Homework 7

Due: Mar 23rd (Wednesday Class)

- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- (1) Find the orders of each of these permutations.
	- (a) $(123)(2435)(132)$
		- $= (1534)$, so order is 4.
	- (b) (136)(278)(42537)

 $=(138256)(47)$, so order is lcm[6, 2] = 6.

(2) Find the permutations that correspond to the rigid motions of a rectangle that is not a square. Do the same for the rigid motions of a rhombus (diamond) that is not a square.

Rigid motions of the rectangle: $(1), (14)(23), (12)(34), (13)(24)$

Rigid motions of the rhombus: $(1), (13), (24), (13)(24).$

(3) Let the dihedral group D_n be given by elements a of order n and b of order 2, where $ba = a^{-1}b$. Show that $ba^m = a^{-m}b$, for all $m \in \mathbb{Z}$.

For any positive integer m , we have

$$
ba^{m} = (ba)a^{m-1} = (a^{-1}b)a^{m-1} = a^{-1}(ba)a^{m-2} = a^{-2}(ba^{m-2}) = \dots = a^{-m}b.
$$

If *m* is a negative integer, then *m* = -|*m*|, and so we have

$$
ba^{m} = ba^{-|m|} = b(a^{-1})^{|m|} = (a^{-1})^{-|m|}b = (a^{-1})^{m}b = a^{-m}b.
$$

It is trivial for $m = 0$. In conclusion, we have $ba^m = a^{-m}b$, for all $m \in \mathbb{Z}$.

(4) Find the order of each element of D_6 .

We know that

Homework 7

Dies Mar 23rd (Wednesday Class)

• Plosse make sing our headering is clear enough to read. Thanks

• No late vect will be accorded.

(1) Find the accorded these permutations.

(a) (123)(2436)(132)

(a) (123) $D_6 = \{e, a, a^2, a^3, a^4, a^5, b, ab, a^2b, a^3b, a^4b, a^5b\}$, where $a^6 = e, b^2 = e, ba = a^{-1}b$. And we also know that $o(a^j) = \frac{n!}{n!}$ $gcd(j, n)$. Thus, e a a^2 a^3 a^4 a^5 order 1 6 3 2 3 6

Claim: All the remaining elements of the form $a^j b$ have the order 2 for $0 \leq j < 6$. $(a^j b)^2 = a^j (ba^j) b = a^j (a^{-j} b) b = (a^j a^{-j})(bb) = ee = e.$

 $\frac{1}{n}$ holds because of Question (3). Note that the above claim holds for any D_n .

(5) Let $\tau = (abc)$ and let σ be any permutation. Show that $\sigma \tau \sigma^{-1} = (\sigma(a)\sigma(b)\sigma(c))$.

 $\sigma \tau \sigma^{-1}(\sigma(a)) = \sigma(\tau(\sigma^{-1} \sigma(a))) = \sigma(\tau(a)) = \sigma(b)$: This implies $\sigma(a) \stackrel{\sigma \tau \sigma^{-1}}{\mapsto} \sigma(b)$. Similarly, we can check that $\sigma(b) \stackrel{\sigma \tau \sigma^{-1}}{\mapsto} \sigma(c)$ and $\sigma(c) \stackrel{\sigma \tau \sigma^{-1}}{\mapsto} \sigma(a)$.

There is no need to consider other elements since they are fixed by τ . For example, take any $d \notin \{a, b, c\}$, then $\sigma \tau \sigma^{-1}(\sigma(d)) = \sigma \tau(d) = \sigma(d)$.

(6) If $(12 \cdots k)$ is a cycle of length k and σ is any permutation, then show that $\sigma(12\cdots k)\sigma^{-1} = (\sigma(1)\sigma(2)\cdots \sigma(k))$. (Hint: It is a generalization of Question (5).)

For any $1 \leq i \leq k$, we have

 $\sigma(12\cdots k)\sigma^{-1}(\sigma(i)) = \sigma((12\cdots k)(\sigma^{-1}\sigma(i))) = \sigma((12\cdots k)(i)) = \sigma(i+1).$

And for $i = k$, we just take $i + 1$ as 1. Again, with the same reason, there is no need to consider the other elements.

(7) (a) In S_4 , find the subgroup H generated by (123) and (23).

