Math 546/701I—Final Exam

Instructor: Shaoyun Yi

Name: .

- (0) [10 pts] May you have a good summer holiday! Stay safe!
- (1) [20 pts] True/False questions: Determine if each of the following is true or false. In each case, explain your answer in detail or give one counterexample if it is false.
 - i) **R** is a group under multiplication.
 - ii) A cyclic group is always abelian.
 - iii) $[9]_{35}$ is a unit in Z_{35} .
 - iv) If |G| = 31, then G must be isomorphic to \mathbf{Z}_{31} .
 - v) A_n is a normal subgroup of S_n .
 - vi) $D_4 \cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$.
 - vii) The order of gH in G/H is the smallest positive integer n such that $g^n = e$.
 - viii) The product of an even number of disjoint cycles is an even permutation.
 - ix) $\mathbf{Z}_{10} \times \mathbf{Z}_{10} \cong \mathbf{Z}_5 \times \mathbf{Z}_{20}$.
 - x) \mathbf{Z}_{17} is a simple group.

(2) [15 pts] Let G be the set of nonzero rational numbers \mathbf{Q}^{\times} . Define a new multiplication by $a * b = \frac{ab}{5}$, for all $a, b \in G$. Show that (G, *) is an abelian group.

(3) (a) [5 pts] What is the order of ([18]₂₀, [25]₃₀) in $\mathbb{Z}_{20} \times \mathbb{Z}_{30}$?

(b) [5 pts] Let $G = \mathbb{Z}_{48}$. List all possible choice of $[k]_{48}$ such that $\langle [k]_{48} \rangle = \langle [20]_{48} \rangle$.

(4) Let *H* be a subgroup of *G*. Let N(*H*) = {*g* ∈ *G* | *gHg*⁻¹ = *H*}. Prove
(a) [8 pts] N(*H*) is a subgroup of *G*.

(b) [6 pts] H is a subgroup of N(H).

(c) [6 pts] H is normal in N(H).

(5) Let G and H be groups. Define the function $\phi: G \times H \to G$ by $\phi((a, b)) = a$, for all $(a, b) \in G \times H$.

(a) [5 pts] Prove that ϕ is a group homomorphism and onto.

(b) [5 pts] Find ker(ϕ).

(6) (a) [8 pts] List the cosets of $\langle [11]_{24} \rangle$ in \mathbf{Z}_{24}^{\times} .

(b) [7 pts] Prove that the factor group $\mathbf{Z}_{24}^{\times}/\langle [11]_{24}\rangle \cong \mathbf{Z}_2 \times \mathbf{Z}_2$.