Homework 8

Due: Apr 13th (Wednesday Class)

- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- (1) Write down all homomorphisms from \mathbf{Z}_{24} to \mathbf{Z}_{18} .
- (2) Write down all homomorphisms from \mathbf{Z} to \mathbf{Z}_{12} , which are onto.
- (3) For the group homomorphism $\phi: \mathbf{Z}_{15}^{\times} \to \mathbf{Z}_{15}^{\times}$ defined by $\phi([x]) = [x]^2$ for all $[x] \in \mathbf{Z}_{15}^{\times}$, find the kernel and image of ϕ .
- (4) Which of the following functions are homomorphisms? You need to show work to support your answers.
 - (a) $\phi: (\mathbf{R}^{\times}, \cdot) \to (\mathrm{GL}_2(\mathbf{R}), \cdot_{\mathrm{matrix}})$ defined by $\phi(a) = \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$.
 - (b) $\phi: (M_2(\mathbf{R}), +_{\text{matrix}}) \to (\mathbf{R}, +)$ defined by $\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a$.
 - (c) $\phi: (\operatorname{GL}_2(\mathbf{R}), \cdot_{\operatorname{matrix}}) \to (\mathbf{R}^{\times}, \cdot)$ defined by $\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ab$.
- (5) Let $\phi: G_1 \to G_2$ and $\theta: G_2 \to G_3$ be group homomorphisms. Prove that
 - (a) $\theta \phi: G_1 \to G_3$ is a homomorphism.
 - (b) $\ker(\phi) \subseteq \ker(\theta\phi)$.
- (6) Let G be a group, and let H be a normal subgroup of G. Show that for each $g \in G$ and $h \in H$ there exist h_1 and h_2 in H with $gh = h_1g$ and $hg = gh_2$.
- (7) Recall that the center Z(G) of a group G is

$$Z(G) = \{ x \in G \mid xg = gx \text{ for all } g \in G \}.$$

Prove that the center of any group is a normal subgroup.

(8) Prove that the intersection of two normal subgroups is a normal subgroup.

1