Homework 2

Due: Feb 2nd (Wednesday class)

- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.

From now on, we refer to four axioms of the definition of a group as follows.

 $(i) \leftrightarrow$ "Closure", $(ii) \leftrightarrow$ "Associativity", $(iii) \leftrightarrow$ "Identity", $(iv) \leftrightarrow$ "Inverses".

- (1) For each binary operation * defined on a set below, determine whether or not * gives a group structure on the set. If it is not a group, say which axioms fail to hold.
 - (a) Define * on **Z** by $a * b = \max\{a, b\}$. Not a group, (iii) fails¹
 - (b) Define * on **Z** by a * b = a b. Not a group, (ii), (iii) fail
 - (c) Define * on **Z** by a * b = |ab|. Not a group, (iii) fails
 - (d) Define * on \mathbf{R}^+ by a * b = ab. Yes

(2) Let (G, \cdot) be a group. Define a new binary operation * on G by the formula $a * b = b \cdot a$, for all $a, b \in G$.

- (a) Show that (G, *) is a group.
 - (i) $a * b = b \cdot a \in G$ since (G, \cdot) is a group.
 - (ii) $(a * b) * c = (b \cdot a) * c = c \cdot (b \cdot a) \stackrel{!}{=} (c \cdot b) \cdot a = (b * c) \cdot a = a * (b * c)$ Note that $\stackrel{!}{=}$ is true since (G, \cdot) is a group.
 - (iii) The identity element e, which is the same identity element e for \cdot . $a * e = e \cdot a \stackrel{!}{=} a$ and $e * a = a \cdot e \stackrel{!}{=} a$.
 - Again, $\stackrel{!}{=}$ is true since (G, \cdot) is a group.
 - (iv) For each a, the inverse is a^{-1} , which is the same one w.r.t. (G, \cdot) . $a * a^{-1} = a^{-1} \cdot a \stackrel{!}{=} e$ and $a^{-1} * a = a \cdot a^{-1} \stackrel{!}{=} e$.
- (b) Give examples to show that (G, *) may or may not be the same as (G, \cdot) . If (G, *) is the same as (G, \cdot) , this just means $a * b = a \cdot b \Leftrightarrow b \cdot a = a \cdot b$ for all $a, b \in G$. Since they have the same identity element and the same inverses from above discussion. Thus, (G, *) is the same as (G, \cdot) if and only if $b \cdot a = a \cdot b$ for all $a, b \in G$, i.e., (G, \cdot) is an abelian group. Example of a nonabelian group: $\operatorname{GL}_n(\mathbf{R})$ under matrix multiplication. Example of an abelian group: \mathbf{Z} under ordinary addition.
- (3) Write out the multiplication table for \mathbf{Z}_{7}^{\times} .

¹Just note that if (iii) fails, so does (iv).

•	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

- (4) Let $G = \{x \in \mathbf{R} \mid x > 0 \text{ and } x \neq 1\}$. Define the operation * on G by $a * b = a^{\ln b}$, for all $a, b \in G$. Prove that G is an abelian group under the operation *.
 - (i) $a * b = a^{\ln b} > 0$ and $a^{\ln b} \neq 1$ since $\ln b \neq 0$ for $b \in G$. (ii) $(a * b) * c = a^{\ln b} * c = (a^{\ln b})^{\ln c} = a^{\ln b \ln c} = a^{\ln c \ln b}$ $a * (b * c) = a * (b^{\ln c}) = a^{\ln (b^{\ln c})} = a^{\ln c \ln b} = (a * b) * c$

Commutative: $a * b = a^{\ln b} = e^{\ln(a^{\ln b})} = e^{\ln b \ln a} = e^{\ln a \ln b} = e^{\ln(b^{\ln a})} = b^{\ln a} = b * a$

