Final Review

Shaoyun Yi

MATH 546/701I

University of South Carolina

Spring 2022

Brief review from § 1.3, 1.4, 2.3 & § 3.1-3.8 (next slide)

Division Algorithm: $a = bq + r$, with $0 \le r \le b$. \rightsquigarrow Euclidean Algorithm

A useful skill: To show $b|a$, write $a = bq + r$ first and then to show $r = 0$.

 $d = \gcd(a, b)$ is the smallest positive linear combination of a and b. An integer x is a linear combination of a and b if and only if gcd(a, b)|x.

 $(a, b) = 1$ if and only if there exist integers m, n such that $ma + nb = 1$.

i) If $b|ac$ and $(a, b) = 1$, then $b|c$. ii) If $b|a, c|a$ and $(b, c) = 1$, then $bc|a$. iii) $(a, b) \cdot [a, b] = ab$.

- Two groups: $(\mathsf{Z}_n, +_{[}^{\mathsf{I}})$ with $|\mathsf{Z}_n| = n$ & $(\mathsf{Z}_n^{\times}, \cdot_{[}^{\mathsf{I}})$ with $|\mathsf{Z}_n^{\times}| = \varphi(n)$
- The symmetric group (S_n, \circ) of degree *n* with $|S_n| = n!$.
	- Disjoint cycles are commutative.
	- $\sigma \in S_n$ can be written as a *unique* product of disjoint cycles.
	- The order of σ is the **lcm** of the orders of its disjoint cycles.

- Group G : closure, associativity, identity, inverses; (non)abelian, (in)finite
- Subgroup $H \subseteq G$: closure, identity, inverses
	- Alternative way: H is nonempty and $ab^{-1} \in H$ for all $a, b \in H$.
	- \bullet $|H| < \infty$: To show H is nonempty and $ab \in H$ for all $a, b \in H$.
	- Cyclic subgroup $\langle a \rangle$ generated by $a \in G \& |\langle a \rangle| = o(a)$ if $\langle a \rangle$ is finite.
	- Product of two subgroups v.s. Direct product of $(tw_0 \rightarrow n)$ groups
	- N is a normal subgroup of G if $gng^{-1} \in N$ for all $n \in N, g \in G$.
		- N is normal if and only if its left and right cosets coincide.
		- G/N : Factor group under the coset multiplication aNbN = abN.
		- Any normal subgp N is the kernel of natural projection $\pi: G \to G/N$.
		- $G \neq \emptyset$ is called *simple* if it has no proper nontrivial normal subgroups.
- Lagrange's Thm If $|G| = n < \infty$ and $H \subseteq G$, then $|H||n \rightarrow o(a)|n$
- (well-defined) Group homomorphism $\phi : G_1 \to G_2$ if $\phi(ab) = \phi(a)\phi(b)$.
	- $\phi(a^m) = (\phi(a))^m$ for all $a \in G_1, m \in \mathbf{Z}$. e.g., $m = 0$ & $m = -1$
	- If $o(a) = n$, then $o(\phi(a))|n$. $(\leadsto o(\phi(a)) = n$ if ϕ is an isomorphism)
	- \bullet ϕ is onto: if G_1 is abelian (cyclic), then G_2 is also abelian (cyclic).
	- **If** $G_1 = \langle a \rangle$, then ϕ is completely determined by $\phi(a)$ and so im $(\phi) = \langle \phi(a) \rangle$.
- Fundamental Homomorphism Theorem $G_1/\text{ker}(\phi) \cong \phi(G_1) = \text{im}(\phi)$
- Cayley's Theorem Every group is isomorphic to a permutation group. Cyclic group: (\cong **Z** or \cong **Z_n)**, Dihedral group D_n , Alternating group A_n
Shaovun Yi Final Review Spring 2022 3/ Shaoyun Yi **[Final Review](#page-0-0) Shaoyun Yi Spring 2022** 3 / 9

Example 1: Which of the groups below are isomorphic to each other?

