Homework 5

- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- (1) Show that the multiplicative group \mathbf{Z}_7^{\times} is isomorphic to the additive group \mathbf{Z}_6 .

Define a function $\phi : \mathbf{Z}_6 \to \mathbf{Z}_7^{\times}$ by letting $\phi([n]_6) = [3]_7^n$ since $\mathbf{Z}_7^{\times} = \langle [3]_7 \rangle$.

- If $[n_1]_6 = [n_2]_6$, i.e., $n_1 \equiv n_2 \pmod{6}$, then $[3]_7^{n_1} = [3]_7^{n_2}$ since $o([3]_7) = 6$. This implies that $\phi([n_1]_6) = \phi([n_2]_6)$. Thus, ϕ is well-defined.
- **Homework 5**

Due: Mar 2nd (Wednesday Class)

 Please make some point and Class and the section of the section of the section of the section of \mathbb{Z}_2 is a
 Contrary of the section of the section of \mathbb{Z}_2 is a
 • For any two elements $[m]_6, [n]_6 \in \mathbb{Z}_6$, we have $\phi([m]_6 + [n]_6) = \phi([m+n]_6) = [3]_7^{m+n} = [3]_7^m \cdot [3]_7^n = \phi([m]_6) \cdot \phi([n]_6).$ Thus, ϕ respects the two operations.
	- If $\phi([n]_6) = [3]_7^n = [1]_7$, then $6|n$ since $o([3]_7) = 6$. So $[n]_6 = [0]_6$. Thus ϕ is one-to-one.
	- Since $|\mathbf{Z}_6| = |\mathbf{Z}_7^{\times}| = 6$, any any one-to-one mapping must be onto.

Thus, ϕ is an isomorphism.

(2) Show that the multiplicative group \mathbf{Z}_8^{\times} is isomorphic to the group $\mathbf{Z}_2 \times \mathbf{Z}_2$.

 $\mathbf{Z}_8^{\times} = \{ [1]_8, [3]_8, [5]_8, [7]_8 \}$ and $\mathbf{Z}_2 \times \mathbf{Z}_2 = \{ ([0]_2, [0]_2), ([1]_2, [0]_2), ([0]_2, [1]_2), ([1]_2, [1]_2) \}$ Define a function $\phi : \mathbf{Z}_8^{\times} \to \mathbf{Z}_2 \times \mathbf{Z}_2$ by letting

 $\phi([1]_8) = ([0]_2, [0]_2), \phi([3]_8) = ([1]_2, [0]_2), \phi([5]_8) = ([0]_2, [1]_2), \phi([7]_8) = ([1]_2, [1]_2).$

- It is easy to see that ϕ is one-to-one and onto from the definition of ϕ .
- It follows that from the straightforward calculation that ϕ respects the two operations. For any $[a]_8$, $[b]_8 \in \mathbb{Z}_8^{\times}$, we have $\phi([a]_8[b]_8) = \phi([a]_8)\phi([b]_8)$.

Thus, ϕ is an isomorphism.

You can also write the function ϕ in a compact version. In particular,

$$
\phi([3]^m_8[5]^n_8) = ([m]_2,[n]_2) \text{ for } m = 0,1 \text{ and } n = 0,1.
$$

(3) Show that \mathbb{Z}_5^{\times} is not isomorphic to \mathbb{Z}_8^{\times} by showing that the first group has an element of order 4 but the second group does not.

In \mathbb{Z}_5^{\times} , the element $[3]_5$ has order 4. And $\mathbb{Z}_5^{\times} = \langle [3]_5 \rangle$ implies that \mathbb{Z}_5^{\times} is cyclic.

In \mathbb{Z}_8^{\times} , every non-identity element has order 2. In particular, \mathbb{Z}_8^{\times} is not cyclic.

Thus there cannot be an isomorphism between them.

(4) Find two abelian groups of order 8 that are not isomorphic.

 $\mathbf{Z}_8 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_4$. The first one is cyclic, but the second one is not cyclic;

 $\mathbf{Z}_8 \not\cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$. Same reason as above;

 $\mathbf{Z}_2 \times \mathbf{Z}_4 \ncong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$. The first group has an element of order 4, eg. $([1]_2, [1]_4)$. However, in the second group, every non-identity element has order 2.

(5) Let G be any group, and let a be a fixed element of G. Define a function

 $\phi_a: G \to G$ by $\phi_a(x) = axa^{-1}$, for all $x \in G$.

- Show that ϕ_a is an isomorphism.
	- well-defined: Trivial.
	- respects the two operations: For any $x, y \in G$, we have $\phi_a(xy) = axya^{-1} = ax(a^{-1}a)ya^{-1} = (axa^{-1})(aya^{-1}) = \phi_a(x)\phi_a(y).$
	- one-to-one: If $\phi_a(x) = e$, then $axa^{-1} = e$, and so $x = a^{-1}ea = e$.
	- onto: For any $y \in G$, we have $\phi_a(a^{-1}ya) = a(a^{-1}ya)a^{-1} = y$.

