Homework 1

- Please make sure your handwriting is clear enough to read. Thanks.
- No late work will be accepted.
- $(0-1)$ Read $\S1.1$ and $\S1.2$ to make sure understand gcd, lcm and Euclidean algorithm.
- $(0-2)$ Read and understand the proof in lecture slide No. 14 (final slide) for § 2.3.
	- (1) Solve the following congruences.
		- (a) $2x \equiv 1 \pmod{9}$ $d = (2, 9) = 1 \vert 1 \checkmark \Rightarrow \bar{\vert} x \equiv 5 \pmod{9}$
		- (b) $20x \equiv 12 \pmod{72}$ $d = (20, 72) = 4|12\sqrt{ } \Rightarrow 5x \equiv 3 \pmod{18}$ Solve $5x \equiv 1 \pmod{18}$ first: $x \equiv 11 \pmod{18}$. Thus, $5x \equiv 3 \pmod{18} \Rightarrow x \equiv 33 \equiv 15 \pmod{18}$ Equivalently, $x \equiv 15, 33, 51, 69 \pmod{72}$
	- (2) Make addition and multiplication tables for \mathbb{Z}_4 .

(3) Find the multiplicative inverses of the given elements (if possible). (a) [6] in \mathbb{Z}_{15} . No multiplicative inverse since $(6, 15) = 3 \neq 1$

(b) [7] in
$$
\mathbf{Z}_{15}
$$
. [7][2] = [-1] \Rightarrow [7][-2] = [7][13] = [1] \Rightarrow [7]⁻¹ = [13]

- **Homework 1**

Due: Jan 26th (Wednesday class)

 Plass make sure your landwriting is clear enough to read. Thanks,

 No late work will be accepted.

1) Read §1.1 and §1.2 to make sure understand ged, fen and Euclidean al (4) Let $(a, n) = 1$. The smallest positive integer k such that $a^k \equiv 1 \pmod{n}$ is called the **multiplicative order** of $[a]$ in \mathbf{Z}_n^{\times} . Find the multiplicative orders of [5] and [7] in \mathbb{Z}_{16}^{\times} and show that their multiplicative orders both divide $\varphi(16)$. $\varphi(16) = 8$. $[5]^2 = [25] = [9], [5]^3 = [5]^2 [5] = [45] = [-3], [5]^4 = [5]^3 [5] = [-15] = [1]$ \Rightarrow order is 4| φ (16). \checkmark $[7]^2 = [49] = [1] \Rightarrow$ order is $2|\varphi(16)$.
- (5) Consider the following permutations in S_7 .

$$
\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix} \text{ and } \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3 \end{pmatrix}
$$

(a) Write the following permutations as a product of disjoint cycles.

(i) $\sigma \tau$ (ii) $\tau \sigma$ (iii) σ^{-1} (iv) $\sigma \tau \sigma^{-1}$ Write $\sigma = (1356)$ and $\tau = (12)(3547)$. (i) $\sigma \tau = (1356)(12)(3547) = (1236)(475)$

- (ii) $\tau \sigma = (12)(3547)(1356) = (1562)(347)$
- (iii) $\sigma^{-1} = (6531) = (1653)$
- (iv) $\sigma \tau \sigma^{-1} = (\sigma \tau) \sigma^{-1} = (1236)(475)(1653) = (1)(23)(4756) = (23)(4756)$
- (b) Write σ and τ as products of transpositions. $\sigma = (1356) = (56)(36)(16) = (13)(35)(56)$ $\tau = (12)(3547) = (12)(47)(57)(37) = (12)(35)(54)(47)$
- (6) Write

as a product of disjoint cycles and as a product of transpositions. Find its inverse, and find its order.

 $(1310)(2457)(68) = (13)(310)(24)(45)(57)(68) = (310)(110)(57)(47)(27)(68)$ Order= lcm[3, 4, 2] = 12. Inverse is $(1031)(7542)(86) = (1103)(2754)(68)$

(ii) $\tau \sigma = (12)(3347)(1386)$ (1562)(347)

(iii) $\sigma^{-1} = (6831) - (1083)$

(iv) $\sigma \tau \sigma^{-1} = (\tau \tau) \sigma^{-1} = (1236)(475)(1633) = (1)(23)(4756) = (23)(4756)$

(b) Write σ and τ as products of transpositions.
 $\tau = (12)(3547) - (12)(47)(57)(57) = ($ (7) Find the order of each of the following permutations. Hint: First write each permutation as a product of disjoint cycles. (a) 1 2 3 4 5 6 7 8 4 6 7 5 1 8 2 3 $(145)(26837) \Rightarrow$ Order= lcm[3, 5] = 15. (b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 9 & 8 & 7 & 3 & 4 & 6 & 1 & 2 \end{pmatrix}$

 $(1538)(29)(476) \Rightarrow$ Order=lcm[4, 2, 3] = 12.

- (8) Let $\sigma = (2396)(73259)(17)(487) \in S_9$.
	- (a) Is σ an even permutation or an odd permutation?

Even. Because "Odd·Even·Odd·Even=Even".

(b) What is the order of σ in S_9 ?

 $\sigma = (19748)(256)(3) = (19748)(256) \Rightarrow$ Order= lcm[5, 3] = 15. You can also see σ is even from the product of disjoint cycles: "Even-Even=Even".