Groups of order 8:
$$
\mathbb{Z}_8
$$
, $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, \mathbb{Z}_{24}^{\times} , \mathbb{Z}_{30}^{\times} , D_4 .

\nIn the proof of Euler's totient function $\varphi(n)$ (see § 3.5, slide #13)

\n $\mathbb{Z}_n^{\times} \cong \mathbb{Z}_{p_1^{\times_1}}^{\times} \times \mathbb{Z}_{p_2^{\times_2}}^{\times} \times \cdots \times \mathbb{Z}_{p_m^{\times_m}}^{\times}$

\nStructure Property

\n \mathbb{Z}_8 cyclic

\n $\mathbb{Z}_4 \times \mathbb{Z}_2$ abelian, not cyclic; possible orders of an element: 1, 2, 4

\n $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ abelian, not cyclic; each non-identity element has order 2 abelian, not cyclic; $\mathbb{Z}_{24}^{\times} \cong \mathbb{Z}_3^{\times} \times \mathbb{Z}_8^{\times} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

\nabelian, not cyclic; $\mathbb{Z}_{24}^{\times} \cong \mathbb{Z}_3^{\times} \times \mathbb{Z}_8^{\times} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

 $\frac{\times}{30}$ abelian, not cyclic; $\mathbb{Z}_{30}^{\times} \cong \mathbb{Z}_5^{\times} \times \mathbb{Z}_3^{\times} \times \mathbb{Z}_2^{\times} \cong \mathbb{Z}_4 \times \mathbb{Z}_2$

 D_4 not abelian

 Z^{\times}_{30}

Let G be any group with no proper, nontrivial subgroups, and assume that G has more than one element. Prove that $G \cong Z_p$ for some prime p.

Proof: There exists a non-identity element $a \in G$. Then

 $G = \langle a \rangle$ [Why?] $\rightsquigarrow G$ is cyclic.

Moreover, G must be a finite cyclic group. If not, then $\langle a^k \rangle$ is a proper, nontrivial subgroup of $G = \langle a \rangle$ for any positive integer k, a contradiction.

Let $|G| = n > 1$. Thus $G \cong Z_n$. Then $Z_d \subset Z_n$ for $d|n$.

By assumption, $d = 1$ or $d = n$. $\leadsto n$ has to be a prime number p.

Example 3

Let G be an abelian group. Let $H := \{a \in G \mid o(a) < \infty\}$. Show that i) H is a subgroup of G .

ii) $K = \{a \in G \mid o(a)|k\}$ is a subgroup of H for a fixed positive integer k. iii) Is $\widetilde{K} = \{a \in G \mid o(a) \leq k\}$ also a subgroup of H for a fixed $k \in \mathbb{Z}_{>0}$?

Proof: i) Nonempty: $e \in H$. For any $a, b \in H$, we have $o(a), o(b) < \infty$. $(ab^{-1})^{o(a)\cdot o(b)}\stackrel{!}{=} (a)^{o(a)\cdot o(b)}(b^{-1})^{o(a)\cdot o(b)}=\cdots=e.\quad \rightsquigarrow ab^{-1}\in \mathcal{H}$ ii) Nonempty: $e \in K$. For any $a, b \in K$, we have $o(a)|k, o(b)|k$. $(ab^{-1})^{[o(a),o(b)]}\stackrel{!}{=} (a)^{[o(a),o(b)]}(b^{-1})^{[o(a),o(b)]}=ee=e.\quad \leadsto ab^{-1}\in \mathcal{K}$

iii) Might not be. Counterexample: Let $H = G = \mathbb{Z}_6$.

$$
\begin{array}{c|ccccc}\n & [0]_6 & [1]_6 & [2]_6 & [3]_6 & [4]_6 & [5]_6 \\
\hline\n\text{order} & 1 & 6 & 3 & 2 & 3 & 6\n\end{array}
$$

However, the set $\{0\}_{6}$, $[2]_{6}$, $[3]_{6}$, $[4]_{6}$ is not a subgroup of H, which is the collection of all the elements whose order is less than 4.

