Homework 3

Due: Feb 9th (Wednesday class)

- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- (1) In the group $GL_2(\mathbf{R})$ under matrix multiplication, find the order of each of the following elements.

Homework 3
\nDue: **Feb 9th (Wednesday class)**
\n• Please make sure your handwriting is clear enough to read. Thanks.
\n• No late work will be accepted.
\n(1) In the group
$$
GL_2(\mathbf{R})
$$
 under matrix multiplication, find the order of each of the following elements.
\n(a) $\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}^3 = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -I_2 & -I_3 \\ 1 & 0 \end{bmatrix} = (-I_2)^2 = I_2$. Thus, the matrix $\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$ has order 6.
\nIt easily follows from the direct computations to see that its order cannot be 4 or 5.
\n(b) $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}$ for all *n*. Thus $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ has infinite order.
\n(2) For each of the following groups, find all cyclic subgroups of the group.
\n(a) $(\mathbf{Z}_8, +\mathbf{I}_8)$
\n $\mathbf{Z}_8 = \{[1], 8 \mid [2] \} \setminus \{[3] \} = \{[3] \} \setminus \{[7] \}$ since $\mathbf{Z}_8^{\times} = \{[1], [3], [7] \}$.
\n(2) $\begin{bmatrix} 2(6) \mid 2(6) \mid 2(6) \mid 2(7) \mid 3(16) \end{bmatrix}$
\n(b) $(\mathbf{Z}_8^{\times}, \mathbf{I}_{18})$
\n $\begin{bmatrix} 2(1) \mid 2(6) \mid 2(1, 4], [6] \} \end{bmatrix}$
\n(b) $(\mathbf{Z}_{18}^{\times}, \mathbf{I}_{18})$
\n \begin

(2) For each of the following groups, find all cyclic subgroups of the group.

(a)
$$
(\mathbf{Z}_8, +_{[\]_8})
$$

\n $\mathbf{Z}_8 = \langle [1] \rangle = \langle [3] \rangle = \langle [5] \rangle = \langle [7] \rangle$ since $\mathbf{Z}_8^{\times} = \{ [1], [3], [5], [7] \}$.
\n $\langle [2] \rangle = \langle [6] \rangle = \{ [0], [2], [4], [6] \}$
\n $\langle [4] \rangle = \{ [0], [4] \}$
\n $\langle [0] \rangle = \{ [0] \}$
\n(b) $(\mathbf{Z}_{12}^{\times}, \cdot_{[\]_{12}})$
\n $\mathbf{Z}_{12}^{\times} = \{ [1], [5], [7], [11] \} = \{ [1], [5], [-5], [-1] \}$
\n $\langle [1] \rangle = \{ [1], [5] \}$
\n $\langle [7] \rangle = \{ [1], [7] \}$
\n $\langle [11] \rangle = \{ [1], [11] \}$
\nThis implies that \mathbf{Z}_{12}^{\times} is not a cyclic group.

(3) Find the cyclic subgroup of S_6 generated by the element (123)(456).

 $[(123)(456)]^2 = (123)^2(456)^2 = (132)(465)$ since (123) and (456) are disjoint. $[(123)(456)]^3 = (123)^3(456)^3 = (1)$ since (123) and (456) are cycles of length 3 Thus, $\langle (123)(456) \rangle = \{(1), (123)(456), (132)(465)\}.$

(4) Let $G = GL_3(\mathbf{R})$. Show that

$$
H = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix} \right\}
$$

is a subgroup of G.

(i) Closure:
$$
\begin{bmatrix} 1 & 0 & 0 \ a_1 & 1 & 0 \ b_1 & c_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \ a_2 & 1 & 0 \ b_2 & c_2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \ a_1 + a_2 & 1 & 0 \ b_1 + c_1 a_2 + b_2 & c_1 + c_2 & 1 \end{bmatrix} \in H.
$$

(ii) The identity matrix $I_3 \in H$ by letting $a = b = c = 0$.

