Some Additional Practice Problems for Final Exam

Review Lecture Slides/Homework Assignments

Good luck for the final !

- (1) Find gcd(7605, 5733), and express it as a linear combination of 7605 and 5733.
- (2) Solve the congruence $24x \equiv 168 \pmod{200}$.
- (3) Let $\sigma = (13579)(126)(1253)$. Find its order and its inverse. Is σ even or odd?
- (4) Let (G, \cdot) be a group and let $a \in G$. Define a new operation * on the set G by $x * y = x \cdot a \cdot y$, for all $x, y \in G$.

Show that G is a group under the operation *.

- (5) For each binary operation * given below, determine whether or not * defines a group structure on the given set. If not, list the group axioms that fail to hold.
 - (a) Define * on **Z** by $a * b = \min\{a, b\}$.
 - (b) Define * on \mathbf{Z}^+ by $a * b = \max\{a, b\}$.
 - (c) Define * on **Z** by $x * y = x^2 y^3$.
 - (d) Define * on \mathbf{Z}^+ by $x * y = x^y$.
 - (e) Define * on **R** by x * y = x + y 1.
 - (f) Define * on \mathbf{R}^{\times} by x * y = xy + 1.
- (6) Let K be the following subset of $GL_2(\mathbf{R})$.

$$K = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{GL}_2(\mathbf{R}) \middle| a = d, c = -2b \right\}$$

Show that K is a subgroup of $GL_2(\mathbf{R})$.

- (7) List all of the generators of the cyclic group $\mathbf{Z}_5 \times \mathbf{Z}_3$.
- (8) Find the order of the element ($[9]_{12}$, $[15]_{18}$) in the group $\mathbf{Z}_{12} \times \mathbf{Z}_{18}$.
- (9) Prove that
 - (a) $\mathbf{Z}_{17}^{\times} \cong \mathbf{Z}_{16}$.
 - (b) $\mathbf{Z}_{30} \times \mathbf{Z}_2 \cong \mathbf{Z}_{10} \times \mathbf{Z}_6$.
- (10) Is \mathbf{Z}_{20}^{\times} cyclic? Is \mathbf{Z}_{50}^{\times} cyclic?
- (11) (a) In Z₃₀, find the order of the subgroup ([18]₃₀); find the order of ([24]₃₀).
 (b) In Z₄₅, find all elements of order 15.
- (12) Prove that if G_1 and G_2 are groups of order 7 and 11, respectively, then the direct product $G_1 \times G_2$ is a cyclic group.

- (13) For any elements $\sigma, \tau \in S_n$, show that $\sigma \tau \sigma^{-1} \tau^{-1} \in A_n$.
- (14) Find the formulas for all group homomorphisms from \mathbf{Z}_{18} to \mathbf{Z}_{30} .
- (15) (a) List the cosets of $\langle [9]_{16} \rangle$ in \mathbf{Z}_{16}^{\times} , and find the order of each coset in $\mathbf{Z}_{16}^{\times}/\langle [9]_{16} \rangle$. (b) List the cosets of $\langle [7]_{16} \rangle$ in \mathbf{Z}_{16}^{\times} . Is the factor group $\mathbf{Z}_{16}^{\times}/\langle [7]_{16} \rangle$ cyclic?
- (16) Let G be the dihedral group D_6 and let H be the subset $\{e, a^3, b, a^3b\}$ of G.
 - (a) Show that H is subgroup of G.
 - (b) Is H a normal subgroup of G?
- (17) Let G be a group. For $a, b \in G$ we say that b is **conjugate** to a, written $b \sim a$, if there exists $g \in G$ such that $b = gag^{-1}$. Following part (a), the equivalence classes of \sim are called the **conjugacy classes** of G.
 - (a) Show that \sim is an equivalence relation on G.
 - (b) Show that $\phi_g: G \to G$ defined by $\phi_g(x) = gxg^{-1}$ is an isomorphism of G.
 - (c) Show that a subgroup N of the group G is normal in G if and only if N is a union of conjugacy classes.

Review Lecture Slides/Homework Assignments

Good luck for the final !

 $\mathbf{2}$