Homework 7 (3)]

This completes the proof since H is a finite subset.

(b) Is H a normal subgroup of G?

No. Since $aH \neq Ha$. In particular, we have

$$aH = \{a, a^4, ab, a^4b\},$$
 while $Ha = \{a, a^4, ba = a^5b, a^3ba = a^2b\}.$

Hence proved.

- (17) Let G be a group. For $a, b \in G$ we say that b is **conjugate** to a, written $b \sim a$, if there exists $g \in G$ such that $b = gag^{-1}$. Following part (a), the equivalence classes of \sim are called the **conjugacy classes** of G.
 - (a) Show that \sim is an equivalence relation on G.

Proof. (i) Reflexive: $a \sim a$ since $a = eae^{-1}$.

(ii) Symmetric: If $a \sim b$, then $a = gbg^{-1}$ for some $g \in G$, and so $b = g^{-1}a(g^{-1})^{-1}$, which shows that $b \sim a$.

(iii) Transitive: If
$$a \sim b$$
 and $b \sim c$, then $a = g_1 b g_1^{-1}$ and $b = g_2 c g_2^{-1}$ for some $g_1, g_2 \in G$. Thus, $a = g_1(g_2 c g_2^{-1}) g_1^{-1} = (g_1 g_2) c(g_1 g_2)^{-1}$, and so $a \sim c$.

(b) Show that $\phi_g: G \to G$ defined by $\phi_g(x) = gxg^{-1}$ is an isomorphism of G.

Proof. (i) well-defined: Trivial.

(ii) ϕ_g is a homomorphism: For any $x, y \in G$, we have

$$\phi_g(xy) = gxyg^{-1} = (gxg^{-1})(gyg^{-1}) = \phi_g(x)\phi_g(y)$$

- (iii) ϕ_g is onto: For any $x \in G$, we have $\phi_g(g^{-1}xg) = g(g^{-1}xg)g^{-1} = x$.
- (iv) $\ker(\phi_a) = \{x \in G \mid \phi_a(x) = gxg^{-1} = e\} = \{x \in G \mid x = g^{-1}eg\} = \{e\}.$

The desired results follow from the fundamental homomorphism theorem. \Box

(c) Show that a subgroup N of the group G is normal in G if and only if N is a union of conjugacy classes.

Proof. N is normal if and only if $gag^{-1} \in N$ for all $a \in N$ and $g \in G$. This implies that $b \in N$ if $b \sim a$, and so N contains the conjugacy class of a. It is equivalent to say that N is a union of conjugacy classess since a is an arbitrary element of N. This completes the proof.

Review Lecture Slides/Homework Assignments

Good luck for the final !