(iii) Inverses: By part (i):
$$
\begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -a & 1 & 0 \\ -b + ca & -c & 1 \end{bmatrix} \in H.
$$

(5) Prove that the intersection of any collection of subgroups of a group is again a subgroup.

Let G be a group and H_i be a subgroup of G for $i \in I$. (I is an index set) Then we need to show that $K = \bigcap_{i \in I} H_i$ is again a subgroup of G.

- (a) Take any $a, b \in K \subseteq H_i$, for each i. Then $ab \in H_i$ since H_i is a subgroup. Thus, $ab \in K$ since i is arbitrary.
- (b) The identity element $e \in H_i$ for each i, so $e \in K$.
- (c) Take any $a \in K \subseteq H_i$, for each i. Then $a^{-1} \in H_i$ since H_i is a subgroup. Thus, $a^{-1} \in K$ since i is arbitrary.
- (6) Prove that any cyclic group is abelian.

Let $\langle g \rangle$ be a cyclic group G. For any two elements $a, b \in G$, there exist $m, n \in \mathbb{Z}$ such that $a = g^m$ and $b = g^n$. Thus,

$$
ab = gmgn = gm+n = gn+m = gngm = ba.
$$

(7) Let G be a non-cyclic group of order 8. Prove that $a^4 = e$ for all $a \in G$.

Proof. Since G is not cyclic, it follows from Lagrange's theorem that an element $a \in G$ can have order 1, 2 or 4 since $8 = 2^3$. Hence proved.

 (8) Let G be a group. The set

 $Z(G) = \{x \in G \mid xq = qx \text{ for all } q \in G\}$

of all elements that commute with every other element of G is called the center of G. Show that $Z(G)$ is a subgroup of G.

(4) Let $G = \text{GL}_3(\mathbf{R})$. Show that
 $H = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}$

is a subgroup of G .

(i) Cleauce $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 10 \\ 0 & 1 & 11 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0$ (a) If $x, y \in Z(G)$, then $xy \in Z(G)$ since by definition we have $(xy)g = x(yg) = x(gy) = (xg)y = (gx)y = g(xy)$ for all $g \in G$. (b) The identity element $e \in Z(G)$ since $eg = ge$ for all $g \in G$. (c) If $x \in Z(G)$, then $x^{-1} \in Z(G)$. In fact, for all $g \in G$ we have $g = eg = (x^{-1}x)g = x^{-1}(xg) = x^{-1}(gx) = (x^{-1}g)x.$ Thus, $gx^{-1} = x^{-1}g$ for all $g \in G$.

 (9) ^{*} Show that if a group G has a unique element a of order 2, then $a \in Z(G)$. (Note that $Z(G)$, the center of G, is defined as in above Question (8) .)

Question $(9)^*$ is a bonus question. It is optional for the students who are in Math 546. However, it is required for the students who are in Math 701I.

To show $a \in Z(G)$, it is equivalent to show that $ab = ba$ for all $b \in G$. Consider the element bab^{-1} for each $b \in G$, since $a^2 = e$ we have

 $(bab^{-1})^2 = (bab^{-1})(bab^{-1}) = bab^{-1}bab^{-1} = ba^2b^{-1} = beb^{-1} = e.$

We omit the parentheses in the above calculations. There are two possibilities:

- (a) If $bab^{-1} = e$, then $ba = b$. This implies $a = e$. We obtain a contradiction since $o(a) = 2$.
- 9) Show that if a group G has a unique element a of order 2, then $a \in Z(G)$.

(Note that $Z(G)$, the center of G, is defined as in above Question (8)) or

(Anita 3.6 Monceuve, it is a regional for the statestic wide once in (b) If $bab^{-1} \neq e$, then $o(bab^{-1}) = 2$. So $bab^{-1} = a$ since the element a is the unique one in G with order 2. This implies $ba = ab$ for all $b \in G$. Thus, $a \in Z(G)$.