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Due: Mar 16th (Wednesday Class)

• Please make sure your handwriting is clear enough to read. Thanks.
• No late work will be accepted.

(1) Finish the proof of (??) in Lecture Slides §3.5, #14/18. That is to say,

If G1
∼= H1 and G2

∼= H2, then G1 ×G2
∼= H1 ×H2.

Proof: Let θ1 : G1 → H1, θ2 : G2 → H2. Define φ : G1 ×G2 → H1 ×H2 by

φ
(
(x1, x2)

)
=
(
θ1(x1), θ2(x2)

)
, for all (x1, x2) ∈ G1 ×G2.

To show φ is a group isomorphism.

If G1
∼= H1 and G2

∼= H2, then G1 ×G2
∼= H1 ×H2.

Let θ1 : G1 → H1 and θ2 : G2 → H2. Define φ : G1 ×G2 → H1 ×H2 by

φ((x1, x2)) = (θ1(x1), θ2(x2)), for all (x1, x2) ∈ G1 ×G2.

Claim: φ is a group isomorphism.
(i) well-defined: Trivial since θ1(x1) ∈ H1 and θ2(x2) ∈ H2.

(ii) φ respects the two operations: For any (x1, x2), (y1, y2) ∈ G1 ×G2

φ((x1, x2)(y1, y2)) =φ((x1y1, x2y2))

=(θ1(x1y1), θ2(x2y2))

=(θ1(x1)θ1(y1), θ2(x2)θ2(y2))

=(θ1(x1), θ2(x2))(θ1(y1), θ2(y2))

=φ((x1, x2))φ((y1, y2))

(iii) one-to-one: If φ((x1, x2)) = (θ1(x1), θ2(x2)) = (eH1 , eH2), then

θ1(x1) = eH1 ⇒ x1 = eG1

θ2(x2) = eH2 ⇒ x2 = eG2

and so (x1, x2) = (eG1 , eG2) = eG1×G2 .
(iv) onto: Trivial since θ1 and θ2 are two groups isomorphisms. In particular,

for any element (h1, h2) ∈ H1×H2, we can always find x1 ∈ G1 and x2 ∈
G2 such that θ1(x1) = h1 and θ2(x2) = h2, and so φ((x1, x2)) = (h1, h2).

(2) Let G be a group and let a ∈ G be an element of order 30. List the powers of
a that have order 2, order 3 or order 5.

Since o(a) = 30 = |〈a〉|, then we have 〈a〉 ∼= Z30. In particular, you can
think about the cyclic subgroup 〈a〉 generated by a ∈ G is the “multiplicative
version” of the additive group Z30. Thus, we have

〈aj〉 = 〈ad〉, where d = (j, 30) and so o(aj) = |〈aj〉| = |〈ad〉| = 30

d
.

(i) o(aj) = 2 =
30

d
⇒ d = (j, 30) = 15⇒ j = 15.
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6(ii) o(aj) = 3 =

30

d
⇒ d = (j, 30) = 10⇒ j = 10, 20.

(iii) o(aj) = 5 =
30

d
⇒ d = (j, 30) = 6⇒ j = 6, 12, 18, 24.

(3) Give the subgroup diagrams of the following groups.
(a) Z24

(b) Z36

24 = 2331: Any divisor d = 2i3j,
where i = 0, 1, 2, 3 and j = 0, 1.

Z24 = 1Z24

2Z243Z24

6Z24 4Z24

12Z24 8Z24

24Z24 = 〈[0]24〉 = {[0]24}

36 = 2232: Any divisor d = 2i3j,
where i = 0, 1, 2 and j = 0, 1, 2.

Z36 = 1Z36

3Z36 2Z36

9Z36 6Z36 4Z36

18Z36 12Z36

36Z36 = 〈[0]36〉 = {[0]36}

(4) Which of Z×
18,Z

×
20 are cyclic? (Hint: Do not use The Primitive Root Theorem.

Check Lecture Slides §3.5, #17/18 )

(a) Check Z×
18 : ϕ(18) = 18(1− 1

2
)(1− 1

3
) = 6

Z×
18 = {[1], [5], [7], [11], [13], [17]} = {±[1],±[5],±[7]}

(i) [5]2 = [25] = [7], [5]3 = [35] = [−1], so o([5]) = 6 (Lagrange’s Thm).

This implies that Z×
18 = 〈[5]〉, and so Z×

18 is cyclic.

(b) Check Z×
20 : ϕ(20) = 20(1− 1

2
)(1− 1

5
) = 8

Z×
20 = {[1], [3], [7], [9], [11], [13], [17], [19]} = {±[1],±[3],±[7],±[9]}

(i) [3]2 = [9], [3]3 = [27] = [7], [3]4 = [21] = [1], so o([3]) = 4.

(ii) There is no need to try [7], [9] since [7], [9] ∈ 〈[3]〉.
(iii) [11] = [−9], [11]2 = [−9]2 = 1, so o([11]) = 2.

(iv) [13] = [−7], [13]2 = [−7]2 = [9], [13]4 = [9]2 = [1], so o([13]) = 4.
Why o([13]) 6= 3? Think about Lagrange’s Theorem!

(v) [17] = [−3], [17]4 = [−3]4 = 1, so o([17]) ≤ 4 since o([17])|4.

