Homework 5

Due: Mar 2nd (Wednesday Class)

- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- (1) Show that the multiplicative group \mathbf{Z}_7^{\times} is isomorphic to the additive group \mathbf{Z}_6 .
- (2) Show that the multiplicative group \mathbf{Z}_8^{\times} is isomorphic to the group $\mathbf{Z}_2 \times \mathbf{Z}_2$.
- (3) Show that \mathbf{Z}_5^{\times} is not isomorphic to \mathbf{Z}_8^{\times} by showing that the first group has an element of order 4 but the second group does not.
- (4) Find two abelian groups of order 8 that are not isomorphic.
- (5) Let G be any group, and let a be a fixed element of G. Define a function $\phi_a: G \to G$ by $\phi_a(x) = axa^{-1}$, for all $x \in G$.

Show that ϕ_a is an isomorphism.

- (6) Let G be any group. Define $\phi: G \to G$ by $\phi(x) = x^{-1}$, for all $x \in G$.
 - (a) Prove that ϕ is one-to-one and onto.
 - (b) Prove that ϕ is an isomorphism if and only if G is abelian.
- (7) Let (G, \cdot) be a group. Define a new binary operation * on G by the formula $a * b = b \cdot a$, for all $a, b \in G$.

Show that the group (G, *) is isomorphic to the group (G, \cdot) .

(8)* Define * on **R** by a * b = a + b - 1, for all $a, b \in \mathbf{R}$. Show that the group $(\mathbf{R}, *)$ is isomorphic to the group $(\mathbf{R}, +)$.

Question (8)^{*} is a bonus question. It is optional for the students who are in Math 546. However, it is required for the students who are in Math 7011.

