Homework 3

Due: Feb 9th (Wednesday class)

- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.

(2)

(1) In the group $GL_2(\mathbf{R})$ under matrix multiplication, find the order of each of the following elements.

(a)
$$\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$

 $\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}^3 = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} =$
 $\Rightarrow \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}^6 = (-I_2)^2 = I_2$. Thus, the matrix $\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$ has order 6.
It easily follows from the direct computations to see that its order cannot
be 4 or 5.
(b) $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ for all n . Thus $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ has infinite order.
For each of the following groups, find all cyclic subgroups of the group.

- (a) $(\mathbf{Z}_{8}, +_{[]_{8}})$ $\mathbf{Z}_{8} = \langle [1] \rangle = \langle [3] \rangle = \langle [5] \rangle = \langle [7] \rangle \text{ since } \mathbf{Z}_{8}^{\times} = \{ [1], [3], [5], [7] \}.$ $\langle [2] \rangle = \langle [6] \rangle = \{ [0], [2], [4], [6] \}$ $\langle [4] \rangle = \{ [0], [4] \}$ $\langle [0] \rangle = \{ [0] \}$ (b) $(\mathbf{Z}_{12}^{\times}, \cdot_{[]_{12}})$ $\mathbf{Z}_{12}^{\times} = \{ [1], [5], [7], [11] \} = \{ [1], [5], [-5], [-1] \}$ $\langle [1] \rangle = \{ [1], [5] \}$ $\langle [5] \rangle = \{ [1], [5] \}$ $\langle [7] \rangle = \{ [1], [7] \}$ $\langle [11] \rangle = \{ [1], [11] \}$ This implies that \mathbf{Z}_{12}^{\times} is not a cyclic group.
- (3) Find the cyclic subgroup of S_6 generated by the element (123)(456).

$$\begin{split} & [(123)(456)]^2 = (123)^2(456)^2 = (132)(465) \text{ since } (123) \text{ and } (456) \text{ are disjoint.} \\ & [(123)(456)]^3 = (123)^3(456)^3 = (1) \text{ since } (123) \text{ and } (456) \text{ are cycles of length } 3 \\ & \text{Thus, } \langle (123)(456) \rangle = \{(1), (123)(456), (132)(465)\}. \end{split}$$

(4) Let $G = GL_3(\mathbf{R})$. Show that

$$H = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix} \right\}$$

is a subgroup of G.

(i) Closure:
$$\begin{bmatrix} 1 & 0 & 0 \\ a_1 & 1 & 0 \\ b_1 & c_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ a_2 & 1 & 0 \\ b_2 & c_2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ a_1 + a_2 & 1 & 0 \\ b_1 + c_1 a_2 + b_2 & c_1 + c_2 & 1 \end{bmatrix} \in H.$$

(ii) The identity matrix $I_3 \in H$ by letting a = b = c = 0.

(iii) Inverses: By part (i):
$$\begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -a & 1 & 0 \\ -b + ca & -c & 1 \end{bmatrix} \in H.$$

(5) Prove that the intersection of any collection of subgroups of a group is again a subgroup.

Let G be a group and H_i be a subgroup of G for $i \in I$. (I is an index set) Then we need to show that $K = \bigcap_{i \in I} H_i$ is again a subgroup of G.

- (a) Take any $a, b \in K \subseteq H_i$, for each *i*. Then $ab \in H_i$ since H_i is a subgroup. Thus, $ab \in K$ since *i* is arbitrary.
- (b) The identity element $e \in H_i$ for each i, so $e \in K$.
- (c) Take any $a \in K \subseteq H_i$, for each *i*. Then $a^{-1} \in H_i$ since H_i is a subgroup. Thus, $a^{-1} \in K$ since *i* is arbitrary.
- (6) Prove that any cyclic group is abelian.

Let $\langle g \rangle$ be a cyclic group G. For any two elements $a, b \in G$, there exist $m, n \in \mathbb{Z}$ such that $a = g^m$ and $b = g^n$. Thus,

$$ab = g^m g^n = g^{m+n} = g^{n+m} = g^n g^m = ba$$

(7) Let G be a non-cyclic group of order 8. Prove that $a^4 = e$ for all $a \in G$.

Proof. Since G is not cyclic, it follows from Lagrange's theorem that an element $a \in G$ can have order 1, 2 or 4 since $8 = 2^3$. Hence proved.

(8) Let G be a group. The set

 $Z(G) = \{ x \in G \mid xg = gx \text{ for all } g \in G \}$

of all elements that commute with every other element of G is called the **center** of G. Show that Z(G) is a subgroup of G.

(a) If x, y ∈ Z(G), then xy ∈ Z(G) since by definition we have (xy)g = x(yg) = x(gy) = (xg)y = (gx)y = g(xy) for all g ∈ G.
(b) The identity element e ∈ Z(G) since eg = g = ge for all g ∈ G.
(c) If x ∈ Z(G), then x⁻¹ ∈ Z(G). In fact, for all g ∈ G we have g = eg = (x⁻¹x)g = x⁻¹(xg) = x⁻¹(gx) = (x⁻¹g)x. Thus, gx⁻¹ = x⁻¹g for all g ∈ G. (9)* Show that if a group G has a unique element a of order 2, then $a \in Z(G)$. (Note that Z(G), the center of G, is defined as in above Question (8).)

Question (9)* is a bonus question. It is optional for the students who are in Math 546. However, it is required for the students who are in Math 7011.

To show $a \in Z(G)$, it is equivalent to show that ab = ba for all $b \in G$. Consider the element bab^{-1} for each $b \in G$, since $a^2 = e$ we have

 $(bab^{-1})^2 = (bab^{-1})(bab^{-1}) = bab^{-1}bab^{-1} = ba^2b^{-1} = beb^{-1} = e.$

We omit the parentheses in the above calculations. There are two possibilities:

- (a) If $bab^{-1} = e$, then ba = b. This implies a = e. We obtain a contradiction since o(a) = 2.
- (b) If $bab^{-1} \neq e$, then $o(bab^{-1}) = 2$. So $bab^{-1} = a$ since the element a is the unique one in G with order 2. This implies ba = ab for all $b \in G$. Thus, $a \in Z(G)$.