Homework 1

- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- (0-1) Read §1.1 and §1.2 to make sure understand gcd, lcm and Euclidean algorithm.
- (0-2) Read and understand the proof in lecture slide No. 14 (final slide) for § 2.3.
 - (1) Solve the following congruences.
 - (a) $2x \equiv 1 \pmod{9}$ $d = (2,9) = 1 | 1 \checkmark \Rightarrow x \equiv 5 \pmod{9}$
 - (b) $20x \equiv 12 \pmod{72}$ $d = (20, 72) = 4 | 12\sqrt{3} \Rightarrow 5x \equiv 3 \pmod{18}$ Solve $5x \equiv 1 \pmod{18}$ first: $x \equiv 11 \pmod{18}$. Thus, $5x \equiv 3 \pmod{18} \Rightarrow x \equiv 33 \equiv 15 \pmod{18}$ Equivalently, $x \equiv 15, 33, 51, 69 \pmod{72}$
 - (2) Make addition and multiplication tables for \mathbf{Z}_4 .

+	[0]	[1]	[2]	[3]	•	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]	[0]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[3]	[0]	[1]	[0]	[1]	[2]	[3]
[2]	[2]	[3]	[0]	[1]	[2]	[0]	[2]	[0]	[2]
[3]	[3]	[0]	[1]	[2]	[3]	[0]	[3]	[2]	[1]

(3) Find the multiplicative inverses of the given elements (if possible). No multiplicative inverse since $(6, 15) = 3 \neq 1$ (a) [6] in \mathbf{Z}_{15} .

(b) [7] in
$$\mathbf{Z}_{15}$$
. [7][2] = [-1] \Rightarrow [7][-2] = [7][13] = [1] \Rightarrow [7]⁻¹ = [13]

- (4) Let (a, n) = 1. The smallest positive integer k such that $a^k \equiv 1 \pmod{n}$ is called the **multiplicative order** of [a] in \mathbf{Z}_n^{\times} . Find the multiplicative orders of [5] and [7] in \mathbf{Z}_{16}^{\times} and show that their multiplicative orders both divide $\varphi(16)$. $\varphi(16) = 8$. $[5]^2 = [25] = [9], [5]^3 = [5]^2[5] = [45] = [-3], [5]^4 = [5]^3[5] = [-15] = [1]$ \Rightarrow order is 4| $\varphi(16)$. $[7]^2 = [49] = [1] \Rightarrow \text{ order is } 2|\varphi(16). \checkmark$
- (5) Consider the following permutations in S_7 .

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix} \quad \text{and} \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3 \end{pmatrix}$$

(a) Write the following permutations as a product of disjoint cycles.

(iii) σ^{-1} (iv) $\sigma\tau\sigma^{-1}$ (ii) $\tau\sigma$ (i) $\sigma\tau$ Write $\sigma = (1356)$ and $\tau = (12)(3547)$. (i) $\sigma \tau = (1356)(12)(3547) = (1236)(475)$ 1

- (ii) $\tau \sigma = (12)(3547)(1356) = (1562)(347)$
- (iii) $\sigma^{-1} = (6531) = (1653)$
- (iv) $\sigma \tau \sigma^{-1} = (\sigma \tau) \sigma^{-1} = (1236)(475)(1653) = (1)(23)(4756) = (23)(4756)$
- (b) Write σ and τ as products of transpositions. $\sigma = (1356) = (56)(36)(16) = (13)(35)(56)$ $\tau = (12)(3547) = (12)(47)(57)(37) = (12)(35)(54)(47)$
- (6) Write

(1)	2	3	4	5	6	7	8	9	10
$\sqrt{3}$	4	10	5	7	8	2	6	9	1)

as a product of disjoint cycles and as a product of transpositions. Find its inverse, and find its order.

(1310)(2457)(68) = (13)(310)(24)(45)(57)(68) = (310)(110)(57)(47)(27)(68)Order= lcm[3, 4, 2] = 12. Inverse is (1031)(7542)(86) = (1103)(2754)(68)

(7) Find the order of each of the following permutations.

Hint: First write each permutation as a product of disjoint cycles.

(a) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 6 & 7 & 5 & 1 & 8 & 2 & 3 \end{pmatrix}$

 $(145)(26837) \Rightarrow \text{Order} = \text{lcm}[3, 5] = 15.$

(b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 9 & 8 & 7 & 3 & 4 & 6 & 1 & 2 \end{pmatrix}$

 $(1538)(29)(476) \Rightarrow \text{Order}=\text{lcm}[4, 2, 3] = 12.$

- (8) Let $\sigma = (2396)(73259)(17)(487) \in S_9$.
 - (a) Is σ an even permutation or an odd permutation?

Even. Because "Odd·Even·Odd·Even=Even".

(b) What is the order of σ in S_9 ?

 $\sigma = (19748)(256)(3) = (19748)(256) \Rightarrow \text{Order} = \text{lcm}[5,3] = 15.$ You can also see σ is even from the product of disjoint cycles: "Even·Even=Even".