Example 4

Let $p > 2$ be a prime. Any group G of order 2p has an element of order 2 and an element of order p.

Proof: By Lagrange's theorem, an element can have order 1, 2, p or 2p. i) If G has an element of order 2p, then $G \cong \mathbf{Z}_{2p} \cong \mathbf{Z}_2 \times \mathbf{Z}_p$. ✔ ii) If G is not cyclic, then the only possible orders of elements are $1, 2, p$.

Since $|G|$ is even, it must contain one element of order 2. (see § 3.6, #13)

Proof: If not, $\{a,a^{-1}\}\in G$ with $a\neq a^{-1}$ for any $a\neq e$ & $\{e,e^{-1}\}=\{e\}.$ \rightarrow G has an odd number of elements, which is impossible.

G must contain an element of order p. (similarly as in $\S 3.6, \#13$)

Proof: If not, assume that every non-identity element of G has order 2. Then we can always find a subgroup of order 4 as in $\S 3.6, \#13$, which is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$, a contradiction.

Example 5: The second isomorphism theorem

Let H and N be subgroups of a group G , and assume that N is normal.

i) N is a normal subgroup of HN.

ii) $\phi : H \to HN/N$ defined by $\phi(h) = hN$ is an onto homomorphism.

iii) $HN/N \cong H/K$, where $K = H \cap N$.

Proof: i) HN is a subgroup: Nonempty since $e \in HN$. For any h_1n_1 , h_2n_2 $\epsilon \in HN$, $h_1 n_1 (h_2 n_2)^{-1} = h_1 n_1 n_2^{-1} h_2^{-1} = h_1 h_2^{-1} (h_2 n_1 n_2^{-1} h_2^{-1}) \in HN$. [Why?] *N* is normal in HN: For any $a \in N$, $hn \in HN$, we have $hna(hn)^{-1} \in N$. [Why?] ii) well-defined: $hN = h nN \in HN/N$ for any $n \in N$. ϕ is a homomorphism:

For any $h_1,h_2\in H$, we have $\phi(h_1h_2)=h_1h_2N\stackrel{!}{=}h_1Nh_2N=\phi(h_1)\phi(h_2).$ ϕ is onto by the definition of ϕ .

iii) ker(ϕ) = { $h \in H \mid \phi(h) = hN = N$ } = { $h \in H \mid h \in N$ } = $H \cap N$. By the fundamental homomorphism thm (The first isomorphism theorem), $HN/N \cong H/H \cap N$.

Example 6: The third isomorphism theorem

Let H and N be normal subgroups of a group G with $N \subseteq H$. Define

 $\phi : G/N \to G/H$ by $\phi(xN) = xH$, for all cosets $xN \in G/N$.

i) ϕ is a well-defined onto homomorphism.

ii) $(G/N)/(H/N)$ ≅ G/H .

Proof: i) well-defined: If $xN = yN$, then $y^{-1}x \in N$, and so $y^{-1}x \in H$. This implies that $xH = yH$, i,e., $\phi(xN) = \phi(yN)$. ϕ is a homomorphism: For any xN, yN $\in G/N$, we have $\phi(xNyN) \stackrel{!}{=} \phi(xyN) = xyH \stackrel{!}{=} xHyH = \phi(xN)\phi(yN).$ ϕ is onto since any coset xH occurs as the image of xN under ϕ .

ii) ker(ϕ) = {xN \in G/N | $\phi(xN) = xH = H$ } = {xN \in G/N | $x \in H$ }. This implies that ker(ϕ) is the left cosets of N in H, i.e., ker(ϕ) = H/N. In fact, N is normal in H . [Why?] By the fundamental homomorphism thm, $(G/N)/(H/N) \cong G/H$.