 $\begin{array}{ll} \end{array} \begin{array}{ll} \end{array} \begin{array}{ll} \text{shock because of Question (3). Note that the above claim holds for any D_n, $T\in (\mathbb{Z}/q^2) \text{ and } T\in \mathbb{Z}/q^2$. \end{array} \begin{array}{ll} \text{Shock in } \mathbb{Z}/q^2 \text{ and } T\in \mathbb{Z}/q^2 \text{ and$ Since $(123) \in H$, $\langle (123) \rangle = \{(1), (123), (132)\} \subseteq H$. Since $(23) \in H$, $\langle (23) \rangle = \{(1), (23)\} \subseteq H$. Since H is a group, so by the closure axiom H contains $\{(1), (123), (132), (23), (123)(23) = (12), (132)(23) = (13)\}.$ And this set is closed under multiplication. In fact, $H \cong S_3$. Thus, $H = \{(1), (123), (132), (23), (12), (13)\}.$

(b) For $\sigma = (234)$, find the subgroup $\sigma H \sigma^{-1}$. (Hint: Use Question (5) or (6))

We need to compute $\sigma \tau \sigma^{-1}$ for each $\tau \in H$. First, $\sigma(1) \sigma^{-1} = \sigma \sigma^{-1} = (1)$. The calculations will be easier if we apply Question (5) or (6). In particular,

$$
\sigma(123)\sigma^{-1} = (\sigma(1)\sigma(2)\sigma(3)) = (134)
$$

$$
\sigma(132)\sigma^{-1} = (\sigma(1)\sigma(3)\sigma(2)) = (143)
$$

$$
\sigma(23)\sigma^{-1} = (\sigma(2)\sigma(3)) = (34)
$$

$$
\sigma(12)\sigma^{-1} = (\sigma(1)\sigma(2)) = (13)
$$

$$
\sigma(13)\sigma^{-1} = (\sigma(1)\sigma(3)) = (14)
$$

Thus, $\sigma H \sigma^{-1} = \{(1), (134), (143), (34), (13), (14)\}.$

(8)[∗] Show that S_n is isomorphic to a subgroup of A_{n+2} . (Hint: Any odd permutation in S_n composite $\tau = (n + 1, n + 2)$ is again an even permutations in S_{n+2} .

Question $(8)^*$ is a bonus question. It is optional for the students who are in Math 546. However, it is required for the students who are in Math 701I. Let $\tau = (n + 1 \; n + 2)$. Consider the map $\phi \colon S_n \to A_{n+2}$ defined as follows:

> $\phi(\sigma) = \begin{cases} \sigma & \text{if } \sigma \text{ is even,} \\ 0 & \text{if } \sigma \text{ is even,} \end{cases}$ $\sigma\tau$ if σ is odd.

First of all, this map is well-defined since $\phi(\sigma) \in A_{n+2}$ for all $\sigma \in S_n$. Note that in this first case, i.e., when $\sigma \in S_n$ is even, you should think about $\phi(\sigma) = \sigma$ fixing $n + 1$ and $n + 2$ in A_{n+2} . Then consider the following map

$\phi \colon S_n \to H$, where $H = \phi(S_n)$.

Obviously, this map is onto. Then it suffice to show that

- $\phi\colon S_n\to H,\text{ where }H=\phi(S_n).$ Obviously, this map is onto. Then it suffice to show that

(a) H = $\phi(S_n)$, a unitary compact of Ang. Note that Ang.) is at finite group

Moreover, $\phi\colon [1-\phi(1)]\in H.$ Coverne, for any $\phi(\pi_1), \phi(\pi_2)\$ (a) $H = \phi(S_n)$ is a subgroup of A_{n+2} . Note that A_{n+2} is a finite group. Nonempty: (1) = $\phi((1)) \in H$; Closure: For any $\phi(\sigma_1), \phi(\sigma_2) \in H$, to show $\phi(\sigma_1)\phi(\sigma_2) \in H$.
	- (i) If both of σ_1, σ_2 are even, then $\phi(\sigma_1)\phi(\sigma_2) = \sigma_1\sigma_2 = \phi(\sigma_1\sigma_2) \in H$.
	- (ii) If both of σ_1, σ_2 are odd and so $\sigma_1 \sigma_2$ is even, then $\phi(\sigma_1)\phi(\sigma_2)$ = $\sigma_1 \tau \sigma_2 \tau = \sigma_1 \sigma_2 = \phi(\sigma_1 \sigma_2) \in H$ since $\tau \sigma_2 = \sigma_2 \tau$ (they are disjoint) and so $\sigma_1 \tau \sigma_2 \tau = \sigma_1 \sigma_2 \tau^2 = \sigma_1 \sigma_2$.
	- (iii) If one of σ_1, σ_2 is odd and another one is even, say σ_1 is odd and σ_2 is even, then $\phi(\sigma_1)\phi(\sigma_2) = \sigma_1\tau\sigma_2 = \sigma_1\sigma_2\tau = \phi(\sigma_1\sigma_2) \in H$ since $\sigma_1\sigma_2$ is odd.
	- (b) ϕ preserves the product. It can be seen from the proof of above part (a).
	- (c) ϕ is one-to-one. If $\phi(\sigma) = (1)$, then we can see that σ must be (1). In fact,
		- (i) If σ is even, then $\phi(\sigma) = \sigma$. Thus, $\sigma = (1)$ since $\phi(\sigma) = (1)$.
		- (ii) If σ is odd, then $\phi(\sigma) = \sigma \tau$, which is impossible. Note that $\sigma \tau$ could never be (1) since σ fixing $n + 1$ and $n + 2$, but $\tau = (n + 1, n + 2)$.