(vi) [19] = [−1], [19]2 = [−1]2 = 1, so o([19]) = 2.
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6This implies that there is no element of order 8, and so Z×

20 is not cyclic.
(5) Prove that Z×

10 is not isomorphic to Z×
12. (Hint: Do not use The Primitive

Root Theorem. Check Lecture Slides §3.5, #18/18 )

(a) Check Z×
10 : ϕ(10) = 10(1− 1

2
)(1− 1

5
) = 4

Z×
10 = {[1], [3], [7], [9]} = {±[1],±[3]}

(i) [3]2 = [9], so o([3]) = 4 (Lagrange’s Thm).

This implies that Z×
10 = 〈[3]〉, and so Z×

10 is cyclic.

(b) Check Z×
12 : ϕ(12) = 12(1− 1

2
)(1− 1

3
) = 4

Z×
12 = {[1], [5], [7], [11]} = {±[1],±[5]}

[5]2 = [7]2 = [11]2 = [1]
This implies that there is no element of order 4, and so Z×

12 is not cyclic.

Thus we have Z×
10 6∼= Z×

12.

(6) You need to show work to support your conclusions. (Hint: Check Lecture
Slides §3.5, #14/18 )
(a) Is Z3 × Z30 isomorphic to Z6 × Z15? Yes!

We have Z3 × Z30
∼= Z3 × Z6 × Z5 (or you can write Z3 × Z30

∼= Z3 ×
Z2×Z3×Z5) and Z6×Z15

∼= Z6×Z3×Z5 (or you can write Z6×Z15
∼=

Z2 × Z3 × Z3 × Z5).
Consider the function φ : Z3 × Z6 × Z5 → Z6 × Z3 × Z5 by

φ(([x1]3, [x2]6, [x3]5)) = ([x2]6, [x1]3, [x3]5)
for any element ([x1]3, [x2]6, [x3]5) ∈ Z3 ×Z6 ×Z5. It is obvious that φ is
an isomorphism. Thus, we prove that Z3 × Z30

∼= Z6 × Z15.
Or you can consider φ : Z3 × Z2 × Z3 × Z5 → Z2 × Z3 × Z3 × Z5 by . . .

(b) Is Z9 × Z14 isomorphic to Z6 × Z21? No!

We have Z9 × Z14
∼= Z9 × Z2 × Z7 and Z6 × Z21

∼= Z6 × Z3 × Z7
∼=

Z2 × Z3 × Z3 × Z7.
It shows that the first has an element of order 9, while the second has
none. Thus we have Z9 × Z14 6∼= Z6 × Z21.

(7) Let G be the set of all 3 × 3 matrices of the form

1 0 0
a 1 0
b c 1

. Show that if

a, b, c ∈ Z3, then G is a group with exponent 3.
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6For any a, b, c ∈ Z3, we have1 0 0

a 1 0
b c 1

2

=

1 0 0
a 1 0
b c 1

1 0 0
a 1 0
b c 1

 =

 1 0 0
2a 1 0

2b+ ac 2c 1


1 0 0
a 1 0
b c 1

3

=

1 0 0
a 1 0
b c 1

 1 0 0
2a 1 0

2b+ ac 2c 1

 =

 1 0 0
3a 1 0

3b+ 3ac 3c 1

 = I3

(8) Prove that any cyclic group with more than two elements has at least two
different generators.

If G is an infinite cyclic group, then G ∼= Z. And we know that 1 and −1 are
the only two generators for Z. That is, Z = 〈1〉 = 〈−1〉.
If G is a finite cyclic group with |G| = n > 2, then G ∼= Zn. Also we know
that at least [1]n and [−1]n are generators for Zn since they are units in Zn,
i.e., [1]n, [−1]n ∈ Z×

n . And [1]n 6= [−1]n if n > 2. This completes the proof.

Or proof by contradiction: Let G = 〈a〉 for some element a 6= e. Suppose that
a is the only generator of the group G. However, we also know that G = 〈a−1〉.
Since a is the only generator of G by assumption, we have

a = a−1 ⇒ a2 = e⇒ o(a) = |〈a〉| = |G| = 2 since a 6= e, a contradiction.

Thus, G has at least two different generators.

(9)∗ Let G be any group with no proper, nontrivial subgroups, and assume that G
has more than one element. Prove that G must be isomorphic to Zp for some
prime p.

Question (9)∗ is a bonus question. It is optional for the students who are in
Math 546. However, it is required for the students who are in Math 701I.

Assume that the only subgroups of G are the trivial subgroup {e} and itself.

Since |G| > 1, there exists a non-identity element a ∈ G. Then we have
G = 〈a〉 since 〈a〉 is a subgroup of G but not {e}, and so G is cyclic.

Moreover, G is a finite cyclic group. Otherwise, 〈ak〉 is a proper, nontrivial
subgroup of G = 〈a〉 for any positive integer k, a contradiction.

Let |G| = n > 1. And so we have G ∼= Zn since G is cyclic. In particular,
for each divisor d of n, there exists a (unique) subgroup H of order d since G
is a finite cyclic group. By assumption, d has only two possibilities, that is,
d = 1 or d = n. This implies that n has to be a prime number p. Therefore,
G ∼= Zp.
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