- (iii) Identity element is the natural number e. In particular, $a * e = a^{\ln e} = a^1 = a$ and $e * a = e^{\ln a} = a$.
- It suffices to just check e * a = a since e * a = a * e by communicativity. (iv) For each $a \in G$, the inverse is $e^{1/\ln a}$. In particular,
- $a * e^{1/\ln a} = a^{\ln(e^{1/\ln a})} = a^{(1/\ln a)\ln e} = a^{1/\ln a} = a^{\ln e/\ln a} = a^{\log_a^e} = e$ $e^{1/\ln a} * a = (e^{1/\ln a})^{\ln a} = e^{(1/\ln a)\ln a} = e^1 = e$ Again, by communicativity it suffices to just check $e^{1/\ln a} * a = e$.
- (5) Show that the set of all 2×2 matrices over **R** of the form $\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$ with $m \neq 0$ forms a group under matrix multiplication. Furthermore, find all elements that commute with $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ in this group.
 - (i) For nonzero $m_1, m_2 \in \mathbf{R}$ and $b_1, b_2 \in \mathbf{R}$, $\begin{bmatrix} m_1 & b_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m_2 & b_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} m_1 m_2 & m_1 b_2 + b_1 \\ 0 & 1 \end{bmatrix}$, where $m_1 m_2 \neq 0$.
 - (ii) Matrix multiplication is associative.
 - (iii) The identity matrix.

(iv) For $\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$ with $m \neq 0$, the inverse is $\begin{bmatrix} 1/m & -b/m \\ 0 & 1 \end{bmatrix}$. For the second part,

$$\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \Rightarrow \begin{cases} m2 = 2m \\ b = 2b \end{cases} \Rightarrow b = 0$$

Thus, all elements $\left\{ \begin{bmatrix} m & 0 \\ 0 & 1 \end{bmatrix} \mid m \neq 0 \right\}$ are the required ones.

- (6) Define * on **R** by a * b = a + b 1, for all $a, b \in \mathbf{R}$. Show that $(\mathbf{R}, *)$ is an abelian group.
 - (i) Trivial.

(ii) (a * b) * c = (a + b - 1) * c = a + b - 1 + c - 1a * (b * c) = a * (b + c - 1) = a + b + c - 1 - 1

Commutative: a * b = a + b - 1 = b + a - 1 = b * a.

- (iii) Identity is 1. By commutativity, we only need to check one equation. a * 1 = a + 1 - 1 = a for all $a \in \mathbf{R}$.
- (iv) For each $a \in \mathbf{R}$, its inverse is 2 a.

$$a * (2 - a) = a + 2 - a - 1 = 1$$

The other equation follows from the commutativity.

- (7) Let G be a group. Prove that G is abelian if and only if (ab)⁻¹ = a⁻¹b⁻¹ for all a, b ∈ G.
 (⇒) Since G is abelian, then (ab)⁻¹ = b⁻¹a⁻¹ = a⁻¹b⁻¹.
 (⇐) (ab)⁻¹ = a⁻¹b⁻¹ ⇒ ((ab)⁻¹)⁻¹ = (a⁻¹b⁻¹)⁻¹ ⇒ ab = (b⁻¹)⁻¹(a⁻¹)⁻¹ = ba
- (8) Let G be a group. Prove that if $x^2 = e$ for all $x \in G$, then G is abelian. Since $x^2 = e$ for all $x \in G$, then $x = x^{-1}$. In particular, we also have $(xy)^2 = e$ for all $x, y \in G$. Thus $xy = (xy)^{-1} = y^{-1}x^{-1} = yx$.
- (9)* Show that if G is a finite group with an even number of elements, then there must exist an element $a \in G$ with $a \neq e$ such that $a^2 = e$.

Question (9)* is a bonus question. It is optional for the students who are in Math 546. However, it is required for the students who are in Math 7011. Suppose $a^2 \neq e$, then $a \neq a^{-1}$. Since G is a group, any such pair of elements

$$\{a, a^{-1} \mid a^2 \neq e\}$$

are also in the G. However $e^2 = e$, then there must exist at least one element $b \in G$ with $b \neq e$ such that $b^2 = e$. Otherwise, if no such element b exists, then this finite group G has an odd number of elements. Contradiction.