Thus, ϕ is an isomorphism.

(6) Let G be any group. Define $\phi : G \to G$ by $\phi(x) = x^{-1}$, for all $x \in G$.

(a) Prove that ϕ is one-to-one and onto.

(4) Find two abelian groups of order 8 that are not isomorphic.
 $\mathbf{Z}_2 \neq \mathbf{Z}_2 \times \mathbf{Z}_4$. The first one is evolic, but the second one is not cyclic,
 $\mathbf{Z}_2 \neq \mathbf{Z}_2 \times \mathbf{Z}_4$. Since resonan as above, is not conti To show ϕ is one-to-one and onto, we are trying to find its inverse function. Define $\phi^{-1}: G \to G$ by letting $\phi^{-1}(x) = x^{-1}$ for all $x \in G$. Then we have $\phi(\phi^{-1}(x)) = \phi(x^{-1}) = (x^{-1})^{-1} = x; \phi^{-1}(\phi(x)) = \phi^{-1}(x^{-1}) = (x^{-1})^{-1} = x$ for all $x \in G$. This shows that ϕ^{-1} is the inverse function of ϕ .

(b) Prove that ϕ is an isomorphism if and only if G is abelian.

By part (a), to show ϕ is an isomorphism, it suffices to show that ϕ preserves products. For any two elements $x, y \in G$, we have

$$
\phi(xy) = (xy)^{-1} = y^{-1}x^{-1}.
$$

• If G is abelian, $\phi(xy) = (xy)^{-1} = y^{-1}x^{-1} = x^{-1}y^{-1} = \phi(x)\phi(y)$.

−1

• If ϕ preserves products, then we have $\phi(xy) = \phi(x)\phi(y)$. That is, $y^{-1}x^{-1} = x^{-1}y^{-1} \Rightarrow (xy)y^{-1}x^{-1}(yx) = (xy)x^{-1}y^{-1}(yx) \Rightarrow yx = xy$ This shows that G is abelian since x, y are arbitrary elements in G. In conclusion, ϕ is an isomorphism if and only if G is abelian.

(7) Let (G, \cdot) be a group. Define a new binary operation $*$ on G by the formula $a * b = b \cdot a$, for all $a, b \in G$.

Show that the group $(G, *)$ is isomorphic to the group (G, \cdot) .

Let $G_1 = (G, \cdot)$ and let $G_2 = (G, *)$. Define a function $\phi : G_1 \to G_2$ by $\phi(a) = a^{-1}$ for all $a \in G_1$.

- well-defined: $\phi(a) = a^{-1} \in G_2$ since G is a group.
- respects the two operations: For any two elements $a, b \in G_1$, we have $\phi(a \cdot b) = (a \cdot b)^{-1} = b^{-1} \cdot a^{-1} = a^{-1} * b^{-1} = \phi(a) * \phi(b).$
- one-to-one: If $\phi(x) = e$ for $x \in G_1$, then $x^{-1} = e$ and so $x = e$.
- onto: For any $a \in G_2$, we have $\phi(a^{-1}) = (a^{-1})^{-1} = a$.

Thus, ϕ is an isomorphism.

(8)[∗] Define $*$ on **R** by $a * b = a + b - 1$, for all $a, b \in \mathbb{R}$. Show that the group $(\mathbb{R}, *)$ is isomorphic to the group $(\mathbf{R}, +)$.

• one-to-me. If $\phi(x) = v$ for $x \in G_i$, then $x^{-1} = c$ and so $x = c$.
Thus, ϕ is an isomorphism.

Thus, ϕ is a monophism.

Thus the properties of $\phi(x^{-1}) = (\alpha^{-1})^{-1} = a$.

S.Y. Define v on R, by $\alpha \times b = a + b - 1$, for all Question $(8)^*$ is a bonus question. It is optional for the students who are in Math 546. However, it is required for the students who are in Math 701I.

Let $G_1 = (\mathbf{R}, *)$ and let $G_2 = (\mathbf{R}, +)$. Define a function $\phi : G_1 \to G_2$ by $\phi(a) = a - 1$ for all $a \in G_1$.

- well-defined: Trivial.
- ϕ respects the two operations: For any two elements $a, b \in G_1$, we have $\phi(a * b) = \phi(a + b - 1) = a + b - 1 - 1 = (a - 1) + (b - 1) = \phi(a) + \phi(b).$
- one-to-one: If $\phi(a) = e_2 = 0$, then $a 1 = 0$, and so $a = 1 = e_1$.
- onto: For any $x \in G_2$, we have $\phi(x+1) = x+1-1 = x$. \checkmark

Thus, ϕ is an isomorphism.